
SHFSG+
User Manual

8.5 GHz Signal Generator

SHFSG+ User Manual

Zurich Instruments AG

Revision 25.04

Copyright © 2008-2025 Zurich Instruments AG

The contents of this document are provided by Zurich Instruments AG (ZI), "as is". ZI makes no
representations or warranties with respect to the accuracy or completeness of the contents of this
publication and reserves the right to make changes to specifications and product descriptions at any time
without notice.

LabVIEW is a registered trademark of National Instruments Inc. MATLAB is a registered trademark of The
MathWorks, Inc. All other trademarks are the property of their respective owners.

Zurich Instruments SHFSG+ User Manual

2

2

2

2

2

2

3

3

3

3

4

4

4

5

9

9

10

11

13

21

37

38

42

42

43

44

45

47

47

50

54

62

70

75

89

102

102

118

Declaration of Conformity

1. Change Log

1. 1. Release 25.04

1. 2. Release 25.01

1. 3. Release 24.10

1. 4. Release 24.07

1. 5. Release 24.04

1. 6. Release 24.01

1. 7. Release 23.10

1. 8. Release 23.06

1. 9. Release 23.02

1. 10. Release 22.08

1. 11. Release 22.02

1. 12. Release 21.08

1. 13. Release 24.07 Additional Information

2. Getting Started

2. 1. Quick Start Guide

2. 2. Inspect the Package Contents

2. 3. Handling and Safety Instructions

2. 4. Software Installation

2. 5. Connecting to the Instrument

2. 6. Software Update

2. 7. Troubleshooting

3. Functional Overview

3. 1. Features

3. 2. Front Panel Tour

3. 3. Back Panel Tour

3. 4. Ordering Guide

4. Tutorials

4. 1. Basic Sine Generation

4. 2. Basic Waveform Playback

4. 3. Triggering and Synchronization

4. 4. Digital Modulation

4. 5. Using the Python API

4. 6. Pulse-level Sequencing with the Command Table

4. 7. Characterizing a Two-Qubit System

5. Functional Description

5. 1. Setup Functionality

5. 2. Measurement Functionality

Table of Contents

Zurich Instruments SHFSG+ User Manual

164

164

165

167

167

170

170

173

6. Specifications

6. 1. General Specifications

6. 2. Analog Interface Specifications

6. 3. Digital Waveform Generation Specifications

6. 4. Digital Interface Specifications

7. Device Node Tree

7. 1. Introduction

7. 2. Reference Node Documentation

Table of Contents

Zurich Instruments SHFSG+ User Manual

CE Declaration of Conformity

The manufacturer

Zurich Instruments
Technoparkstrasse 1
8005 Zurich
Switzerland

declares that the product

SHFSG+, Super High Frequency Signal Generator

is in conformity with the provisions of the relevant Directives and Regulations of the Council of the
European Union:

Directive / Regulation Conformity proven by compliance with the
standards

2014/30/EU
(Electromagnetic compatibility [EMC])

EN 61326-1:2013,
EN 55011:2016,
EN 55011:2016/A1:2017,
EN 55011:2016/A11:2020
(Group 1, Class A and B equipment)

2014/35/EU
(Low voltage equipment [LVD])

EN 61010-1:2010,
EN 61010-1:2010/A1:2019,
EN 61010-1:2010/A1:2019/AC:2019-04

2011/65/EU, as amended by 2015/863 and
2017/2102
(Restriction of the use of certain hazardous
substances [RoHS])

EN IEC 63000:2018

(EC) 1907/2006
(Registration, Evaluation, Authorisation, and
Restrictions of Chemicals [REACH])

-

Zurich, October 20th, 2022

Flavio Heer, CTO

Zurich Instruments SHFSG+ User Manual

UKCA Declaration of Conformity

The manufacturer

Zurich Instruments
Technoparkstrasse 1
8005 Zurich
Switzerland

declares that the product

SHFSG+, Super High Frequency Signal Generator

is in conformity with the provisions of the relevant UK Statutory Instruments:

Statutory Instruments Conformity proven by compliance with the standards

S.I. 2016/1091
(Electromagnetic
Compatibility Regulations)

EN 61326-1:2013,
EN 55011:2016,
EN 55011:2016/A1:2017,
EN 55011:2016/A11:2020
(Group 1, Class A and B equipment)

S.I. 2016/1101
(Electrical Equipment
(Safety) Regulations)

EN 61010-1:2010,
EN 61010-1:2010/A1:2019,
EN 61010-1:2010/A1:2019/AC:2019-04

S.I. 2012/3032
(Restriction of the Use of
Certain Hazardous
Substances Regulations)

EN IEC 63000:2018

Zurich, October 20th, 2022

Flavio Heer, CTO

Zurich Instruments SHFSG+ User Manual

1. Change Log

Info

A complete summary of all changes can be found in the LabOne Release Notes. This page only lists
changes not present in the LabOne Release Notes.

1.1. Release 25.04

Release date: 30-April-2025

See Release Notes 25.04 for a detailed list of all changes.

1.2. Release 25.01

Release date: 31-January-2025

See Release Notes 25.01 for a detailed list of all changes.

1.3. Release 24.10

Release date: 31-October-2024

See Release Notes 24.10 for a detailed list of all changes.

1.4. Release 24.07

Release date: 31-Jul-2024

 Output:
 Resolved a bug that triggered an unnecessary reconfiguration of the synthesizer frequency

upon re-applying the already configured frequency value.
 Improved configuration of the synthesizer to yield more stable lock.
 Prevents LabOne version downgrade for the case in which the synthesizer is not supported in

that version.
 AWG:

 Introduced sequencer command configureFeedbackProcessing() for dynamic feedback
configuration. Documentation on how to change code can be found in Flexible Feedback
Processing.

 Sequencer now reports an error if an AWG program executes a command table entry that has
not been defined.

 Sequencer now reports an error if a command uses a trigger counter argument and the
counter value has already been surpassed.

1.5. Release 24.04

Release date: 30-Apr-2024

 Official support of the SHFSG+ instrument, including updated documentation
 SHFSG+: Enable fast output muting, available through LabOne Q
 Outputs of RF and LF paths are now aligned by default
 Improved the optimization pass of the AWG compiler that removes unused registers.
 Support for sequencer command setRate has been removed.
 Support for sequencer command waitTrigger has been removed, use waitDigTrigger

instead.

1. Change Log

2 Zurich Instruments SHFSG+ User Manual

1.6. Release 24.01

Release date: 31-Jan-2024

 Extends the GUI for the Output Router and Adder to show how and where different settings are
applied in the signal chain for each SG channel.

 SeqC command setDIO now has constant latency, no matter its arguments.

1.7. Release 23.10

Release date: 31-Oct-2023

 Introduced the Output Router and Adder option to enable flexible routing of digital signals
between analog outputs.

 Added amplitude registers to the command table to allow indpenedent sweeping or changing of
multiples sets of amplitudes.

 Added automatic fallback to a link-local IP address in case no DHCP server could be found.
 Added Ethernet-over-USB support on the USB (not maintenance) interface.
 The holdoff time of the Internal Trigger must now be a multiple of 100 ns, to improve consistency

with the PQSC and ensure phase reproducibility when using the LF path.
 The center frequency when using the LF path must now be a multiple of 100 MHz, to ensure

phase reproducibility when using the LF path.
 Fixed a minor floating point rounding artifact such that the default marker delay is now correctly

displayed as 0s.
 Introduced a new high-performance data-server kernel. It improves reliability and performances

of communication with the instrument.

1.8. Release 23.06

Release date: 30-Jun-2023

 Added ability to reset all node settings to preset values by writing to /DEV.../SYSTEM/PRESET/
LOAD node. The nodes /DEV.../SYSTEM/PRESET/BUSY and /DEV.../SYSTEM/PRESET/ERROR
allow for monitoring of the preset status.

 Updated the default values of trigger input settings to better reflect typical usage. New default
values are as follows: Trigger level is now 1 V by default (calibration can lead to values slightly
different than 1.0 V), trigger slope detection is now the rising edge by default.

 Introduced the /DEV.../SGCHANNELS/n/SYNCHRONIZATION/ENABLE, /DEV.../SYSTEM/
SYNCHRONIZATION/SOURCE, and /DEV.../SYSTEM/INTERNALTRIGGER/SYNCHRONIZATION/
ENABLE nodes to make it possible to keep waveform playback synchronized across a full QCCS
setup, even in the presence of non-deterministic data transfer times.

 Deprecated the digital mixer reset functionality.
 Manual: Added a section on how to use the synchronization check in the AWG Tab.
 Manual: Added tips to the Basic Waveform Generation Tutorial on how to achieve phase

reproducibility in the LF path by using appropriate center frequency and trigger holdoff time
settings.

1.9. Release 23.02

Release date: 28-Feb-2023

 AWG: Extended functionality of resetOscPhase to able to reset the phase of the digital mixer
(e.g. to enable reproducible phase setting when using the LF path).

 AWG: Added a model to reliably predict feedback latency
 AWG: Improved support for alternative hardware components.
 AWG: Added ability for the device to prevent LabOne changes that are incompatible with the

device hardware.
 Manual: Added additional documentation on playZero and playHold. Added a tutorial on qubit

tuneup.
 AWG: Improved efficiency of playZero and playHold to use fewer assembly instructions.
 Output: Improved timing jitter of output when triggering an SG channel over ZSync.
 ZSync/DIO: Fixed a bug that caused the DIO interface to behave wrongly when switching between

LVCMOS and LVDS outputs in non-manual mode.


1.6. Release 24.01

3 Zurich Instruments SHFSG+ User Manual

LabOne: Fixed the value of legacy node /DEV.../CLOCKBASE for SHF devices. To have always the
correct value, use the device node /DEV.../SYSTEM/PROPERTIES/TIMEBASE instead.

1.10. Release 22.08

Release date: 31-Aug-2022

 AWG: Added support for 16 sample waveforms with the command table.
 AWG: Added a new sequencer command playHold to allow the AWG to hold waveform and

marker data for a specified number of samples.
 AWG: Added ability of executeTableEntry to use variable arguments corresponding to qubit data

received over ZSync.
 AWG: Fixed a bug in which the command table always required a waveform to make parameter

changes.
 AWG: Improved the speed with which the AWGs can be enabled.
 LabOne: Added waveform and marker delay settings in the Digital Modulation and DIO Tabs,

respectively.
 ZSync/DIO /DEV.../SGCHANNELS/n/AWG/ELF/DATA node accepts raw data as 8-, 16-, and 64-bit

integer vectors in addition to 32-bit words.
 ZSync/DIO /DEV.../DIOS/0/MODE node changed keyword arguments to enable control of DIO

values by the sequencer from chanNseq or channelN_sequencer to sgchanNseq or
sgchannelN_sequencer.

1.11. Release 22.02

Release date: 28-Feb-2022

Highlights:

 Manual: Added new tutorials to the User Manual: Basic Sine Generation, Basic Waveform
Playback, Triggering and Synchronization, Digital Modulation, Using the Python API, and Pulse-
level Sequencing with the Command Table.

 Manual: Added LabOne UI descriptions for the Digital Modulation and DIO Tabs to the User
Manual.

 AWG: Added support for fast sequencer-based IF sweeps via the SeqC commands
configFreqSweep(), setSweepStep(), and setOscFreq().

 AWG: Added support for conditional triggering over DIO via SeqC commands: setDIO(), getDIO(),
waitDIOTrigger(), getDIOTriggered(), playWaveDIO().

 AWG: Improved playWaveZSync() and getZSyncData() SeqC commands for fast feedback with
PQSC.

 AWG: Added ability for each sequencer to read data from either ZSync or DIO.
 AWG: Added a built-in waiting time of wait(3) to the resetOscPhase() command, to prevent the

oscillator from resetting during waveform playback.
 AWG: Added support for waitSineOscPhase() SeqC command.
 AWG: Fixed bug in which using too many triggers back to back would cause unpredictable

waveform playback.
 LabOne: Added support for the SHFSG+ in zhinst-deviceutils in the Python API, to improve user

programming experience.
 LabOne: Improved QCoDeS and Labber drivers and zhinst-toolkit to offer support of the SHFSG+.
 LabOne: Added low-frequency path control to the Output Tab in the LabOne UI. Updated

documentation in the User Manual accordingly.
 Outputs: Added ability to set the center frequency when using the low-frequency path. Accepted

values: 0 - 2 GHz.
 Outputs: Marker and trigger outputs adjusted to be aligned with the RF output by default.
 Outputs: Default values of sine generator, AWG gain settings, and command table amplitude

settings updated to automatically generate the upper sideband.
 Outputs: Replaced the two AWG output amplitude settings with a single global amplitude setting.

