Skip to content

laboneq_applications.experiments.amplitude_fine

This module defines the amplitude_fine experiment.

In this experiment, we apply the same quantum operation a variable number of times. If each quantum operation has a small rotation error theta, then the sequence of multiple quantum operations will accumulate the error reps*theta, where reps is the number of time the quantum operation is repeated. From the experiment result we can obtain the correction value for the amplitude of imperfect drive pulses.

The amplitude_fine experiment has the following pulse sequence

qb --- [ prep transition ] --- [ quantum_operation ]**reps --- [ measure ]

where reps is varied.

If multiple qubits are passed to the run workflow, the above pulses are applied in parallel on all the qubits.

create_experiment(qpu, qubits, amplification_qop, repetitions, options=None)

Creates an Amplitude Rabi experiment Workflow.

Parameters:

Name Type Description Default
qpu QPU

The qpu consisting of the original qubits and quantum operations.

required
qubits QuantumElements

The qubits to run the experiments on. May be either a single qubit or a list of qubits.

required
amplification_qop str

String to define the quantum operation that should be applied multiple times to produce error amplification. The quantum operation must exist in qop.keys().

required
repetitions QubitSweepPoints

Number of time to repeat the quantum operation used to amplify the rotation error. If qubits is a single qubit, repetitions must be a list of integers. Otherwise, it must be a list of lists of integers.

required
options TuneupExperimentOptions | None

The options for building the experiment. See [TuneupExperimentOptions] and [BaseExperimentOptions] for accepted options. Overwrites the options from [TuneupExperimentOptions] and [BaseExperimentOptions].

None

Returns:

Name Type Description
experiment Experiment

The generated LabOne Q experiment instance to be compiled and executed.

Raises:

Type Description
ValueError

If the qubits and qubit_amplitudes are not of the same length.

ValueError

If qubit_amplitudes is not a list of numbers when a single qubit is passed.

ValueError

If qubit_amplitudes is not a list of lists of numbers.

ValueError

If the experiment uses calibration traces and the averaging mode is sequential.

Example
options = TuneupExperimentOptions()
options.count(10)
options.cal_traces(True)
qpu = QPU(
    qubits=[TunableTransmonQubit("q0"), TunableTransmonQubit("q1")],
    quantum_operations=TunableTransmonOperations(),
)
temp_qubits = qpu.copy_qubits()
create_experiment(
    qpu=qpu,
    qubits=temp_qubits,
    amplification_qop="x180",
    repetitions=[
        [1,2,3,4],
        [1,2,3,4],
    ],
    options=options,
)

experiment_workflow(session, qpu, qubits, amplification_qop, target_angle, phase_offset, repetitions, parameter_to_update=None, temporary_parameters=None, options=None)

The amplitude fine experiment workflow.

The workflow consists of the following steps:

Parameters:

Name Type Description Default
session Session

The connected session to use for running the experiment.

required
qpu QPU

The qpu consisting of the original qubits and quantum operations.

required
qubits QuantumElements

The qubits to run the experiments on. May be either a single qubit or a list of qubits.

required
amplification_qop str

str to identify the quantum operation to repeat to produce error amplification. The quantum operation must exist in qop.keys().

required
target_angle float

target angle the specified quantum operation shuould rotate. The target_angle is used as initial guess for fitting.

required
phase_offset float

initial guess for phase_offset of fit.

required
repetitions QubitSweepPoints[int]

The sweep values corresponding to the number of times to repeat the amplification_qop for each qubit. If qubits is a single qubit, repetitions must be a list of integers. Otherwise, it must be a list of lists of integers.

required
parameter_to_update str | None

str that defines the qubit parameter to be updated.

None
temporary_parameters dict[str, dict | TransmonParameters] | None

The temporary parameters to update the qubits with.

None
options TuneUpWorkflowOptions | None

The options for building the workflow. In addition to options from [WorkflowOptions], the following custom options are supported: - create_experiment: The options for creating the experiment.

None

Returns:

Name Type Description
WorkflowBuilder None

The builder of the experiment workflow.

