Result Unit#
This example demonstrates how to use the result unit for acquiring data after weighted integration, rotation, and crosstalk suppression.
A single non-zero coefficient in each weighting function is activated. As a consequence, the result unit will sample just a single input sample each time it is started. We then configure the AWG to output a bipolar square wave. The AWG plays the waveform in a loop for each measurement and all averages. The AWG sweeps the starting point of the integration for each measurement. The final result is that we record essentially the input waveform using the result unit. The step size corresponds to the wait time in the AWG, which is 4.44 ns. Finally, we configure a different coefficient for each of the 10 input channels to enable the user to differentiate the channels in the plot output.
Requirements:
LabOne Version >= 22.02
Instruments: 1 x UHFQA instrument.
Signal output 1 connected to signal input 1 with a BNC cable.
Signal output 2 connected to signal input 2 with a BNC cable.
[1]:
import numpy as np
from zhinst.toolkit import Session
session = Session("localhost")
device = session.connect_device("DEVXXXX")
Initialize the device#
[2]:
with device.set_transaction():
device.sigins['*'].range(1.5)
device.sigouts['*'].range(1.5)
device.sigins['*'].imp50(1)
device.sigouts['*'].imp50(1)
device.sigouts['*'].on(True)
device.awgs['*'].outputs['*'].mode(0)
device.dios[0].mode(2)
device.dios[0].drive(2)
device.qas[0].delay(0)
device.qas[0].deskew.rows[0].cols[0](1)
device.qas[0].deskew.rows[0].cols[1](0)
device.qas[0].deskew.rows[1].cols[0](0)
device.qas[0].deskew.rows[1].cols[1](1)
device.qas[0].result.length(1.0)
device.qas[0].result.averages(0)
device.qas[0].result.source(0) # Trans
device.qas[0].result.statistics.length(1.0)
device.qas[0].monitor.length(1024)
Configure rotation, transformation, threshold and integration weights#
[3]:
N_READOUT_CHANNELS = 10
[4]:
with device.set_transaction():
for i in range(N_READOUT_CHANNELS):
device.qas[0].rotations[i](1 + 0j)
device.qas[0].thresholds[i].level(1.0)
device.qas[0].integration.weights[i].real(np.zeros(4096))
device.qas[0].integration.weights[i].imag(np.zeros(4096))
device.qas[0].integration.length(1)
device.qas[0].crosstalk_matrix(np.identity(N_READOUT_CHANNELS, dtype=int))
Configure AWG sequence program#
[5]:
awg_program = """\
wave w = join(zeros(64), ones(10000), -ones(10000));
var loop_cnt = getUserReg(0);
var avg_cnt = getUserReg(1);
var wait_delta = 1;
repeat (avg_cnt) {
var wait_time = 0;
repeat(loop_cnt) {
wait_time += wait_delta;
playWave(w, w);
wait(wait_time);
startQA(QA_INT_0 | QA_INT_1, true);
playZero(8*1024);
}
}
"""
[6]:
device.awgs[0].load_sequencer_program(awg_program)
[6]:
{'messages': '', 'maxelfsize': 268435456}
Apply a rotation on half the channels to get the imaginary part instead
[7]:
for i in range(5):
device.qas[0].rotations[i](1)
device.qas[0].rotations[i+5](-1j)
Channels to test
[8]:
CHANNELS = np.arange(0, N_READOUT_CHANNELS, 1)
RESULT_LENGTH = 2600
NUM_AVERAGES = 1
Configuration of weighted integration
[9]:
weights = np.linspace(1.0, 0.1, N_READOUT_CHANNELS)
for i in CHANNELS:
weight = np.array([weights[i]])
device.qas[0].integration.weights[i].real(weight)
device.qas[0].integration.weights[i].imag(weight)
device.qas[0].integration.length(1)
device.qas[0].integration.mode(0)
device.qas[0].delay(0)
device.awgs[0].userregs[0](RESULT_LENGTH)
device.awgs[0].userregs[1](NUM_AVERAGES)
Configure and enable the result unit
[10]:
with device.set_transaction():
device.qas[0].result.length(RESULT_LENGTH)
device.qas[0].result.averages(NUM_AVERAGES)
device.qas[0].result.source(0) # Trans
device.qas[0].result.reset(True)
device.qas[0].result.enable(True)
Subscribing to nodes#
[11]:
# In order to keep track of which nodes we want to capture
# we create a dictionary
wave_data_captured = {}
for ch in CHANNELS:
node = device.qas[0].result.data[ch].wave
node.subscribe()
wave_data_captured[str(node)] = False
Arm the device
[12]:
device.awgs[0].single(True)
device.awgs[0].enable(True, deep=True)
[12]:
1
Capture data#
Poll the data until the selected number of samples is captured.
[13]:
import time
import copy
from zhinst.toolkit.nodetree.helper import NodeDict
timeout = RESULT_LENGTH / 150 # Rough estimate to prevent endless loop
start_time = time.time()
captured_data = {}
while not all(wave_data_captured.values()):
if start_time + timeout < time.time():
raise TimeoutError('Timeout before all samples collected.')
for node, value in session.poll().items():
if node not in captured_data:
captured_data[node] = value[0]['vector']
else:
captured_data[node].append(value[0]['vector'])
if len(captured_data[node]) >= RESULT_LENGTH:
wave_data_captured[node] = True
Stop the result unit
[14]:
device.qas[0].result.data.unsubscribe()
device.qas[0].result.enable(False)
Plot the results#
[15]:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(figsize=(12, 4))
axes.set_title("Result unit")
axes.set_ylabel("Amplitude (a.u.)")
axes.set_xlabel("Measurement (#)")
for path, samples in captured_data.items():
axes.plot(samples, label=f"{path}")
plt.legend(loc="best", fontsize=6)
fig.set_tight_layout(True)
plt.grid()
plt.show()