Default value is 0.5 to prevent saturating the DAC.
 ZSync/DIO: Improved ZSync link stability.
 ZSync/DIO: Fixed bug in which DIO outputs could not be set properly.
 ZSync/DIO: Added the Real-Time Logger that logs history of incoming ZSync and DIO messages

at /DEV.../SGCHANNELS/n/AWG/RTLOGGER/

1.12. Release 21.08

Release date: 31-Aug-2021

1.10. Release 22.08

4 Zurich Instruments SHFSG+ User Manual

Highlights:

 Initial release of SHFSG+ user manual.

1.13. Release 24.07 Additional Information

1.13.1. Flexible feedback processing

Feedback in the QCCS is realized by low-latency messages sent between different parties.
Regardless of their origin, a sequencer can act on such messages, either by branching or with a
conditional pulse play. The first is done by the instructions getFeedback followed by branching
instructions such as if, while the latter by the instruction executeTableEntry. For the lowest
latency, a conditional play should be preferred.

In most feedback-based experiments, each sequencer of an instrument (e.g. SG Channel 1 of an
SHFQC or AWG3 of an HDAWG) only acts on a fraction of the feedback word. To process the
feedback word, each sequencer has mask and shift operations available to it, which reduces the
feedback word to the required subset of information. An offset could be added; the purpose is to
execute a feedback action from a subset of the command table. Multiple feedback sources, as
described below, are available for both feedback instructions and must be specified as first
argument. Each source has its dedicated feedback processing chain.

The parameters for processing can now be changed dynamically in realtime between feedback
operations, while previously they were static through the entire execution of a sequence.

Format of feedback messages

 ZSync : 16 bit messages. The format is given by the source unit. Please refer to the PQSC user
manual.

Status until L1 24.04

There are multiple processing sources are available as follows:

Source Constant Processing Description

ZSync ZSYNC_DATA_RAW Nothing, feedback
word as-is

Returns the data received from
ZSync as-is without processing

ZSYNC_DATA_PQSC_REGISTER ((word >> shift) &
mask) + offset

Gets last readout register
forwarded by the PQSC with
processing

ZSYNC_DATA_PQSC_DECODER ((word >> shift) &
mask) + offset

Gets last output of the decoder
received from the PQSC with
processing

The processing of non-RAW sources can be controlled by the values set in the following nodes,
located in the awg branch of the considered channel.

Source constant Controls Limits

ZSYNC_DATA_PQSC_REGISTER shift = zsync/register/shift 0 - 15

mask = zsync/register/mask 0 - 0xFFFF

offset = zsync/register/offset 0 - 4095

ZSYNC_DATA_PQSC_DECODER shift = zsync/decoder/shift 0 - 7

mask = zsync/decoder/mask 0 - 0xFF

offset = zsync/decoder/offset 0 - 4095

1.13. Release 24.07 Additional Information

5 Zurich Instruments SHFSG+ User Manual

Example

Active qubit reset

To perform active qubit reset, the command table of the SG channel that controls the target qubit
would programmed with these two entries:

Index Waveform playZero Oscillator Comment

0 None WFM_LEN None No action

1 wfm_pi None 0 Pi-pulse

The oscillator 0 should be set to the the e-g transition frequency.

If the feedback is routed through the PQSC, and assuming that RESULT_INDEX holds the index of the
result specified in the register forwarding unit, the feedback control nodes would be programmed as
follows:

shfsg.sgchannels[SG_CHANNEL].awg.zsync.register.shift(RESULT_INDEX * 2)
shfsg.sgchannels[SG_CHANNEL].awg.zsync.register.mask(0b1)
shfsg.sgchannels[SG_CHANNEL].awg.zsync.register.offset(0)

and the seqc would look like this

waitZSyncTrigger();
playZero(feedback_latency_pz);
executeTableEntry(ZSYNC_DATA_PQSC_REGISTER, feedback_latency);

New behavior since L1 24.07

The configuration of the feedback processing has been changed from nodes to a dedicated seqc
instruction: configureFeedbackProcessing. In this way the processing parameters can be
changed dynamically during the sequence, so different feedback actions can be performed
sequentially with the same feedback input. For ZSync feedback, the feedback process chain is not
tied anymore to a specific feedback processing unit (register forwarding or decoder). Therefore, the
source selectors have been renamed to be more generic.

The processing sources are available as follows:

Source Constant Processing Description

ZSync ZSYNC_DATA_RAW Nothing, feedback word as-
is

Returns the data received
from ZSync as-is without
processing

ZSYNC_DATA_PROCESSED_A ((word >> shift) &
(2**length - 1)) +
offset

Returns last feedback
received from ZSync with
processing

ZSYNC_DATA_PROCESSED_B ((word >> shift) &
(2**length - 1)) +
offset

Returns last feedback
received from ZSync with
processing

ZSYNC_DATA_PROCESSED_A and ZSYNC_DATA_PROCESSED_B offer identical capabilities on the ZSync
feedback source, but they can be configured differently.

The processing of non-RAW sources can be controlled by the command
configureFeedbackProcessing as follows:

1.13. Release 24.07 Additional Information

6 Zurich Instruments SHFSG+ User Manual

void configureFeedbackProcessing(FB_PATH, SHIFT, LENGTH, OFFSET)

 FB_PATH specify the feedback path whose parameters should be changed. It can be
ZSYNC_DATA_PROCESSED_A or ZSYNC_DATA_PROCESSED_B.

 SHIFT Specify how many bits the feedback word should be right shifted. It can be between 0 and
15 for ZSync paths.

 LENGTH sets the length of the trimming of the feedback message after the shift. It’s implemented
as binary masking with a mask equal to 2**LENGTH - 1. For example, to reduce a message to a
single bit it should be set to 1, to reduce a message to two bits it should be set to 2 and so on. It
can be between 1 and 16. If the feedback is processed with executeTableEntry, only values up
to 12 are meaningful.

 OFFSET sets the additive offset applied after shift and length trimming. It can be between 0 and
4095.

The instruction is blocking and requires a minimal waveform length of 48 to be gap-free.

If the feedback processing is not configured, the feedback message will be passed as-is;
ZSYNC_DATA_PROCESSED_A or ZSYNC_DATA_PROCESSED_B will behave identically as
ZSYNC_DATA_RAW.

The constants ZSYNC_DATA_PQSC_REGISTER and ZSYNC_DATA_PQSC_DECODER are kept for limited
backwards compatibility, but they are deprecated. They now behave identically to
ZSYNC_DATA_PROCESSED_A and ZSYNC_DATA_PROCESSED_B respectively.

The control of parameters with nodes is not available anymore.

Example

Active qubit reset

To implement the same sequence as with the older version, the following seqc can be used for
ZSync feedback

configureFeedbackProcessing(ZSYNC_DATA_PROCESSED_A, RESULT_INDEX * 2, 1, 0);
waitZSyncTrigger();
playZero(feedback_latency_pz);
executeTableEntry(ZSYNC_DATA_PROCESSED_A, feedback_latency);

In both case, no feedback processing node setting is required anymore.

Active qutrit reset

To perform active qubit reset, the command table of the SG channel that controls the target qubit
would programmed with these entries:

Index Waveform playZero Oscillator Comment

0 None WFM_LEN None No action

1 wfm_pi_eg None 0 Pi-pulse e-g

2 wfm_pi_fe None 1 Pi-pulse f-e

The oscillator 0 should be set to the the e-g transition frequency, while oscillator 1 with the f-e
frequency.

The sequence should be as follows:

1.13. Release 24.07 Additional Information

7 Zurich Instruments SHFSG+ User Manual

configureFeedbackProcessing(ZSYNC_DATA_PROCESSED_A, RESULT_INDEX * 2, 2, 0);
waitZSyncTrigger();
playZero(feedback_latency_pz);
executeTableEntry(ZSYNC_DATA_PROCESSED_A, feedback_latency);
configureFeedbackProcessing(ZSYNC_DATA_PROCESSED_A, RESULT_INDEX + 1, 1, 0);
executeTableEntry(ZSYNC_DATA_PROCESSED_A);

In the first conditional playback, the entire two-bit feedback word is used, so that any entry of the
command table can be used, depending on the starting condition. During the playback, the
feedback processing is reconfigured, so that in the second playback, a e-g pulse is played only if the
starting state was f.

1.13. Release 24.07 Additional Information

8 Zurich Instruments SHFSG+ User Manual

2. Getting Started
This first chapter guides you through the initial set-up of your SHFSG+ Instrument in order to make
your first measurements.

Please refer to:

 Quick Start Guide for a Quick Start Guide for the impatient.
 Inspect the Package Contents for inspecting the package content and accessories.
 Handling and Safety Instructions for a list of essential handling and safety instructions.
 Software Installation - Software Update for help connecting to the SHFSG+ Instrument with the

LabOne software.
 Troubleshooting for a handy list of troubleshooting guidelines.

This chapter is delivered as a hard copy with the instrument upon delivery. It is also the first chapter
of the SHFSG+ User Manual.

2.1. Quick Start Guide

This page addresses all the people who have been impatiently awaiting their new gem to arrive and
want to see it up and running quickly. Please proceed with the following steps:

Inspect the package contents. Besides the Instrument there should be a country-specific
power cable, a USB cable, an Ethernet cable, a ZSync cable, and a hard copy of the Getting
Started guide.
Check Handling and Safety Instructions for the Handling and Safety Instructions.
Download and install the latest LabOne software from the Zurich Instruments Download
Center.
Choose the download file that suits your computer (e.g. Windows with 64-bit addressing). For
more detailed information see Software Installation.
Connect the instrument to the power outlet. Turn it on and connect it to a switch in the LAN
using the Ethernet cable.
Start the LabOne User Interface from the Windows Start Menu. The default web browser will
open and display your instrument in a start screen as shown below. Use Chrome, Edge,
Firefox, or Opera for best user experience.

The LabOne User Interface start-up screen will appear. Click the Open button on the lower
right of the page. The default configuration will be loaded and the first signals can be
generated. If the user interface does not start up successfully, please refer to Connecting to
the Instrument.

If any problems occur while setting up the instrument and software, please see Troubleshooting at
the end of this chapter for troubleshooting.

When connecting cables to the instrument’s SMA ports, use a torque wrench specified for brass
core SMA (4 in-lbs, 0.5 Nm). Using a standard SMA torque wrench (8 in-lbs) or a wrench without
torque limit can damage the connectors.

After you have finished using the instrument, it is recommended to shut it down using the soft
power button on the front panel of the instrument instrument or by clicking on the button at the
bottom left of the user interface screen before turning off the power switch on the back panel of the
instrument.

1.

2.
3.

4.

5.

6.

7.

2. Getting Started

9 Zurich Instruments SHFSG+ User Manual

https://www.zhinst.com/ch/en/support/download-center
https://www.zhinst.com/ch/en/support/download-center

Once the Instrument is up and running we recommend going through some of the tutorials given in
Tutorials. The functional description of the SHFSG+ can be found in Functional Description and
provides a general introduction to the various tools and tables in each section describing every
setting. In the same section, Functional
Description provides an overview of the different UI tabs. For specific application know-how, the
blog section of the Zurich Instruments website will serve as a valuable resource that is constantly
updated and expanded.

2.2. Inspect the Package Contents

If the shipping container appears to be damaged, keep the container until you have inspected the
contents of the shipment and have performed basic functional tests.

Please verify the following:

 You have received 1 Zurich Instruments SHFSG+ Instrument
 You have received 1 power cord with a power plug suited to your country
 You have received 1 USB 3.0 cable and/or 1 LAN cable (category 5/6 required)
 You have received 1 Zurich Instruments ZSync cable
 You have received a printed version of the "Getting Started" section
 The "Next Calibration" sticker on the rear panel of the instrument indicates a date approximately

2 years in the future → Zurich Instruments recommends calibration intervals of 2 years
 The MAC address of the instrument is displayed on a sticker on the back panel

Table 2.1: Package contents for the SHFSG+

4 or 8-channel SHFSG+

the power cord (e.g. EU norm)

the USB 3.0 cable

the power inlet, with power switch

the LAN / Ethernet cable (category
5/6 required)

2.2. Inspect the Package Contents

10 Zurich Instruments SHFSG+ User Manual

https://www.zhinst.com/blogs/

the ZSync cable

the "Next Calibration" sticker on the
back panel of the instrument

the MAC address sticker on the back
panel of the instrument

The SHFSG+ Instrument is equipped with a multi-mains switched power supply, and therefore can
be connected to most power systems in the world. The fuse holder is integrated with the power inlet
and can be extracted by grabbing the holder with two small screwdrivers at the top and at the
bottom at the same time. A spare fuse is contained in the fuse holder. The fuse description is found
in the specifications chapter.

