laboneq_applications.analysis.lifetime_measurement
¶
This module defines the analysis for an lifetime_measurement experiment.
The experiment is defined in laboneq_applications.experiments.
In this analysis, we first interpret the raw data into qubit population using principle-component analysis or rotation and projection on the measured calibration states. Then we fit an exponential-decay model to the qubit population and extract the qubit energy relaxation time lifetime_measurement from the fit. Finally, we plot the data and the fit.
analysis_workflow(result, qubits, delays, options=None)
¶
The lifetime_measurement analysis Workflow.
The workflow consists of the following steps:
- calculate_qubit_population
- fit_data
- extract_qubit_parameters
- plot_raw_complex_data_1d
- plot_population
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result |
RunExperimentResults
|
The experiment results returned by the run_experiment task of the lifetime_measurement experiment workflow. |
required |
qubits |
Qubits
|
The qubits on which to run the analysis. May be either a single qubit or a list of qubits. The UIDs of these qubits must exist in the result. |
required |
delays |
QubitSweepPoints
|
The delays that were swept over in the lifetime_measurement experiment for
each qubit. If |
required |
options |
TuneUpAnalysisWorkflowOptions | None
|
The options for building the workflow, passed as an instance of [TuneUpAnalysisWorkflowOptions]. In addition to options from [WorkflowOptions], the following custom options are supported: do_fitting, do_plotting, do_raw_data_plotting, do_qubit_population_plotting and the options of the [TuneupAnalysisOptions] class. See the docstring of [TuneUpAnalysisWorkflowOptions] for more details |
None
|
Returns:
Name | Type | Description |
---|---|---|
WorkflowBuilder |
None
|
The builder for the analysis workflow. |
Example
options = TuneUpAnalysisWorkflowOptions()
result = analysis_workflow(
results=results
qubits=[q0, q1],
delays=[
np.linspace(0, 10e-6, 11),
np.linspace(0, 10e-6, 11),
],
options=options,
).run()
extract_qubit_parameters(qubits, fit_results, options=None)
¶
Extract the qubit parameters from the fit results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
qubits |
Qubits
|
The qubits on which to run the analysis. May be either a single qubit or a list of qubits. |
required |
fit_results |
dict[str, ModelResult]
|
the fit-results dictionary returned by fit_data |
required |
options |
TuneupAnalysisOptions | None
|
The options for extracting the qubit parameters. See [TuneupAnalysisOptions], [TuneupExperimentOptions] and [BaseExperimentOptions] for accepted options. |
None
|
Returns:
Type | Description |
---|---|
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
dict with extracted qubit parameters and the previous values for those qubit |
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
parameters. The dictionary has the following form: |
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
```python |
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
{ "new_parameter_values": { q.uid: { qb_param_name: qb_param_value }, } "old_parameter_values": { q.uid: { qb_param_name: qb_param_value }, } |
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
} |
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
``` |
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
If the do_fitting option is False, the new_parameter_values are not extracted |
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
and the function only returns the old_parameter_values. |
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
If a qubit uid is not found in fit_results, the new_parameter_values entry for |
dict[str, dict[str, dict[str, int | float | Variable | None]]]
|
that qubit is left empty. |
fit_data(qubits, processed_data_dict, options=None)
¶
Perform a fit of an exponential-decay model to the qubit state population.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
qubits |
Qubits
|
The qubits on which to run the analysis. May be either a single qubit or a list of qubits. The UIDs of these qubits must exist in processed_data_dict |
required |
processed_data_dict |
dict[str, dict[str, ArrayLike]]
|
the processed data dictionary returned by process_raw_data |
required |
options |
TuneupAnalysisOptions | None
|
The options for processing the raw data. See [TuneupAnalysisOptions], [TuneupExperimentOptions] and [BaseExperimentOptions] for accepted options. |
None
|
Returns:
Type | Description |
---|---|
dict[str, ModelResult]
|
dict with qubit UIDs as keys and the fit results for each qubit as keys. |
plot_population(qubits, processed_data_dict, fit_results, qubit_parameters, options=None)
¶
Create the lifetime_measurement plots.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
qubits |
Qubits
|
The qubits on which to run the analysis. May be either a single qubit or a list of qubits. The UIDs of these qubits must exist in processed_data_dict. |
required |
processed_data_dict |
dict[str, dict[str, ArrayLike]]
|
the processed data dictionary returned by process_raw_data |
required |
fit_results |
dict[str, ModelResult] | None
|
the fit-results dictionary returned by fit_data |
required |
qubit_parameters |
dict[str, dict[str, dict[str, int | float | Variable | None]]] | None
|
the qubit-parameters dictionary returned by extract_qubit_parameters |
required |
options |
TuneupAnalysisOptions | None
|
The options for processing the raw data. See [TuneupAnalysisOptions], [TuneupExperimentOptions] and [BaseExperimentOptions] for accepted options. |
None
|
Returns:
Type | Description |
---|---|
dict[str, Figure]
|
dict with qubit UIDs as keys and the figures for each qubit as values. |
dict[str, Figure]
|
If a qubit uid is not found in fit_results, the fit and the textbox with the |
dict[str, Figure]
|
extracted qubit parameters are not plotted. |