laboneq.analysis
¶
Utilities mainly useful for analysing results and experiments.
calculate_integration_kernels(state_traces)
¶
Calculates the optimal kernel arrays for state discrimination given a set of reference traces corresponding to measurement of each qubit state. The calculated kernels can directly be used as kernels in acquire statements.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_traces
|
list[NDArray]
|
List of complex-valued reference traces, one array per state. The reference traces are typically obtained by an averaged scope measurement of the readout resonator response when the qudit is prepared in a certain state. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If any element of |
Deprecated in version 2.26.0
Deprecated in favor of calculate_integration_kernels_thresholds
which additionally supplies the threshold information.
calculate_integration_kernels_thresholds(state_traces)
¶
Calculates the optimal kernel arrays and threshold values for state discrimination given a set of reference traces corresponding to measurement of each qubit state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_traces
|
list[NDArray]
|
List of complex-valued reference traces, one array per state. The reference traces are typically obtained by an averaged scope measurement of the readout resonator response when the qudit is prepared in a certain state. |
required |
Returns:
Name | Type | Description |
---|---|---|
kernels |
list[PulseSampledComplex]
|
List of kernels to be used directly as an argument to |
thresholds |
list[float]
|
List of thresholds that can be used in the |
Raises:
Type | Description |
---|---|
ValueError
|
If any element of |
Added in version 2.26.0
Added extended functionality to additionally supply threshold information.
laboneq.analysis.fitting
¶
Fitting functions for modeling results in common quantum computing experiments.
exponential_decay(x, decay_rate, offset, amplitude=1.0)
¶
A function for modelling exponential decay such as T1 or T2 decay.
The form of the function is a decaying exponential:
Calling this function evaluates it. One may also fit this function
by calling exponential_decay.fit
which calls
fit with this function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ArrayLike
|
An array of values to evaluate the function at. |
required |
decay_rate
|
float
|
The exponential decay rate. |
required |
offset
|
float
|
The offset of the function. |
required |
amplitude
|
float
|
The amplitude multiplying the exponential. |
1.0
|
Returns:
Name | Type | Description |
---|---|---|
values |
ArrayLike
|
The values of the decay function at the times |
Examples:
Evaluate the function:
x = np.linspace(0, 10, 100)
values = exponential_decay(x, 0.1, 0.5, 2.0)
x = np.linspace(0, 10, 100)
popt, pcov = exponential_decay.fit(x, values, 0, 0, 1.0)
decay_rate, offset, amplitude = popt
fano_lineshape(x, width, position, amplitude, fano=0.0, offset=0.5)
¶
A function for modelling a Fano resonance.
The form of the Fano line-shape function is:
Calling this function evaluates it. One may also fit this function
by calling fano_lineshape.fit
which calls
fit with this function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ArrayLike
|
An array of values to evaluate the function at. |
required |
width
|
float
|
The width of the resonance. |
required |
position
|
float
|
The position of the resonance peak. |
required |
amplitude
|
float
|
The amplitude of the resonance. |
required |
fano
|
float
|
The Fano parameter. |
0.0
|
offset
|
float
|
The offset of the resonance. |
0.5
|
Returns:
Name | Type | Description |
---|---|---|
values |
ArrayLike
|
The values of the line-shape at the times |
Examples:
Evaluate the function:
x = np.linspace(0, 10, 100)
values = fano_lineshape(x, 2.0, 0.5, 3.0, 1.0, 0.5, 0.1)
x = np.linspace(0, 10, 100)
popt, pcov = fano_lineshape.fit(x, values, 1.0, 0.0, 1.0, 0.0, 0.0)
width, position, amplitude = popt
fit(func, x, y, *args, bounds=None, plot=False)
¶
Fit the given model.
This function is a lightweight wrapper around scipy.optimize.curve_fit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable
|
The model to fit.
The model function must accept an initial parameter |
required |
x
|
ArrayLike
|
The points to fit the function at. |
required |
y
|
ArrayLike
|
The data to fit. |
required |
*args
|
tuple[float, ...]
|
The initial values of the model parameters.
Only the parameters supplied here are fitted.