Carefully inspect your instrument. If there is mechanical damage or the instrument does not pass
the basic tests, then you should immediately notify the Zurich Instruments support team through
email.

2.3. Handling and Safety Instructions

The SHFSG+ Instrument is a sensitive piece of electronic equipment, and under no circumstances
should its casing be opened, as there are high-voltage parts inside which may be harmful to human
beings. There are no serviceable parts inside the instrument. Do not install substitute parts or
perform any unauthorized modification to the product. Opening the instrument immediately voids
the warranty provided by Zurich Instruments.

Do not use this product in any manner not specified by the manufacturer. The protective features of
this product may be affected if it is used in a way not specified in the operating instructions.

The following general safety instructions must be observed during all phases of operation, service,
and handling of the instrument. The disregard of these precautions and all specific warnings
elsewhere in this manual may negatively affect the operation of the equipment and its lifetime.

Zurich Instruments assumes no liability for the user’s failure to observe and comply with the
instructions in this user manual.

Caution

The SMA connectors on the front panel are made for transmitting radio frequencies and can be
damaged if handled inappropriately. Take care when attaching or detaching cables or when moving
the instrument.

Table 2.2: Safety Instructions

Ground the
instrument

The instrument chassis must be correctly connected to earth ground by
means of the supplied power cord. The ground pin of the power cord set plug
must be firmly connected to the electrical ground (safety ground) terminal at
the mains power outlet. Interruption of the protective earth conductor or
disconnection of the protective earth terminal will cause a potential shock
hazard that could result in personal injury and potential damage to the
instrument.

Ground loops The SMA connectors are not floating. For sensitive operations and in order to
avoid ground loops, consider adding dc-blocks at the Inputs of the device.

Electromagnetic
environment

This equipment has been certified to conform with industrial
electromagnetic environment as defined in EN 61326-1.
Emissions, that exceed the levels required by the document referenced
above, can occur when connected to a test object.

2.3. Handling and Safety Instructions

11 Zurich Instruments SHFSG+ User Manual

mailto:support@zhinst.com

Measurement
category

This equipment is of measurement category I (CAT I). Do not use it for CAT II,
III, or IV. Do not connect the measurement terminals to mains sockets.

Maximum ratings The specified electrical ratings for the connectors of the instrument should
not be exceeded at any time during operation. Please refer to the
Specifications for a comprehensive list of ratings.

Do not service or
adjust anything
yourself

There are no serviceable parts inside the instrument.

Software updates Frequent software updates provide the user with many important
improvements as well as new features. Only the last released software
version is supported by Zurich Instruments.

Warnings Instructions contained in any warning issued by the instrument, either by the
software, the graphical user interface, the notes on the instrument or
mentioned in this manual, must be followed.

Notes Instructions contained in the notes of this user manual are of essential
importance for correctly interpreting the acquired measurement data.

Location and
ventilation

This instrument or system is intended for indoor use in an installation
category II and pollution degree 2 environment as per IEC 61010-1. Do not
operate or store the instrument outside the ambient conditions specified in
the Specifications section. Do not block the ventilator opening on the back or
the air intake on the chassis side and front, and allow a reasonable space for
the air to flow.

Cleaning To prevent electrical shock, disconnect the instrument from AC mains power
and disconnect all test leads before cleaning. Clean the outside of the
instrument using a soft, lint-free cloth slightly dampened with water. Do not
use detergent or solvents. Do not attempt to clean internally.

AC power
connection and
mains line fuse

For continued protection against fire, replace the line fuse only with a fuse of
the specified type and rating. Use only the power cord specified for this
product and certified for the country of use. Always position the device so
that its power switch and the power cord are easily accessible during
operation.

Main power
disconnect

Unplug product from wall outlet and remove power cord before servicing.
Only qualified, service-trained personnel should remove the cover from the
instrument.

RJ45 sockets
labeled ZSync

The RJ45 sockets on the back panel labeled "ZSync 1/2" are not intended for
Ethernet LAN connection. Connecting an Ethernet device to these sockets
may damage the instrument and/or the Ethernet device.

Operation and
storage

Do not operate or store the instrument outside the ambient conditions
specified in the Specifications section.

Handling Handle with care. Do not drop the instrument. Do not store liquids on the
device, as there is a chance of spillage resulting in damage.

Safety critical
systems

Do not use this equipment in systems whose failure could result in loss of
life, significant property damage or damage to the environment.

If you notice any of the situations listed below, immediately stop the operation of the instrument,
disconnect the power cord, and contact the support team at Zurich Instruments, either through the
website form or through email.

Table 2.3: Unusual Conditions

Fan is not working
properly or not at all

Switch off the instrument immediately to prevent overheating of
sensitive electronic components.

Power cord or power
plug on instrument is
damaged

Switch off the instrument immediately to prevent overheating, electric
shock, or fire. Please exchange the power cord only with one for this
product and certified for the country of use.

Instrument emits
abnormal noise, smell, or
sparks

Switch off the instrument immediately to prevent further damage.

Instrument is damaged Switch off the instrument immediately and ensure it is not used again
until it has been repaired.

2.3. Handling and Safety Instructions

12 Zurich Instruments SHFSG+ User Manual

mailto:support@zhinst.com

Table 2.4: Symbols

Earth ground

Chassis ground

Caution. Refer to accompanying documentation

DC (direct current)

2.4. Software Installation

The SHFSG+ Instrument is operated from a host computer with the LabOne software. To install the
LabOne software on a computer, administrator rights may be required. In order to simply run the
software later, a regular user account is sufficient. Instructions for downloading the correct version
of the software packages from the Zurich Instruments website are described below in the platform-
dependent sections. It is recommended to regularly update to the latest software version provided
by Zurich Instruments. Thanks to the Automatic Update check feature, the update can be initiated
with a single click from within the user interface, as shown in Software Update.

2.4.1. Installing LabOne on Windows

The installation packages for the Zurich Instruments LabOne software are available as Windows
installer .msi packages. The software is available on the Zurich Instruments Download Center.
Please ensure that you have administrator rights for the PC on which the software is to be installed.
See LabOne compatibility for a comprehensive list of supported Windows systems.

2.4.2. Windows LabOne Installation

The SHFSG+ Instrument should not be connected to your computer during the LabOne
software installation process.
Start the LabOne installer program with a name of the form LabOne64-XX.XX.XXXXX.msi by
a double click and follow the instructions. Windows Administrator rights are required for
installation. The installation proceeds as follows:
 On the welcome screen click the Next button.

Figure 2.1: Installation welcome screen

 After reading through the Zurich Instruments license agreement, check the "I accept the
terms in the License Agreement" check box and click the Next button.

 Review the features you want to have installed. For the SHFSG+ Instrument the "SHFSG+
Series Device", "LabOne User Interface" and "LabOne APIs" features are required. Please
install the features for other device classes as well, if required. To proceed click the Next
button.

1.

2.

2.4. Software Installation

13 Zurich Instruments SHFSG+ User Manual

https://www.zhinst.com/support/download-center
https://www.zhinst.com/instruments/labone/labone-compatibility

Figure 2.2: Custom setup screen

 Select whether the software should periodically check for updates. Note, the software will
still not update automatically. This setting can later be changed in the user interface. If you
would like to install shortcuts on your desktop area, select "Create a shortcut for this
program on the desktop". To proceed click the Next button.

Figure 2.3: Automatic update check

 Click the Install button to start the installation process.
 Windows may ask up to two times to reboot the computer if you are upgrading. Make sure

you have no unsaved work on your computer.

2.4. Software Installation

14 Zurich Instruments SHFSG+ User Manual

Figure 2.4: Installation reboot request

 During the first installation of LabOne, it is required to confirm the installation of some
drivers from the trusted publisher Zurich Instruments. Click on Install.

Figure 2.5: Installation driver acceptance

 Click OK on the following notification dialog.

Figure 2.6: Installation completion screen

Click Finish to close the Zurich Instruments LabOne installer.
You can now start the LabOne User Interface as described in LabOne Software Start-up and
choose an instrument to connect to via the Device Connection dialog shown in Device
Connection dialog.

Warning

Do not install drivers from another source other than Zurich Instruments.

2.4.3. Running LabOne manually from the Command Line

After installing the LabOne software, the Web Server and Data Server can be started manually using
the command-line. The more common way to start LabOne under Windows is described in LabOne
Software Start-up. The advantage of using the command line is being able to observe and change
the behavior of the Web and Data Servers.

3.
4.

2.4. Software Installation

15 Zurich Instruments SHFSG+ User Manual

Running the Web Server from the Command Line

Before running the Web Server from the terminal, the user needs to ensure there is no other
instance of the Web Server running in the background, since only one instance of the Web Server
can run on a computer at a time. This can be checked using the Tray Icon as shown below.

Figure 2.7: LabOne Tray Icon in Windows 11

To start the Web Servers manually, open a command-line terminal (Command Prompt, PowerShell
(Windows) or Bash (Linux)). The current working directory needs to be the installation directory of
the Web Server, usually C:\Program Files\Zurich Instruments\LabOne\WebServer. The
behavior of the Web Server can be changed by providing command line arguments. For a detailed
list of all arguments see the command line help text:

$ ziWebServer --help

One useful application of running the Webserver manually from a terminal window is to change the
data directory from its default path in the user home directory. The data directory is a folder in which
the LabOne Webserver saves all the measured data in the format specified by the user.

The corresponding command line argument to specify the data path is --data-path and the
command to start the LabOne Webserver with a non-default directory path, e.g., C:\data is

C:\Program Files\Zurich Instruments\LabOne\WebServer> ziWebServer --data-path "C:
\data"

Running the Data Server from the Command Line

By default, the Data Server runs on Windows as a background service. To avoid conflicts with TCP
port assignment, before running the Data Server from the terminal the user needs to ensure that
the Data Server running in the background is stopped.

There are two ways to enable/disable the data servers, one from the LabOne user interface and one
from the Windows services application.

In the "Advanced" mode of LabOne Session Manager, press the "Configure" button to open the
following window for switching on/off the data servers.

Alternatively, open the Windows "Services" app as shown below, look for the ziService, right click on
it and click "Stop".

2.4. Software Installation

16 Zurich Instruments SHFSG+ User Manual

Now that the Data Server is not running anymore in the background, it can be started manually.
Open a command-line terminal (Command Prompt, PowerShell (Windows) or Bash (Linux)) and run:

PS C:\Users\user> & 'C:\Program Files\Zurich
Instruments\LabOne\DataServer\ziDataServer.exe'

To show logs with higher verbosity, the --debug 1 flag can be used:

PS C:\Users\user> & 'C:\Program Files\Zurich
Instruments\LabOne\DataServer\ziDataServer.exe' --debug 1

2.4.4. Windows LabOne Uninstallation

To uninstall the LabOne software package from a Windows computer, one can open the "Installed
apps" page from the Windows start menu and search for LabOne. By selecting the LabOne item in
the list of apps, the user has the option to "Uninstall" or "Modify" the software package as shown in
Figure 2.8.

Figure 2.8: Uninstallation of LabOne on Windows computers

Warning

Although it is possible to install a new version of LabOne on a currently-installed version, it is highly
recommended to first uninstall the older version of LabOne from the computer and then, install the
new version. Otherwise, if the installation process fails, the current installation is damaged and
cannot be uninstalled directly. The user will need to first repair the installation and then, uninstall it.

In case a current installation of LabOne is corrupted, one can simply repair it by selecting the option
"Modify" in Figure 2.8. This will open the LabOne installation wizard with the option "Repair" as
shown in Figure 2.9.

2.4. Software Installation

17 Zurich Instruments SHFSG+ User Manual

Figure 2.9: Repair of LabOne on Windows computers

After finishing the repair process, the normal uninstallation process described above can be
triggered to uninstall LabOne.

2.4.5. Installing LabOne on macOS

LabOne supports both Intel and ARM (M-series) architectures within a single universal disk image
(DMG) file available in our Download Center.

 Download and double-click the DMG file to mount the image.

 The image contains a single LabOne application with all services needed.
 Once the application is started, a labone icon will appear in the menu bar. It allows the user to

easily open a new session and shows the status of all services.

2.4. Software Installation

18 Zurich Instruments SHFSG+ User Manual

Note

LabOne needs Local Network Access permissions. When LabOne is first started, a pop-up will
appear asking to grant such permissions.

If you miss the pop-up, the permissions can also be enabled manually in Settings > Privacy &

Security > Local Network.

2.4.6. Uninstalling LabOne on macOS

To uninstall LabOne on macOS, simply drag the LabOne application to the trash bin.

