Measuring qubit readout weights#
Measure the integration weights for a qubit readout by using Gaussian flat top pulses.
Requirements:
LabOne Version >= 22.02
Instruments: 1 x SHFQA Instrument
Loopback configuration between input and output of channel 0
[1]:
from zhinst.toolkit import Session, SHFQAChannelMode, Waveforms
session = Session("localhost")
device = session.connect_device("DEVXXXX")
Configure channel inputs and outputs#
[2]:
CHANNEL_INDEX = 0
device.qachannels[CHANNEL_INDEX].configure_channel(
center_frequency=5e9,
input_range=0,
output_range=-5,
mode=SHFQAChannelMode.READOUT,
)
device.qachannels[CHANNEL_INDEX].input.on(1)
device.qachannels[CHANNEL_INDEX].output.on(1)
Configure scope#
[3]:
SCOPE_CHANNEL = 0
NUM_QUBITS = device.max_qubits_per_channel
READOUT_DURATION = 600e-9
NUM_SEGMENTS = 2
NUM_AVERAGES = 50
NUM_MEASUREMENTS = NUM_SEGMENTS * NUM_AVERAGES
SHFQA_SAMPLING_FREQUENCY = 2e9
device.scopes[SCOPE_CHANNEL].configure(
input_select={SCOPE_CHANNEL: f"channel{CHANNEL_INDEX}_signal_input"},
num_samples=int(READOUT_DURATION * SHFQA_SAMPLING_FREQUENCY),
trigger_input=f"channel{CHANNEL_INDEX}_sequencer_monitor0",
num_segments=NUM_SEGMENTS,
num_averages=NUM_AVERAGES,
trigger_delay=200e-9,
)
Generate waveforms#
[4]:
from scipy.signal import gaussian
import numpy as np
RISE_FALL_TIME = 10e-9
PULSE_DURATION = 500e-9
rise_fall_len = int(RISE_FALL_TIME * SHFQA_SAMPLING_FREQUENCY)
pulse_len = int(PULSE_DURATION * SHFQA_SAMPLING_FREQUENCY)
std_dev = rise_fall_len // 10
gauss = gaussian(2 * rise_fall_len, std_dev)
flat_top_gaussian = np.ones(pulse_len)
flat_top_gaussian[0:rise_fall_len] = gauss[0:rise_fall_len]
flat_top_gaussian[-rise_fall_len:] = gauss[-rise_fall_len:]
# Scaling
flat_top_gaussian *= 0.9
readout_pulses = Waveforms()
time_vec = np.linspace(0, PULSE_DURATION, pulse_len)
for i, f in enumerate(np.linspace(2e6, 32e6, NUM_QUBITS)):
readout_pulses.assign_waveform(
slot=i,
wave1=flat_top_gaussian * np.exp(2j * np.pi * f * time_vec)
)
device.qachannels[CHANNEL_INDEX].generator.write_to_waveform_memory(readout_pulses)
Configure sequencer#
[5]:
device.qachannels[CHANNEL_INDEX].generator.configure_sequencer_triggering(
aux_trigger="software_trigger0",
play_pulse_delay=0
)
Run the measurement#
[6]:
results = []
for i in range(NUM_QUBITS):
qubit_result = {
'weights': None,
'ground_states': None,
'excited_states': None
}
print(f"Measuring qubit {i}.")
# upload sequencer program
seqc_program = f"""
repeat({NUM_MEASUREMENTS}) {{
waitDigTrigger(1);
startQA(QA_GEN_{i}, 0x0, true, 0, 0x0);
}}
"""
device.qachannels[CHANNEL_INDEX].generator.load_sequencer_program(seqc_program)
# Start a measurement
device.scopes[SCOPE_CHANNEL].run(single=True)
device.qachannels[CHANNEL_INDEX].generator.enable_sequencer(single=True)
device.start_continuous_sw_trigger(
num_triggers=NUM_MEASUREMENTS, wait_time=READOUT_DURATION
)
# get results to calculate weights and plot data
scope_data, *_ = device.scopes[0].read()
# Calculates the weights from scope measurements
# for the excited and ground states
split_data = np.split(scope_data[SCOPE_CHANNEL], 2)
ground_state_data = split_data[0]
excited_state_data = split_data[1]
qubit_result['ground_state_data'] = ground_state_data
qubit_result['excited_state_data'] = excited_state_data
qubit_result['weights'] = np.conj(excited_state_data - ground_state_data)
results.append(qubit_result)
Measuring qubit 0.
Measuring qubit 1.
Measuring qubit 2.
Measuring qubit 3.
Measuring qubit 4.
Measuring qubit 5.
Measuring qubit 6.
Measuring qubit 7.
Plot results#
[7]:
import matplotlib.pyplot as plt
QUBIT = 0
qubit_result = results[QUBIT]
ground_state_data = qubit_result['ground_state_data']
excited_state_data = qubit_result['excited_state_data']
weights = qubit_result['weights']
# Plot the data
# Plot the data measured with the scope for weight calculation
time_ticks = np.array(range(len(ground_state_data))) / SHFQA_SAMPLING_FREQUENCY
fig = plt.figure(1)
fig.suptitle("Scope measurement for readout weights")
ax1 = plt.subplot(211)
ax1.plot(time_ticks, np.real(ground_state_data))
ax1.plot(time_ticks, np.imag(ground_state_data))
ax1.set_title("ground state")
ax1.set_ylabel("voltage [V]")
plt.setp(ax1.get_xticklabels(), visible=False)
ax1.xaxis.get_offset_text().set_visible(False)
ax1.grid()
plt.legend(["real", "imag"])
ax2 = plt.subplot(212, sharex=ax1)
ax2.plot(time_ticks, np.real(excited_state_data))
ax2.plot(time_ticks, np.imag(excited_state_data))
ax2.set_title("excited state")
ax2.set_xlabel("t [s]")
ax2.set_ylabel("voltage [V]")
ax2.grid()
plt.show()
# Plot the qubit readout weights
time_ticks = np.array(range(len(weights))) / SHFQA_SAMPLING_FREQUENCY
plt.plot(time_ticks, np.real(weights))
plt.plot(time_ticks, np.imag(weights))
plt.title("Qubit readout weights")
plt.xlabel("t [s]")
plt.ylabel("weights [V]")
plt.legend(["real", "imag"])
plt.grid()
plt.show()