Example
options = experiment_workflow.options()
options.count(10)
options.transition("ge")
qpu = QPU(
    qubits=[TunableTransmonQubit("q0"), TunableTransmonQubit("q1")],
    quantum_operations=TunableTransmonOperations(),
)
temp_qubits = qpu.copy_qubits()
result = experiment_workflow(
    session=session,
    qpu=qpu,
    qubits=temp_qubits,
    amplification_qop='x180',
    repetitions=[
        [1,2,3,4],
        [1,2,3,4],
    ],
    options=options,
).run()

experiment_workflow_x180(session, qpu, qubits, repetitions, temporary_parameters=None, options=None)

The amplitude fine experiment workflow for a x180 gate.

This workflow is the same as experiment_workflow above but with the following input parameters fixed: amplification_qop = "x180" target_angle = np.pi phase_offset = -np.pi / 2 parameter_to_update = "drive_amplitude_pi"

Parameters:

Name Type Description Default
session Session

The connected session to use for running the experiment.

required
qpu QPU

The qpu consisting of the original qubits and quantum operations.

required
qubits QuantumElements

The qubits to run the experiments on. May be either a single qubit or a list of qubits.

required
repetitions QubitSweepPoints[int]

The sweep values corresponding to the number of times to repeat the amplification_qop for each qubit. If qubits is a single qubit, repetitions must be a list of integers. Otherwise it must be a list of lists of integers.

required
temporary_parameters dict[str, dict | TransmonParameters] | None

The temporary parameters to update the qubits with.

None
options TuneUpWorkflowOptions | None

The options for building the workflow. In addition to options from [WorkflowOptions], the following custom options are supported: - create_experiment: The options for creating the experiment.

None

Returns:

Name Type Description
WorkflowBuilder None

The builder of the experiment workflow.

Example
options = TuneUpExperimentWorkflowOptions()
options.create_experiment.count = 10
options.create_experiment.transition = "ge"
qpu = QPU(
    qubits=[TunableTransmonQubit("q0"), TunableTransmonQubit("q1")],
    quantum_operations=TunableTransmonOperations(),
)
temp_qubits = qpu.copy_qubits()
result = experiment_workflow(
    session=session,
    qpu=qpu,
    qubits=temp_qubits,
    repetitions=[
        [1,2,3,4],
        [1,2,3,4],
    ],
    options=options,
).run()

experiment_workflow_x90(session, qpu, qubits, repetitions, temporary_parameters=None, options=None)

The amplitude fine experiment workflow for a x90 gate.

This workflow is the same as experiment_workflow above but with the following input parameters fixed: amplification_qop = "x90" target_angle = np.pi / 2 phase_offset = -np.pi / 2 parameter_to_update = "drive_amplitude_pi2"

Parameters:

Name Type Description Default
session Session

The connected session to use for running the experiment.

required
qpu QPU

The qpu consisting of the original qubits and quantum operations.

required
qubits QuantumElements

The qubits to run the experiments on. May be either a single qubit or a list of qubits.

required
repetitions QubitSweepPoints[int]

The sweep values corresponding to the number of times to repeat the amplification_qop for each qubit. If qubits is a single qubit, repetitions must be a list of integers. Otherwise it must be a list of lists of integers.

required
temporary_parameters dict[str, dict | TransmonParameters] | None

The temporary parameters to update the qubits with.

None
options TuneUpWorkflowOptions | None

The options for building the workflow. In addition to options from [WorkflowOptions], the following custom options are supported: - create_experiment: The options for creating the experiment.

None

Returns:

Name Type Description
WorkflowBuilder None

The builder of the experiment workflow.

Example
options = TuneUpExperimentWorkflowOptions()
options.create_experiment.count = 10
options.create_experiment.transition = "ge"
qpu = QPU(
    qubits=[TunableTransmonQubit("q0"), TunableTransmonQubit("q1")],
    quantum_operations=TunableTransmonOperations(),
)
temp_qubits = qpu.copy_qubits()
result = experiment_workflow(
    session=session,
    qpu=qpu,
    qubits=temp_qubits,
    repetitions=[
        [1,2,3,4],
        [1,2,3,4],
    ],
    options=options,
).run()