2.4.7. Application Content

The LabOne application contains all resources available for macOS. This includes:

 The binaries for the Web Server and Data Servers.
 The binaries for the C, MATLAB, and LabVIEW APIs.
 An offline version of the user manuals.

2.4. Software Installation

19 Zurich Instruments SHFSG+ User Manual

 The latest firmware images for all instruments.

To access this content, right-click on the LabOne application and select "Show Package Contents".
Then, go into Contents/Resources.

Note

Since the application name contains a space, one needs to escape it when using the command line
to access the contents: cd /Applications/LabOne\ XX.XX.app/Contents/Resources

2.4.8. Start LabOne Manually on the Command Line

To start the LabOne services like the data server and web server manually, one can use the
command line.

The data server binary is called ziDataServer (ziServer for HF2 instruments) and is located at
Applications/LabOne\ XX.XX.app/Contents/Resources/DataServer/.

The web server binary is called ziWebServer and is located at Applications/LabOne\
XX.XX.app/Contents/Resources/DataServer/.

Note

No special command line arguments are needed to start the LabOne services. Use the --help
argument to see all available options.

2.4.9. Installing LabOne on Linux

2.4.10. Requirements

Ensure that the following requirements are fulfilled before trying to install the LabOne software
package:

LabOne software supports typical modern GNU/Linux distributions (Ubuntu 14.04+, CentOS
7+, Debian 8+). The minimum requirements are glibc 2.17+ and kernel 3.10+.
You have administrator rights for the system.
The correct version of the LabOne installation package for your operating system and
platform have been downloaded from the Zurich Instruments Download Center:

LabOneLinux<arch>-<release>.<revision>.tar.gz,

Please ensure you download the correct architecture (x86-64 or arm64) of the LabOne installer. The
uname command can be used in order to determine which architecture you are using, by running:

uname -m

in a command line terminal. If the command outputs x86_64 the x86-64 version of the LabOne
package is required, if it displays aarch64 the ARM64 version is required.

2.4.11. Linux LabOne Installation

Proceed with the installation in a command line shell as follows:

Extract the LabOne tarball in a temporary directory:

tar xzvf LabOneLinux<arch>-<release>-<revision>.tar.gz

Navigate into the extracted directory.

cd LabOneLinux<arch>-<release>-<revision>

Run the install script with administrator rights and proceed through the guided installation,
using the default installation path if possible:

1.

2.
3.

1.

2.

3.

2.4. Software Installation

20 Zurich Instruments SHFSG+ User Manual

https://www.zhinst.com/support/download-center

sudo bash install.sh

The install script lets you choose between the following three modes:
 Type "a" to install the Data Server program, the Web Server program, documentation and

APIs.
 Type "u" to install udev support (only necessary if HF2 Instruments will be used with this

LabOne installation and not relevant for other instrument classes).
 Type "ENTER" to install both options "a" and "u".
Test your installation by running the software as described in the next section.

2.4.12. Running the Software on Linux

The following steps describe how to start the LabOne software in order to access and use your
instrument in the User Interface.

Start the Web Server program at a command prompt:

$ ziWebServer

Start an up-to-date web browser and enter the 127.0.0.1:8006 in the browser’s address bar
to access the Web Server program and start the LabOne User Interface. The LabOne Web
Server installed on the PC listens by default on port number 8006 instead of 80 to minimize
the probability of conflicts.
You can now start the LabOne User Interface as described in LabOne Software Start-up and
choose an instrument to connect to via the Device Connection dialog shown in Device
Connection dialog.

Important

Do not use two Data Server instances running in parallel; only one instance may run at a time.

2.4.13. Uninstalling LabOne on Linux

The LabOne software package copies an uninstall script to the base installation path (the default
installation directory is /opt/zi/). To uninstall the LabOne package please perform the following
steps in a command line shell:

Navigate to the path where LabOne is installed, for example, if LabOne is installed in the
default installation path:

$ cd /opt/zi/

Run the uninstall script with administrator rights and proceed through the guided steps:

$ sudo bash uninstall_LabOne<arch>-<release>-<revision>.sh

2.5. Connecting to the Instrument

The Zurich Instruments SHFSG+ is operated using the LabOne software. After the installation as
described in Software Installation, the instrument can be connected to the host computer using
either the USB 3.0 or the 1 Gbit/s Ethernet (1GbE). Please use the respective cables supplied with
the instrument. Once one of the physical connection achieved successfully, the LabOne software
can recognize the instrument.

4.

1.

2.

3.

1.

2.

2.5. Connecting to the Instrument

21 Zurich Instruments SHFSG+ User Manual

Note

The following web browsers are supported (latest versions).

 Using the 1GbE port, it is possible to connect the instrument to an existing local area network
(LAN) or establish a point-to-point connection to the host computer. For further details, see 1GbE
Connectivity

 Using the USB port requires point-to-point connection to the host computer. For further
information, see USB Connectivity.

Note

It is recommended to use the 1GbE port for communicating with the instrument, especially for long-
running experiments while measured signals are continuously acquired for an extended period of
time. This is to avoid possible interruptions that the USB protocol might cause depending on the
host computer's USB settings.

2.5.1. LabOne Software Architecture

The Zurich Instruments LabOne software gives quick and easy access to the instrument from a host
PC. LabOne also supports advanced configurations with simultaneous access by multiple software
clients (i.e., LabOne User Interface clients and/or API clients), and even simultaneous access by
several users working on different computers. Here we give a brief overview of the architecture of
the LabOne software. This will help to better understand the following chapters.

The software of Zurich Instruments equipment is server-based. The servers and other software
components are organized in layers as shown in Figure 2.10.

 The lowest layer running on the PC is the LabOne Data Server, which is the interface to the
connected instrument.

 The middle layer contains the LabOne Web Server, which is the server for the browser-based
LabOne User Interface.

 The graphical user interface, together with the programming user interfaces, are contained in the
top layer.

The architecture with one central Data Server allows multiple clients to access a device with
synchronized settings. The following sections explain the different layers and their functionality in
more detail.

Figure 2.10: LabOne Software architecture

2.5. Connecting to the Instrument

22 Zurich Instruments SHFSG+ User Manual

2.5.2. LabOne Data Server

The LabOne Data Server program is a dedicated server that is in charge of all communication to and
from the device. The Data Server can control a single or also multiple instruments. It will distribute
the measurement data from the instrument to all the clients that subscribe to it. It also ensures that
settings changed by one client are communicated to other clients. The device settings are therefore
synchronized on all clients. On a PC, only a single instance of a LabOne Data Server should be
running.

2.5.3. LabOne Web Server

The LabOne Web Server is an application dedicated to serving up the web pages that constitute the
LabOne user interface. The user interface can be opened with any device with a web browser. Since
it is touch enabled, it is possible to work with the LabOne User Interface on a mobile device - like a
tablet. The LabOne Web Server supports multiple clients simultaneously. This means that more than
one session can be used to view data and to manipulate the instrument. A session could be running
in a browser on the PC on which the LabOne software is installed. It could equally well be running in
a browser on a remote machine.

With a LabOne Web Server running and accessing an instrument, a new session can be opened by
typing in a network address and port number in a browser address bar. In case the Web Server runs
on the same computer, the address is the localhost address (both are equivalent):

 127.0.0.1:8006
 localhost:8006

In case the Web Server runs on a remote computer, the address is the IP address or network name
of the remote computer:

 192.168.x.y:8006
 myPC.company.com:8006

The most recent versions of the most popular browsers are supported: Chrome, Firefox, Edge, Safari
and Opera.

2.5.4. LabOne API Layer

The instrument can also be controlled via the application program interfaces (APIs) provided by
Zurich Instruments. APIs are provided in the form of DLLs for the following programming
environments:

 MATLAB
 Python
 LabVIEW
 .NET
 C

APIs are provided in the form of DLLs for the following programming environments:

 MATLAB
 Python

An extensive Python API and python-based drivers are provided for the following frameworks:

 https://github.com/zhinst/zhinst-toolkit[Zurich Instruments Toolkit]
 https://github.com/zhinst/zhinst-qcodes[QCoDeS]
 https://github.com/zhinst/zhinst-labber[Labber]

The instrument can therefore be controlled by an external program, and the resulting data can be
processed there. The device can be concurrently accessed via one or more of the APIs and via the
user interface. This enables easy integration into larger laboratory setups. See the LabOne
Programming Manual for further information. Using the APIs, the user has access to the same
functionality that is available in the LabOne User Interface.

2.5.5. LabOne Software Start-up

This section describes the start-up of the LabOne User Interface which is used to control the
SHFSG+ Instrument. If the LabOne software is not yet installed on the PC please follow the

2.5. Connecting to the Instrument

23 Zurich Instruments SHFSG+ User Manual

instructions in Software Installation. If the device is not yet connected please find more information
in Visibility and Connection.

The LabOne User Interface start-up link can be found under the Windows 10/11 Start Menu. As
shown in Figure 2.11, click on Start Menu → Zurich Instruments LabOne. This will open the User
Interface in a new tab in your default web browser and start the LabOne Data Server and LabOne
Web Server programs in the background. A detailed description of the software architecture is found
in LabOne Software Architecture.

Figure 2.11: Link to the LabOne User Interface in the Windows 11 Start Menu

LabOne is an HTML5 browser-based program. This simply means that the user interface runs in a
web browser and that a connection using a mobile device is also possible; simply specify the IP
address (and port 8006) of the PC running the user interface.

Note

By creating a shortcut to Google Chrome on your desktop with the Target path\to\chrome.exe -
app=http://127.0.0.1:8006 set in Properties you can run the LabOne User Interface in Chrome in
application mode, which improves the user experience by removing the unnecessary browser
controls.

After starting LabOne, the Device Connection dialog Figure 2.12 is shown to select the device for the
session. The term "session" is used for an active connection between the user interface and the
device. Such a session is defined by device settings and user interface settings. Several sessions
can be started in parallel. The sessions run on a shared LabOne Web Server. A detailed description
of the software architecture can be found in the LabOne Software Architecture.

Figure 2.12: Device Connection dialog

The Device Connection dialog opens in the Basic view by default. In this view, all devices that are
available for connection are represented by an icon with serial number and status information. If
required, a button appears on the icon to perform a firmware upgrade. Otherwise, the device can be
connected by a double click on the icon, or a click on the button at the bottom right of the
dialog.

In some cases it’s useful to switch to the Advanced view of the Device Connection dialog by clicking
on the "Advanced" button. The Advanced view offers the possibility to select custom device and UI
settings for the new session and gives further connectivity options that are particularly useful for
multi-instrument setups.

2.5. Connecting to the Instrument

24 Zurich Instruments SHFSG+ User Manual

Figure 2.13: Device Connection dialog (Advanced view)

The Advanced view consists of three parts:

 Data Server Connectivity
 Available Devices
 Saved Settings

The Available Devices table has a display filter, usually set to Default Data Server, that is accessible
by a drop-down menu in the header row of the table. When changing this to Local Data Servers, the
Available Devices table will show only connections via the Data Server on the host PC and will
contain all instruments directly connected to the host PC via USB or to the local network via 1GbE.
When using the All Data Servers filter, connections via Data Servers running on other PCs in the
network also become accessible. Once your instrument appears in the Available Devices table,
perform the following steps to start a new session:

Select an instrument in the Available Devices table.
Select a setting file in the Saved Settings list unless you would like to use the Default
Settings.
Start the session by clicking on

Note

By default, opening a new session will only load the UI settings (such as plot ranges), but not the
device settings (such as signal amplitude) from the saved settings file. In order to include the device
settings, enable the Include Device Settings checkbox. Note that this can affect existing sessions
since the device settings are shared between them.

Note

In case devices from other Zurich Instruments series (UHF, HF2, MF, HDAWG, PQSC, GHF, or SHF) are
used in parallel, the list in Available Devices section can contain those as well.

The following sections describe the functionality of the Device Connection dialog in detail.

1.
2.

3.

2.5. Connecting to the Instrument

25 Zurich Instruments SHFSG+ User Manual

2.5.6. Data Server Connectivity

The Device Connection dialog represents a Web Server. However, on start-up the Web Server is not
yet connected to a LabOne Data Server. With the Connect/Disconnect button the connection to a
Data Server can be opened and closed.

This functionality can usually be ignored when working with a single SHFSG+ Instrument and a
single host computer. Data Server Connectivity is important for users operating their instruments
from a remote PC, i.e., from a PC different to the PC on which the Data Server is running or for users
working with multiple instruments. The Data Server Connectivity function then gives the freedom to
connect the Web Server to one of several accessible Data Servers. This includes Data Servers
running on remote computers, and also Data Servers running on an MF Series instrument.