Any parameters of |
()
|
bounds
|
tuple[list, list] | None
|
If specified, a tuple containing the |
None
|
plot
|
bool
|
If True, also plot the fit using |
False
|
Returns:
Name | Type | Description |
---|---|---|
popt |
ArrayLike
|
The fitted values of the model parameters. |
pcov |
ArrayLike
|
The covariance matrix of the fit. The standard deviations
of the fitted values may be calculate using:
|
Examples:
def line(x, m, c):
return m * x + c
x = np.linspace(0, 10, 100)
data = np.random(*x.shape)
popt, pcov = fit(line, x, data, 1, 0, bounds=([0, 0], [10, 10]))
lorentzian(x, width, position, amplitude, offset)
¶
A function for modelling a Lorentzian spectrum.
The form of the spectrum function is:
An inverted spectrum may be modelled by specifying a negative amplitude.
Calling this function evaluates it. One may also fit this function
by calling lorentzian.fit
which calls
fit with this function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ArrayLike
|
An array of values to evaluate the function at. |
required |
width
|
float
|
The width of the spectrum. |
required |
position
|
float
|
The position of the spectrum peak. |
required |
amplitude
|
float
|
The amplitude of the spectrum. Specify a negative amplitude for an inverted spectrum. |
required |
offset
|
float
|
The offset of the spectrum. |
required |
Returns:
Name | Type | Description |
---|---|---|
values |
ArrayLike
|
The values of the spectrum at the times |
Examples:
Evaluate the function:
x = np.linspace(0, 10, 100)
values = lorentzian(x, 2.0, 0.5, 3.0, 0.1)
x = np.linspace(0, 10, 100)
popt, pcov = lorentzian.fit(x, values, 1.0, 0.0, 1.0, 0.0)
width, position, amplitude, offset = popt
oscillatory(x, frequency, phase, amplitude=1.0, offset=0.0)
¶
A function for modelling oscillartions such as Rabi oscillations.
The form of the function is a cosine:
Calling this function evaluates it. One may also fit this function
by calling oscillatory.fit
which calls
fit with this function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ArrayLike
|
An array of values to evaluate the function at. |
required |
frequency
|
float
|
The frequency of the cosine. |
required |
phase
|
float
|
The phase of the cosine. |
required |
amplitude
|
float
|
The amplitude of the cosine. |
1.0
|
offset
|
float
|
The offset of the cosine. |
0.0
|
Returns:
Name | Type | Description |
---|---|---|
values |
ArrayLike
|
The values of the oscillatory function at the times |
Examples:
Evaluate the function:
x = np.linspace(0, 10, 100)
values = oscillatory(x, 2, np.pi / 2, 0.5, 0.1)
x = np.linspace(0, 10, 100)
popt, pcov = oscillatory.fit(x, values, 1, 0, 0, 0)
frequency, phase, amplitude, offset = popt
oscillatory_decay(x, frequency, phase, decay_rate, amplitude=1.0, offset=0.0)
¶
A function for modelling decaying oscillations such as Ramsey decay.
The form of the function is a decaying cosine:
Calling this function evaluates it. One may also fit this function
by calling oscillatory_decay.fit
which calls
fit with this function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ArrayLike
|
An array of values to evaluate the function at. |
required |
frequency
|
float
|
The frequency of the cosine. |
required |
phase
|
float
|
The phase of the cosine. |
required |
decay_rate
|
float
|
The exponential decay rate. |
required |
amplitude
|
float
|
The amplitude of the cosine. |
1.0
|
offset
|
float
|
The offset of the function. |
0.0
|
Returns:
Name | Type | Description |
---|---|---|
values |
ArrayLike
|
The values of the decaying oscillation function at the times |
Examples:
Evaluate the function:
x = np.linspace(0, 10, 100)
values = oscillatory_decay(x, 2, np.pi / 2, 0.1, 0.5, 0.1)
x = np.linspace(0, 10, 100)
popt, pcov = oscillatory_decay.fit(x, values, 1, 0, 0, 0, 0)
frequency, phase, decay_rate, amplitude, offset = popt