In order to work with a UHF, HF2, HDAWG, PQSC, GHF, or SHF instrument remotely, proceed as
follows. On the computer directly connected to the instrument (Computer 1) open a User Interface
session and change the Connectivity setting in the Config tab to "From Everywhere". On the remote
computer (Computer 2), open the Device Connection dialog by starting up the LabOne User Interface
and then go to the Advanced view by clicking on on the top left of the dialog. Change the
display filter from Default Data Server to All Data Servers by opening the drop-down menu in the
header row of the Available Devices table. This will make the Instrument connected to Computer 1
visible in the list. Select the device and connect to the remote Data Server by clicking on .
Then start the User Interface as described above.

Note

When using the filter "All Data Servers", take great care to connect to the right instrument, especially
in larger local networks. Always identify your instrument based on its serial number in the form
DEV0000, which can be found on the instrument back panel.

2.5.7. Available Devices

The Available Devices table gives an overview of the visible devices. A device is ready for use if either
marked free or connected. The first column of the list holds the Enable button controlling the
connection between the device and a Data Server. This button is greyed out until a Data Server is
connected to the LabOne Web Server using the button. If a device is connected to a Data
Server, no other Data Server running on another PC can access this device.

The second column indicates the serial number and the third column shows the instrument type.
The fourth column shows the host name of the LabOne Data Server controlling the device. The next
column shows the interface type. For SHFSG+ Instruments the interfaces USB or 1GbE are available
and are listed if physically connected. The LabOne Data Server will scan for the available devices
and interfaces every second. If a device has just been switched on or physically connected it may
take up to 20 s before it becomes visible to the LabOne Data Server.

Table 2.5: Device Status Information

Available The device is not in use by any LabOne Data Server and can be connected by
clicking the Enable button. Alternatively, a session can also be started by
clicking on the Open button, without prior connection.

In use by The device is in use by a LabOne Data Server. As a consequence the device
cannot be accessed by the specified interface. To access the device a
disconnect is needed. The additional message "FW upgrade available" or "FW
downgrade available" may also be displayed in this state.

Connected The device is connected to a LabOne Data Server, either on the same PC
(indicated as local) or on a remote PC (indicated by its IP address). The user
can start a session to work with that device.

Device FW upgrade
required

The firmware is out of date and must be upgraded before the device can be
used. Please first upgrade the firmware by clicking on the Upgrade FW
button as described in Software Update.

Device FW upgrade
available. Please
update

The firmware is out of date but the device can still be used. It is highly
recommended to upgrade the firmware by clicking on the Upgrade FW
button as described in Software Update.

2.5. Connecting to the Instrument

26 Zurich Instruments SHFSG+ User Manual

Device FW
downgrade
available

The firmware of the device is newer than the version supplied with the
installed LabOne software. This could be due to reverting to an earlier
LabOne version. The device can still be used but it is also possible to
downgrade to the older firmware version if for any reason this is necessary.
Click on the Downgrade FW button to downgrade the firmware. It is strongly
advised to upgrade LabOne instead of downgrading the firmware.

Device FW upgrade
required. Please
use USB firmware
upgrade utility

The firmware of UHFLI/UHFQA is too old to be updated from the Device
Connection dialog. Please first upgrade the firmware using the USB Firmware
Upgrade Utility provided with LabOne software.

Device not yet
ready

The device is visible and starting up. When the device is ready it will be
flagged as Available.

2.5.8. Saved Settings

Settings files can contain both UI and device settings. UI settings control the structure of the
LabOne User Interface, e.g. the position and ordering of opened tabs. Device settings specify the
set-up of a device. The device settings persist on the device until the next power cycle or until
overwritten by loading another settings file.

The columns are described in Table 2.6. The table rows can be sorted by clicking on the column
header that should be sorted. The default sorting is by time. Therefore, the most recent settings are
found on top. Sorting by the favorite marker or setting file name may be useful as well.

Table 2.6: Column Descriptions

Allows favorite settings files to be grouped together. By activating the stars adjacent to
a settings file and clicking on the column heading, the chosen files will be grouped
together at the top or bottom of the list accordingly. The favorite marker is saved to the
settings file. When the LabOne user interface is started next time, the row will be
marked as favorite again.

Name The name of the settings file. In the file system, the file name has the extension .md.

Date The date and time the settings file was last written.

Comment Allows a comment to be stored in the settings file. By clicking on the comment field a
text can be typed in which is subsequently stored in the settings file. This comment is
useful to describe the specific conditions of a measurement.

Device
Type

The instrument type with which this settings file was saved.

Special Settings Files

Certain file names have the prefix "last_session_". Such files are created automatically by the
LabOne Web Server when a session is terminated either explicitly by the user, or under critical error
conditions, and save the current UI and device settings. The prefix is prepended to the name of the
most recently used settings file. This allows any unsaved changes to be recovered upon starting a
new session.

If a user loads such a last session settings file the "last_session_" prefix will be cut away from the
file name. Otherwise, there is a risk that an auto-save will overwrite a setting which was saved
explicitly by the user.

The settings file with the name "Default Settings" contains the default UI settings. See button
description in Table 2.7.

Table 2.7: Button Descriptions

Open The settings contained in the selected settings file will be loaded. The button
"Include Device Settings" controls whether only UI settings are loaded, or if device
settings are included.

Include Device
Settings

Controls which part of the selected settings file is loaded upon clicking on Open. If
enabled, both the device and the UI settings are loaded.

2.5. Connecting to the Instrument

27 Zurich Instruments SHFSG+ User Manual

Auto Start Skips the session dialog at start-up if selected device is available. The default UI
settings will be loaded with unchanged device settings.

Note

The user setting files are saved to an application-specific folder in the directory structure. The best
way to manage these files is using the File Manager tab.

Note

The factory default UI settings can be customized by saving a file with the name "default_ui" in the
Config tab once the LabOne session has been started and the desired UI setup has been
established. To use factory defaults again, the "default_ui" file must be removed from the user
setting directory using the File Manager tab.

Note

Double clicking on a device row in the Available Devices table is a quick way of starting the default
LabOne UI. This action is equivalent to selecting the desired device and clicking the Open button.

Double clicking on a row in the Saved Settings table is a quick way of loading the LabOne UI with
those UI settings and, depending on the "Include Device Settings" checkbox, device settings. This
action is equivalent to selecting the desired settings file and clicking the Open button.

2.5.9. Tray Icon

When LabOne is started, a tray icon appears by default in the bottom right corner of the screen, as
shown in the figure below. By right-clicking on the icon, a new web server session can be opened
quickly, or the LabOne Web and Data Servers can be stopped by clicking on Exit. Double-clicking the
icon also opens a new web server session, which is useful when setting up a connection to multiple
instruments, for example.

Figure 2.14: LabOne Tray Icon in Windows 11

2.5.10. Messages

The LabOne Web Server will show additional messages in case of a missing component or a failure
condition. These messages display information about the failure condition. The following paragraphs
list these messages and give more information on the user actions needed to resolve the problem.

Lost Connection to the LabOne Web Server

In this case the browser is no longer able to connect to the LabOne Web Server. This can happen if
the Web Server and Data Server run on different PCs and a network connection is interrupted. As
long as the Web Server is running and the session did not yet time out, it is possible to just attach to
the existing session and continue. Thus, within about 15 seconds it is possible with Retry to recover
the old session connection. The Reload button opens the Device Connection dialog shown in Figure
2.12. The figure below shows an example of the Connection Lost dialog.

2.5. Connecting to the Instrument

28 Zurich Instruments SHFSG+ User Manual

Figure 2.15: Dialog: Connection Lost

Reloading...

If a session error cannot be handled, the LabOne Web Server will restart to show a new Device
Connection dialog as shown in Figure 2.12. During the restart a window is displayed indicating that
the LabOne User Interface will reload. If reloading does not happen the same effect can be triggered
by pressing F5 on the keyboard. The figure below shows an example of this dialog.

Figure 2.16: Dialog: Reloading

No Device Discovered

An empty "Available Devices" table means that no devices were discovered. This can mean that no
LabOne Data Server is running, or that it is running but failed to detect any devices. The device may
be switched off or the interface connection fails. For more information on the interface between
device and PC see Visibility and Connection. The figure below shows an example of this dialog.

Figure 2.17: No Device Discovered

No Device Available

If all the devices in the "Available Devices" table are shown grayed, this indicates that they are either
in use by another Data Server, or need a firmware upgrade. For firmware upgrade see Software
Update. If all the devices are in use, access is not possible until a connection is relinquished by
another Data Server.

2.5. Connecting to the Instrument

29 Zurich Instruments SHFSG+ User Manual

2.5.11. Visibility and Connection

There are several ways to connect the instrument to a host computer. The device can either be
connected by Universal Serial Bus (USB) or by 1 Gbit/s Ethernet (1GbE). The USB connection is a
point-to-point connection between the device and the PC on which the Data Server runs. The 1GbE
connection can be a point-to-point connection or an integration of the device into the local network
(LAN). Depending on the network configuration and the installed network card, one or the other
connectivity is better suited.

If an instrument is connected to a network, it can be accessed from multiple host computers. To
manage the access to the instrument, there are two different connectivity states: visible and
connected. It is important to distinguish if an instrument is just physically connected over 1GbE or
actively controlled by the LabOne Data Server. In the first case the instrument is visible to the
LabOne Data Server. In the second case the instrument is logically connected.

Connectivity Example shows some examples of possible configurations of computer-to-instrument
connectivity.

 Data Server on PC 1 is connected to device 1 (USB) and device 2 (USB).
 Data Server on PC 2 is connected to device 4 (TCP/IP).
 Data Server on PC 3 is connected to device 5.
 The device 3 is free and visible to PC 1 and PC 2 over TCP/IP.
 Devices 2 and 4 are physically connected by TCP/IP and USB interface. Only one interface is

logically connected to the Data Server.

Figure 2.18: Connectivity Example

Visible Instruments

An instrument is visible if the Data Server can identify it. On a TCP/IP network, several PCs running a
Data Server will detect the same instrument as visible, i.e., discover it. If a device is discovered, the
LabOne Data Server can initiate a connection to access the instrument. Only a single Data Server
can be connected to an instrument at a time.

Connected Instrument

Once connected to an instrument, the Data Server has exclusive access to that instrument. If
another Data Server from another PC already has an active connection to the instrument, the
instrument is still visible but cannot be connected.

2.5. Connecting to the Instrument

30 Zurich Instruments SHFSG+ User Manual

Although a Data Server has exclusive access to a connected instrument, the Data Server can have
multiple clients. Because of this, multiple browser and API sessions can access the instrument
simultaneously.

2.5.12. USB Connectivity

To control the device over USB, connect the instrument with the supplied USB cable to the PC on
which the LabOne Software is installed. The USB driver needed for controlling the instrument is
included in the LabOne Installer package. Ensure that the instrument uses the latest firmware. The
software will automatically use the USB interface for controlling the device if available. If the USB
connection is not available, the 1GbE connection may be selected. It is possible to enforce or
exclude a specific interface connection.

Note

To use the device exclusively over the USB interface, modify the shortcut of the LabOne User
Interface and LabOne Data Server in the Windows Start menu. Right-click and go to Properties, then
add the following command line argument to the Target LabOne User Interface:

 --interface-usb true --interface-ip false

An instrument connected over USB can be automatically connected to the Data Server because
there is only a single host PC to which the device interface is physically connected. Table 2.8
provides an overview of the two settings.

Table 2.8: Settings auto-connect

Setting Description

auto-connect
= on

If a device is attached via a USB cable, a connection will be established
automatically by the Data Server. This is the default behavior.

auto-connect
= off

To disable automatic connection via USB, add the following command line
argument when starting the Data Server:`--auto-connect=off`.

On Windows, both behaviors can be forced by right clicking the LabOne Data Server shortcut in the
Start menu, selecting "Properties" and adding the text --auto-connect=off or --auto-
connect=on to the Target field, see Figure 2.19.

2.5. Connecting to the Instrument

31 Zurich Instruments SHFSG+ User Manual

Figure 2.19: Setting auto-connect in Windows

2.5.13. 1GbE Connectivity

There are three methods for connecting to the device via 1GbE:

 Multicast DHCP
 Multicast point-to-point (P2P)
 Static Device IP

Multicast DHCP is the simplest and preferred connection method. Other connection methods can
become necessary when using network configurations that conflict with local policies.

Multicast DHCP

The most straightforward TCP/IP connection method is to rely on a network configuration to
recognize the instrument. When connecting the instrument to a local area network (LAN), the DHCP
server will assign an IP address to the instrument like to any PC in the network. In case of restricted
networks, the network administrator may be required to register the device on the network by
means of the MAC address. The MAC address is indicated on the back panel of the instrument. The
LabOne Data Server will detect the device in the network by means of a multicast.

If the network configuration does not support multicast, or if the host computer has other network
cards installed, it is necessary to use a static IP setup as described below. The instrument is
configured to accept the IP address from the DHCP server, or to fall back to the IP address
192.168.1.10 if it does not get the address from the DHCP server.

Requirements:



2.5. Connecting to the Instrument

32 Zurich Instruments SHFSG+ User Manual

Network supports multicast

Multicast Point-to-Point

Setting up a point-to-point (P2P) network consisting only of the host computer and the instrument
avoids problems related to special network policies. Since it is nonetheless necessary to stay
connected to the internet, it is recommended to install two network cards in the computer, one of
which is used for internet connectivity, the other can be used for connecting to the instrument.
Alternatively, internet connectivity can be established via wireless LAN.

In such a P2P network the IP address of the host computer needs to be set to a static value, whereas
the IP address of the device can be left dynamic.

Connect the 1GbE port of the network card that is dedicated for instrument connectivity
directly to the 1GbE port of the instrument
Set this network card to static IP in TCP/IPv4 using the address 192.168.1.n, where n=[2..9]
and the mask 255.255.255.0. (On Windows go to Control Panel → Internet Options →
Network and Internet → Network and Sharing Center → Local Area Connection
→ Properties).

Figure 2.20: Static IP configuration for the host computer

Start up the LabOne User Interface normally. If your instrument does not show in the list of
Available Devices, the reason may be that your network card does not support multicast. In
that case, see Static Device IP.

Requirements:

 Two network cards needed for additional connection to internet
 Network card of PC supports multicast
 Network card connected to the device must be in static IP4 configuration

1.

2.

3.

2.5. Connecting to the Instrument

33 Zurich Instruments SHFSG+ User Manual

Note

A power cycle of the instrument is required if it was previously connected to a network that provided
an IP address to the instrument.

Note

Only IP v4 is currently supported. There is no support for IP v6.

Note

If the instrument is detected by LabOne but the connection can not be established, the reason can
be the firewall blocking the connection. It is then recommended to change the P2P connection from
Public to Private. On Windows this is achieved by turning on network discovery in the Private tab of
the network’s advanced sharing settings as shown in the figure below.

Figure 2.21: Turn on network discovery for Private P2P connection

2.5. Connecting to the Instrument

34 Zurich Instruments SHFSG+ User Manual

Warning

Changing the IP settings of your network adapters manually can interfere with its later use, as it
cannot be used anymore for network connectivity until it is configured again for dynamic IP.

Figure 2.22: Dynamic IP configuration for the host computer

Static Device IP

Although it is highly recommended to use dynamic IP assignment method in the host network of the
instrument, there may be cases where the user wants to assign a static IP to the instrument. For
instance, when the host network only contains Ethernet switches and hubs but no Ethernet routers
are included, there is no DHCP server to dynamically assign an IP to the instrument. It is still advised
to add an Ethernet router to the network and benefit from dynamic IP assignment; however, if a
router is not available, the instrument can be configured to work with a static IP.

Note that the static IP assigned to the instrument must be within the same range of the IP assigned
to the host computer. Whether the host computer’s IP is assigned statically or by a fallback
mechanism, one can find this IP by running the command ipconfig or ipconfig/all in the
operating system’s terminal. As an example, Figure 2.23 shows the outcome of running ipconfig in
the terminal.

Figure 2.23: IP and subnet mask of host computer

2.5. Connecting to the Instrument

35 Zurich Instruments SHFSG+ User Manual

It shows the network adapter of the host computer can be reached via the IP 169.254.16.57 and it
uses a subnet mask of 255.255.0.0. To make sure that the instrument is visible to this computer,
one needs to assign a static IP of the form 169.254.x.x and the same subnet mask to the
instrument. To do so, the user should follow the instructions below.

Attach the instrument using an Ethernet cable to the network where the user’s computer is
hosted.
Attach the instrument via a USB cable to the host computer and switch it on.
Open the LabOne user interface (UI) and connect to the instrument via USB.
Open the "Device" tab of the LabOne UI and locate the "Communication" section as shown in
Configuration of static IP in LabOne UI.
Write down the desired static IP, e.g. 169.254.16.20, into the numeric field "IPv4 Address".
Add the same subnet mask as the host computer, e.g. 255.255.0.0 to the numeric field "IPv4
Mask".
You can leave the field "Gateway" as 0.0.0.0 or change to be similar to the IP address but
ending with 1, e.g. 169.254.16.1.
Enable the radio button for "Static IP".
Press the button "Program" to save the new settings to the instruments.
Power cycle the instrument and remove the USB cable. The instrument should be visible to
LabOne via Ethernet connection.

Figure 2.24: Configuration of static IP in LabOne UI

To make sure the IP assignment is done properly, one can use the command ping to check if the
instrument can be reached through the network using its IP address. Figure 2.25 shows the outcome
of ping when the instrument is visible via the IP 169.254.16.20.

Figure 2.25: Instrument visible through pinging

If set properly according to the instructions above, the instrument will use the same static IP
configurations after each power cycle.

1.

2.
3.
4.

5.
6.

7.

8.
9.
10.

2.5. Connecting to the Instrument

36 Zurich Instruments SHFSG+ User Manual

Fallback Device IP

When configured to a dynamic address, but no DHCP server is present in the network, e.g., device
connected directly to a PC, the instrument falls back on an IP address in the local link IP range that
is 169.254.x.x. If the host computer has also an IP address within the same range, the instrument
becomes visible to the LabOne data server running on the host computer. This way, there is no need
to go through the process described above to assign a static IP to the instrument.

2.6. Software Update

2.6.1. Overview

It is recommended to regularly update the LabOne software on the SHFSG+ Instrument to the latest
version. In case the Instrument has access to the internet, this is a very simple task and can be done
with a single click in the software itself, as shown in Updating LabOne using Automatic Update
Check. If you use one of the LabOne APIs with a separate installer, don't forget to update this part of
the software, too.

2.6.2. Updating LabOne using Automatic Update Check

Updating the software is done in two steps. First, LabOne is updated on the PC by downloading and
installing the LabOne software from the Zurich Instruments downloads page, as shown in Software
Installation. Second, the instrument firmware needs to be updated from the Device Connection
dialog after starting up LabOne. This is shown in Updating the Instrument Firmware . In case
"Periodically check for updates" has been enabled during the LabOne installation and LabOne has
access to the internet, a notification will appear on the Device Connection dialog whenever a new
version of the software is available for download. This setting can later be changed in the Config tab
of the LabOne user interface. In case automatic update check is disabled, the user can manually
check for updates at any time by clicking on the button in the Device Connection
dialog. In case an update is found, clicking on the button "Update Available" shown in Figure 2.26 will
start a download of the latest LabOne installer for Windows or Linux, see Figure 2.27. After
download, proceed as explained in Software Installation to update LabOne.

Figure 2.26: Device Connection dialog: LabOne update available

Figure 2.27: Download LabOne MSI using Automatic Update Check feature

2.6.3. Updating the Instrument Firmware

The LabOne software consists of both software that runs on your PC and software that runs on the
instrument. In order to distinguish between the two, the latter will be called firmware for the rest of
this document. When upgrading to a new software release, it's also necessary to update the
instrument firmware.

If the firmware needs an update, this is indicated in the Device Connection dialog of the LabOne user
interface under Windows.

2.6. Software Update

37 Zurich Instruments SHFSG+ User Manual

In the Basic view of the dialog, there will be a button "Upgrade FW" appearing together with the
instrument icon as shown in Figure 2.28. In the Advanced view, there will be a link "Upgrade FW" in
the Update column of the Available Devices table. Click on Upgrade FW to open the firmware update
start-up dialog shown in Figure 2.29. The firmware upgrade takes approximately 2 minutes.

Figure 2.28: Device Connection dialog with available firmware update

Figure 2.29: Device Firmware Update start-up dialog

Important

Do not disconnect the USB or 1GbE cable to the Instrument or power-cycle the Instrument during a
firmware update.

If you encounter any issues while upgrading the instrument firmware, please contact Zurich
Instruments at support@zhinst.com.

2.7. Troubleshooting

This section aims to help the user solve and avoid problems while using the software and operating
the instrument.

2.7.1. Common Problems

Your SHFSG+ Instrument is an advanced piece of laboratory equipment which has many more
features and capabilities than a traditional signal generator. In order to benefit from these, the user
needs access to a large number of settings in the API or the LabOne User Interface. The complexity
of the settings might overwhelm a first-time user, and even expert users can get surprised by certain
combinations of settings. This section provides an easy-to-follow checklist to solve the most
common mishaps.

Table 2.9: Common Problems

Problem Check item

The software cannot
be installed or
uninstalled

Please verify you have administrator/root rights.

The software cannot
be updated

Please use the Modify option in Windows Apps & Features functionality. In
the software installer select Repair, then uninstall the old software
version, and install the new version.

The Instrument does
not turn on

Please verify the power supply connection and inspect the fuse. The fuse
holder is integrated in the power connector on the back panel of the
instrument.

2.7. Troubleshooting

38 Zurich Instruments SHFSG+ User Manual

mailto:support@zhinst.com

Problem Check item

The Instrument
performs close to
specification, but
higher performance is
expected

After 2 years since the last calibration, a few analog parameters are
subject to drift. This may cause inaccurate measurements. Zurich
Instruments recommends re-calibration of the Instrument every 2 years.

The Instrument
measurements are
unpredictable

Please check the Status Tab to see if there is any active warning (red flag),
or if one has occurred in the past (yellow flag).

The Instrument does
not generate any
output signal

Verify that the signal output switch of the right signal output channel has
been activated in the Output tab.

The LabOne User
Interface does not
start

Verify that the LabOne Data Server (ziDataServer.exe) and the LabOne
Web Server (ziWebServer.exe) are running via the Windows Task
Manager. The Data Server should be started automatically by
ziService.exe and the Web Server should be started upon clicking
"Zurich Instruments LabOne" in the Windows Start Menu.
If both are running, but clicking the Start Menu does not open a new User
Interface session in a new tab of your default browser then try to create a
new session manually by entering 127.0.0.1:8006 in the address bar of
your browser.

The user interface
does not start or
starts but remains idle

Verify that the Data Server has been started and is running on your host
computer.

The user interface is
slow and the web
browser process
consumes a lot of CPU
power

Make sure that the hardware acceleration is enabled for the web browser
that is used for LabOne. For the Windows operating system, the hardware
acceleration can be enabled in Control Panel → Display → Screen
Resolution. Go to Advanced Settings and then Trouble Shoot. In case you
use a NVIDIA graphics card, you have to use the NVIDIA control panel. Go
to Manage 3D Settings, then Program Settings and select the program
that you want to customize.

2.7.2. Location of the Log Files

The most recent log files of the LabOne Web and Data Server programs are most easily accessed by
clicking on in the LabOne Device Connection dialog of the user interface. The Device
Connection dialog opens on software start-up or upon clicking on in the Config tab of
the user interface.

The location of the Web and Data Server log files on disk are given in the sections below.

Windows

The Web and Data Server log files on Windows can be found in the following directories.

 LabOne Data Server (ziDataServer.exe):
C:\Windows\ServiceProfiles\LocalService\AppData\Local\Temp\Zurich
Instruments\LabOne\ziDataServerLog

 LabOne Web Server (ziWebServer.exe):
C:\Users\[USER]\AppData\Local\Temp\Zurich Instruments\LabOne\ziWebServerLog

2.7. Troubleshooting

39 Zurich Instruments SHFSG+ User Manual

Note

The C:\Users\[USER]\AppData folder is hidden by default under Windows. A quick way of
accessing it is to enter %AppData%\.. in the address bar of the Windows File Explorer.

Figure 2.30: Using the

Linux and macOS

The Web and Data Server log files on Linux or macOS can be found in the following directories.

 LabOne Data Server (ziDataServer):
/tmp/ziDataServerLog_[USER]

 LabOne Web Server (ziWebServer):
/tmp/ziWebServerLog_[USER]

2.7.3. Prevent web browsers from sleep mode

It often occurs that an experiment requires a long-time signal acquisition; therefore, the setup
including the measurement instrument and LabOne software are left unattended. By default, many
web browsers go to a sleep mode after a certain idle time which results in the loss of acquired data
when using the web-based user interface of LabOne for measurement. Although it is recommended
to take advantage of LabOne APIs in these situations to automate the measurement process and
avoid using web browsers for data recording, it is still possible to adjust the browser settings to
prevent it from entering the sleep mode. Below, you will find how to modify the settings of your
preferred browser to ensure a long-run data acquisition can be implemented properly.

Edge

Open Settings by typing edge://settings in the address bar
Select System from the icon bar.
Find the Never put these sites to sleep section of the Optimized Performance tab.
Add the IP address and the port of LabOne Webserver, e.g., 127.0.0.1:8006 or
192.168.73.98:80 to the list.

Chrome

While LabOne is running, open a tab in Chrome and type chrome://discards in the address
bar.
In the shown table listing all the open tabs, find LabOne and disable its Auto Discardable
feature.
This option avoids discarding and refreshing the LabOne tab as long as it is open. To disable
this feature permanently, you can use an extension from the Chrome Webstore.

Firefox

Open Advanced Preferences by typing about:config in the address bar.
Look for browser.tabs.unloadOnLowMemory in the search bar.
Change it to false if it is true.

1.
2.
3.
4.

1.

2.

3.

1.
2.
3.

2.7. Troubleshooting

40 Zurich Instruments SHFSG+ User Manual

Opera

Open Settings by typing opera://settings in the address bar.
Locate the User Interface section in the Advanced view.
Disable the Snooze inactive tabs to save memory option and restart Opera.

Safari

Open Debug menu.
Go to Miscellaneous Flags.
Disable Hidden Page Timer Throttling.

1.
2.
3.

1.
2.
3.

2.7. Troubleshooting

41 Zurich Instruments SHFSG+ User Manual

3. Functional Overview
This chapter provides the overview of the features provided by the SHFSG Instrument. nless
explicitly stated otherwise, all contents of the manual apply to both the original SHFSG as well as
the SHFSG+. The first section contains the description of the functional diagram and the hardware
and software feature list. The next section details the front panel and the back panel of the
measurement instrument. The following section provides product selection and ordering support.

3.1. Features

The SHFSG+ Instrument consists of several internal units that generate digital signals (light blue
color, referred to as Digital Signal Units or DSUs) and several units that transform the digital signals
into analog signals with the appropriate center frequency (dark blue color). The front panel is
depicted on the left-hand side and the back panel is depicted on the right-hand side. The arrows
between the panels and the interface units indicate selected physical connections and the data
flow. The SHFSG+ 8.5 GHz Signal Generator comes in a 4-channel and an 8-channel variant,
providing either 4 or 8 output channels, respectively. The ordering guide details the available
upgrade options for each instrument type and whether the option can be upgraded directly in the
field.

Figure 3.1: SHFSG+ instrument functional diagram

Each channel has signal generation (AWG,
Modulation) functionality, as well as common functionality such as the shared communications
(32-bit DIO, ZSync). The digital, complex-valued signal from the Digital Signal Unit is up-converted
to microwave frequencies in the analog domain using the Signal Output Module.

3.1.1. Super-high-frequency Signal Outputs

 Low-noise SHF Outputs, DC - 8.5 GHz frequency range, 1 GHz modulation bandwidth
 Broadband double superheterodyne frequency upconversion
 Calibrated (Output) Power Range, selectable from -30 dBm to 10 dBm when using the RF path

and from -30 dBm to 5 dBm when using the LF path

3.1.2. Advanced Pulse Sequencer

 Arbitrary Waveform Generator capability
 Advanced sequencing

 looping, branching
 command table
 advanced trigger control

 Digital modulation

3.1.3. Hardware Trigger Engine

 1 Trigger Engine per Channel
 1 Marker Output and Trigger Input per Channel

3. Functional Overview

42 Zurich Instruments SHFSG+ User Manual

3.1.4. High-speed Connectivity

 SMA connectors on front and back panel for triggers, signals and external clock
 USB 3.0 high-speed host interface
 Maintenance USB connection
 LAN/Ethernet 1 Gbit/s controller interface
 DIO: 32-bit digital input-output port
 2 ZSync connectors for clock synchronization and fast data transfer
 Clock input/output connectors (10 MHz)

3.1.5. Software Features

 Web-based, high-speed user interface with multi-instrument control
 Data server with multi-client support
 LabOne APIs, including Python, QCoDeS and Labber
 Turnkey software and firmware features for fast system tune-up

3.2. Front Panel Tour

The front panel SMA connectors and control LEDs are arranged as shown in Figure 3.2 and listed in
Table 3.1.

Figure 3.2: SHFSG+ 8.5 GHz Signal Generator front panel

Table 3.1: SHFSG+ Signal Generator front panel description

Position Label /
Name

Description

A Trig TTL Trigger Input

B Mark TTL Marker Output

C Out single-ended waveform Signal Output,
DC-8.5 GHz, max. 10 dBm

D Aux In analog Auxiliary Input, max. 10 V

E Aux In Over unused

F Output On
off

Output disabled
blue

Output enabled

G multicolor
LEDs off

Instrument off or uninitialized
blink

all LEDs blink for 5 seconds → indicator used by the Identify
Device functionality

Busy unused

3.2. Front Panel Tour

43 Zurich Instruments SHFSG+ User Manual

Position Label /
Name

Description

Ext Ref
off

External Reference Signal not present/detected
blue

External Reference Signal is present and locked on to
yellow

External Reference Signal present, but not locked on to
red

External Reference Signal present, but lock failed

ZSync
off

no connection
blue

 steady: ZSync fully connected AND synchronized
 blinking: ZSync synchronized but not yet fully connected

yellow
ZSync plugged in, but not connected

red
ZSync interface error

Status
off

Instrument off or uninitialized
blue

Instrument is initialized and has no warnings or errors
yellow

Instrument has warnings
red

Instrument has errors

H
Soft power
button

Power button with incorporated status LED

off
Instrument off and disconnected from mains power

blue
 flashing rapidly (>1/sec): Firmware is starting
 flashing slow (<1/sec): Firmware ready, waiting for connection
 constant: Instrument ready and active connection over USB

orEthernet
red

 breathing: Instrument off but connected to mains power →
safeto power off using the rear panel switch, or restart using
the softpower button

 flashing: Instrument booting up
 constant: Fatal error occurred

3.3. Back Panel Tour

The back panel is the main interface for power, control, service and connectivity to other ZI
instruments. Please refer to Figure 3.3 and Table 3.2 for the detailed description of the items.

3.3. Back Panel Tour

44 Zurich Instruments SHFSG+ User Manual

Figure 3.3: SHFSG+ back panel

Table 3.2: SHFSG+ Instrument back panel description

Position Label /
Name

Description

A
Earth ground

4 mm banana jack connector for earth ground, electrically connected
to the chassis and the earth pin of the power inlet

B AC 100 - 240 V Power inlet, fuse holder, and power switch

C MDS 1 Unused

D MDS 2 Unused

E Maintenance Maintenance USB port. Only for instrument maintenance, not for
regular operation. Please use the USB port (see position H) instead.
Some of the instruments have this port labeled as USB 1.

F LAN 1GbE 1 Gbit LAN connector for instrument control

G DIO 32bit 32-bit digital input/output (DIO) connector

H USB Universal Serial Bus (USB) 3.0 port for instrument control and data
acquisition. Some of the instruments have this port labeled as USB 2.

I ZSync
Secondary

Unused
Attention: This is not an Ethernet plug, connection to an Ethernet
network might damage the Instrument.

J ZSync Primary Primary inter-instrument synchronization bus connector
Attention: This is not an Ethernet plug, connection to an Ethernet
network might damage the instrument.

K External Clk In External Reference Clock Input (10 MHz/100 MHz) for synchronization
with other instruments

L External Clk
Out

External Reference Clock Output (10 MHz/100 MHz) for synchronization
with other instruments

3.4. Ordering Guide

Table 3.3 provides an overview of the available SHFSG+ products. Upgradeable features are options
that can be purchased anytime without the need to send the Instrument back to Zurich
Instruments.

Table 3.3: SHFSG+ Instrument product codes for ordering

Product
code

Product name Description Field upgrade
possible

SHFSG4+ SHFSG+ Signal
Generator

Base 4-channel Super-High-
Frequency Signal Generator (SHFSG+)

-

SHFSG8+ SHFSG+ Signal
Generator

Base 8-channel Super-High-
Frequency Signal Generator (SHFSG+)

-

SHFSG-RTR SHFSG Output Router
and Adder Option

Option for all variants of the SHFSG+
and SHFSG

Yes

Table 3.4: Product selector SHFSG+

3.4. Ordering Guide

45 Zurich Instruments SHFSG+ User Manual

Feature SHFSG+
4 channels

SHFSG+
8 channels

Number of Output Channels 4 8

Number of analog RF synthesizers 4 4

Digital oscillators per channel 8 8

Mixer-calibration-free analog frequency upconversion
(double super-heterodyne)

yes yes

Frequency range DC-8.5 GHz DC-8.5 GHz

Total number of Markers/Triggers
(1 each per channel)

4/4 8/8

Vertical resolution Output 14 bit 14 bit

Digital IQ modulation yes yes

ZSync capability yes yes

Sequencing yes yes

USB 3.0 yes yes

LAN 1 Gbit/s yes yes

Table 3.5: Differences between SHFSG and SHFSG+

Category SHFSG SHFSG+

Description Base instrument Improved phase noise
Improved output noise
Fast output muting functionality

External
differences

Base instrument Holographic "+" sticker on front panel

Product
image

Upgrading
from
SHFSG to
SHFSG+

Contact us to discuss the possibilities for your instruments! -

3.4. Ordering Guide

46 Zurich Instruments SHFSG+ User Manual

4. Tutorials
The tutorials in this chapter have been created to allow users to become more familiar with the
operation of the SHFSG+ Signal Generator. Tutorials also provide tips and tricks to optimally
program the instrument.

In order to successfully carry out the tutorials it’s assumed that users have certain laboratory
equipment and basic equipment handling knowledge.

Note

In many tutorials, we use the Python API to control the instruments.

Note

For all tutorials, you must have LabOne installed as described in the chapter Getting Started.

Note

The documentation is frequently updated to match with the latest functionality of the LabOne
software and to extend the number of example use cases covered. For the latest version of the
documentation, please always refer to the online documentation.

4.1. Basic Sine Generation

Note

This tutorial is applicable to all SHFSG+ Instruments.

4.1.1. Goals and Requirements

The goal of this tutorial is to demonstrate basic sine generation with

SHFSG+. We demonstrate how to configure the sine generator to produce a single frequency
component at the desired frequency in the range 0 GHz to 8.5 GHz. In order to visualize the multi-
channel signals, an oscilloscope with sufficient bandwidth and channel number is required.

4.1.2. Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

4. Tutorials

47 Zurich Instruments SHFSG+ User Manual

Figure 4.1: Connections for the basic sine generation tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. after pressing F5 in the browser).

4.1.3. Generating a Sinusoidal Signal

Note

This tutorial focuses on how to use the sine generator to produce a signal at a single, continuous
frequency without any AWG control. This mode of operation is distinct from the method of
modulating the output of the AWG output described in the Digital Modulation Tutorial, and the two
approaches generally do not need to be employed simultaneously.

In this tutorial we generate a continuous sinusoidal signal at a single frequency and visualize it with
a scope. In a first step, we use the Output Tab to enable the Output of the SHFSG+ and set the
Output Range. We also set its RF Center Frequency to 1 GHz. Depending on the desired center
frequency, either the RF or LF paths can be used. In this example, we will use the RF path, but the LF
path can also be used for center frequencies in the range 0 - 2 GHz. Additionally, we configure the
scope with a suitable time base (e.g. 500 ps per division) and range (e.g. 0.2 V per division). The
following table summarizes the necessary settings.

Table 4.1: Settings: enable the output

Tab Section Label Setting / Value / State

Output Signal Output 1 On ON

Output Signal Output 1 Range (dBm) 10

Output Channel 1 Center Freq (Hz) 1.0 G

Output Signal Output 1 Output path RF

In addition to turning on the output, we must also configure the sine generator. We set the
amplitudes of the I and Q components to yield a single sideband signal, and we set the oscillator
frequency to 100 MHz. We also enable the I and Q signals so that an output signal is actually
generated. With the RF center frequency set at 1.0 GHz and the oscillator set to 100 MHz, the final
output frequency is 1.1 GHz.

Note

To access the I and Q settings of the Sine Generator, it is necessary to expand the menu in the Sine
Generator section of the Digital Modulation Tab. The settings are collapsed by default.

4.1. Basic Sine Generation

48 Zurich Instruments SHFSG+ User Manual

Figure 4.2: LabOne UI: Digital Modulation tab

Table 4.2: Settings: configure the sine generator

Tab Section Sub-
section

Label # Setting / Value /
State

Digital
Modulation

Channel 1
Oscillators

Frequency 1 100 M

Digital
Modulation

Sine Generators Parameters Oscillator 1 1

Digital
Modulation

Sine Generators Parameters Harmonic 1 1

Digital
Modulation

Sine Generators I Sin(V) 1 0.0

Digital
Modulation

Sine Generators I Cos(V) 1 1.0

Digital
Modulation

Sine Generators I En 1 ON

Digital
Modulation

Sine Generators Q Sin(V) 1 1.0

Digital
Modulation

Sine Generators Q Cos(V) 1 0.0

Digital
Modulation

Sine Generators Q En 1 ON

With these settings, we observe a continuously playing 1.1 GHz signal on the scope.

Figure 4.3: Scope trace of a 1.1-GHz signal

Note

The oscillator used for the sine generation, its harmonic, and the phase of the sine generator can be
used to further customize the output signal of the sine generator.

4.1. Basic Sine Generation

49 Zurich Instruments SHFSG+ User Manual

4.2. Basic Waveform Playback

Note

This tutorial is applicable to all SHFSG+ Instruments.

4.2.1. Goals and Requirements

The goal of this tutorial is to demonstrate the basic use of the

SHFSG+, by demonstrating simple waveform generation and playback. In order to visualize the
multi-channel signals, an oscilloscope with sufficient bandwidth and channel number is required.

4.2.2. Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

Figure 4.4: Connections for the arbitrary waveform generator basic playback tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. after pressing F5 in the browser).

4.2.3. Waveform Generation and Playback

In this tutorial we generate signals with the AWG and visualize them with the scope. In a first step we
enable the Output of the

SHFSG+ and set the Output Range. We also set the RF center frequency to 1 GHz. In this example, we
will use the RF path, which supports center frequencies in the range 0.6 - 8 GHz. When using the LF
path, the center frequency can be set in the range 0 - 2 GHz. Additionally, we configure the scope
with a suitable time base (e.g. 500 ns per division) and range (e.g. 0.2 V per division). The following
table summarizes the necessary settings.

Table 4.3: Settings: enable the output

Tab Sub-tab Label Setting / Value / State

Output Signal Output 1 On ON

Output Signal Output 1 Range (dBm) 10

Output Channel 1 Center Freq (Hz) 1.0 G

4.2. Basic Waveform Playback

50 Zurich Instruments SHFSG+ User Manual

Tab Sub-tab Label Setting / Value / State

Output Signal Output 1 Output Path RF

Table 4.4: Settings: configure the external scope

Scope Setting Value / State

Ch1 enable ON

Ch1 range 0.2 V/div

Timebase 500 ns/div

Trigger source Ch1

Trigger level 200 mV

Run / Stop ON

Figure 4.5: LabOne UI: Output tab

In the Output Tab, we configure the first output channel. The final signal amplitude is determined by
the dimensionless signal amplitude stored in the waveform memory scaled to the set Range in dBm
of the channel. The necessary settings are summarized in the following table.

Table 4.5: Settings: configure the AWG output

Tab Sub-tab Section # Label Setting / Value / State

AWG Control Sampling Rate 2 GHz

Digital Modulation Modulation Control 1 Modulation OFF

Digital Modulation AWG Outputs Amplitude 1.0

To operate the AWG we need to specify a sequence program through a C-type language. This
program is then compiled and uploaded to the instrument where it is executed in real time. Writing
the sequence program can be done interactively by typing the program in the sequence window.
Let’s start by typing the following code into the sequence editor.

wave w_gauss = 1.0*gauss(8000, 4000, 1000);
playWave(1, w_gauss);

In the first line of the program, we generate a waveform with a Gaussian shape with a length of 8000
samples and store the waveform under the name w_gauss. The peak center position 4000 and the
standard deviation 1000 are both defined in units of samples. You can convert them into time by
dividing by the chosen Sampling Rate (2.0 GSa/s by default). The waveform generated by the gauss
function has a peak amplitude of 1. This amplitude is dimensionless and the output amplitude of the
physical signal is given by this number multiplied with the voltage determined by the selected
output range (here we chose 0 dBm). To calculate the maximum amplitude in Volts use:

 , where is the Range setting in dBm. corresponds to the
peak voltage of a signal of a given power when connected to a load. To calculate he RMS
amplitude , divide by , i.e. . Of course, the scaling factor of 1.0 in the waveform

definition can be replaced by any other value. Finally, the code line is terminated by a semicolon
according to C conventions.

With the second line of the program, the generated waveform w_gauss is played on Output 1. We use
the syntax playWave(1,w_gauss) to play a Gaussian signal in the real quadrature of the complex
output. For a more detailed discussion of how the playWave command routes the AWG outputs to
generate complex signals, see the Digital Modulation Tutorial. Note that the syntax of the playWave
command and the values of other parameters, such as the waveform amplitude, can yield signals
that are either below or above the maximum output power. If a signal happens to be above the

VpV_pVp Vp=2∗10Pmax/
1
0∗10−3
W∗50
ΩV_p=\sqrt{2 * 10^{P_\mathrm{max}/10} * 10^{-3} \,\mathrm{W} * 50\,\Omega}

V =p

2 ∗ 10 ∗ 10 W ∗ 50 ΩP /10max −3 PmaxP_\mathrm{max}Pmax VpV_pVp

5
0
Ω50\,\Omega

50 Ω
VrmsV_{rms}Vrms 2\sqrt{2}2 Vrms=Vp2V_{rms}=\frac{V_p}{\sqrt{2}}V =rms 2

Vp

4.2. Basic Waveform Playback

51 Zurich Instruments SHFSG+ User Manual

maximum output power, it will clip at the DAC and may be distorted. For more details on playWave
and how different amplitude settings influence the final signal, see the Modulation Tutorial.

Note

For this tutorial, we will keep the description of the Sequencer instructions short. You can find the
full specification of the LabOne Sequencer language in LabOne Sequence Programming

Note

The AWG has a waveform granularity of 16 samples, and a minimum waveform length of 32 samples
when using playWave commands or 16 samples when using the command table (see the Pulse-level
Sequencing Tutorial). It’s recommended to use waveform lengths that are multiples of 16, to avoid
having ill-defined samples between successively played waveforms. Waveforms that are not
multiple of 16 samples are automatically padded with 0s and a compiler warning is issued.

By clicking on , the sequence program is compiled into sequence instructions that are then
uploaded to the device together with the waveform data. A successful upload is indicated by a green
Compiler Status LED. Any error that causes an upload failure of either the sequencer instruction or
waveform data is indicated by a red status light.

Note

The Advanced tab shows how the sequence instructions translate to assembly language for the
onboard FPGA.

By clicking on the Waveform sub-tab, we see that our Gaussian waveform appeared in the list. The
Memory Usage field at the bottom of the Waveform sub-tab shows what fraction of the instrument
memory is filled by the waveform data. The Waveform Viewer sub-tab allows you to graphically
display the currently marked waveform in the list.

Clicking on executes the uploaded AWG program. Since we have armed the scope
previously with a suitable trigger level, it has captured our Gaussian pulse with a FWHM of about 1.5
μs and a carrier frequency of 1.0 GHz, as shown in Figure Figure 4.6.

Figure 4.6: Scope shot of a Gaussian pulse generated by the AWG

The LabOne Sequencer language offers various run-time control. An important functionality, e.g. for
real-time averaging of an experiment, is the repetition of a sequence. In the following example, all
the code within the curly brackets {...} is repeated 5 times. Upon clicking and , we
observe 5 short Gaussian pulses in a new scope shot, see Figure 4.7.

wave w_gauss = 1.0 * gauss(640, 320, 50);

repeat (5) {
 playWave(1, w_gauss);
}

4.2. Basic Waveform Playback

52 Zurich Instruments SHFSG+ User Manual

Figure 4.7: Burst of Gaussian pulses generated by the AWG and captured by the scope

In order to generate more complex waveforms, the LabOne Sequencer programming language offers
a rich toolset for waveform manipulation. In addition to a selection of standard waveform generation
functions, waveforms can be added, multiplied, scaled, concatenated, and truncated. It’s also
possible to use compile-time evaluated loops to generate pulse series with systematic parameter
variations – see LabOne Sequence Programming for more information. In the following code
example, we make use of some of these tools to generate a pulse with a smooth rising edge, a flat
plateau, and a smooth falling edge. We use the cut function to cut a waveform at defined sample
indices, the ones function to generate a waveform with constant level 1.0 and length 320, and the
join function to concatenate three (or arbitrarily many) waveforms.

wave w_gauss = gauss(640, 320, 50);
wave w_rise = cut(w_gauss, 0, 319);
wave w_fall = cut(w_gauss, 320, 639);
wave w_flat = rect(320, 1.0);

wave w_pulse = join(w_rise, w_flat, w_fall);

while (true) {
 playWave(1, w_pulse);
}

Note that we replaced the finite repetition by an infinite repetition by using a while loop. Loops can
be nested in order to generate complex playback routines. The output generated by the program
above is shown in Scope shot of an infinite pulse series generated by the AWG.

Figure 4.8: Scope shot of an infinite pulse series generated by the AWG

As programs get longer, it becomes useful to store and recall them. Clicking on allows you
to store the present program under a new name. Clicking on then saves your program to the
file name displayed at the top of the editor. As you begin to work on sequence programs more
regularly, it’s worth using some of the editor keyboard shortcuts listed in Sequence Editor Keyboard
Shortcuts.

4.2. Basic Waveform Playback

53 Zurich Instruments SHFSG+ User Manual

It’s also possible to iterate over the samples of a waveform array and calculate each one of them in a
loop over a compile-time variable
cvar. This often allows sequences to go beyond the possibilities of using the predefined waveform
generation function, particularly when using nested formulas of elementary functions like in the
following example. The waveform array needs to be pre-allocated e.g. using the instruction zeros.

const N = 1024;
const width = 100;
const position = N/2;
const f_start = 0.1;
const f_stop = 0.2;
cvar i;
wave w_array = zeros(N);
for (i = 0; i < N; i++) {
 w_array[i] = sin(10/(cosh((i-position)/width)));
}

playWave(w_array);

It is also possible to use waveforms stored as a list of values in a file. If the file is stored in the
location (C:\Users\<user name>\Documents\Zurich
Instruments\LabOne\WebServer\awg\waves\ under Windows or ~/Zurich Instruments/
LabOne/WebServer/awg/waves/ under Linux), you can then play back the wave by referring to the
file name without extension in the sequence program:

playWave("wave_file");

If you prefer, you can also store it in a wave data type first and give it a new name:

wave w = "wave_file";
playWave(w);

For more information about the file format, please refer to the AWG Module Section of the LabOne
Programming Manual.

4.2.4. Using the LF Path

The LF path bypasses the upconversion chain to allow center frequencies in the range DC to 2 GHz
to be generated. The AWG sequencer can be programmed in the same way as with the RF path. The
main differences is that the maximum output power of the LF path is +5 dBm (compared to +10 dBm
for the RF path) and that the latency of the LF path is shorter than that of the RF path, due to the
shorter analog path.

The center frequency of the LF path can be set in multiples of 100 MHz, just as with the RF path.
When combined with correct usage of waitDigTrigger and resetOscPhase commands, this
ensures that the initial phase of a played waveform will be reproducible within a given experimental
run, as in the following example:

const length = 128;
const amp = 1;
wave = gaussian(length, amp, length/2, length/8);

while (1) {
 waitDigTrigger(1);
 resetOscPhase();
 playWave(1, 2, wave);
}

4.3. Triggering and Synchronization

Note

This tutorial is applicable to all SHFSG+ Instruments.

4.3. Triggering and Synchronization

54 Zurich Instruments SHFSG+ User Manual

4.3.1. Goals and Requirements

The goal of this tutorial is to show how to use the

SHFSG+ as a trigger source, as well as how to configure the SHFSG+ to respond to an external
trigger. In order to visualize the multi-channel signals, an oscilloscope with sufficient bandwidth and
channel number is required.

4.3.2. Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

Figure 4.9: Connections for the arbitrary waveform generator triggering and
synchronization tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. after pressing F5 in the browser).

4.3.3. Generating and Responding to Triggers

In this tutorial you will learn about the most important use cases:

 Generating a TTL signal with the AWG to trigger another piece of equipment
 Triggering the

AWG with an external TTL signal

4.3. Triggering and Synchronization

55 Zurich Instruments SHFSG+ User Manual

Generating Markers with the AWG

To begin with, we generate a trigger output with the Signal Generator channel 1. As this tutorial is an
extension of the Basic Waveform Playback Tutorial, configure the SHFSG+ as follows:

Table 4.6: Settings: configure the output

Tab Sub-tab Label Setting / Value / State

Output Signal Output 1 On ON

Output Signal Output 1 Range (dBm) 10

Output Channel 1 Center Freq (Hz) 1.0 G

Output Signal Output 1 Output Path RF

Output Signal Output 2 On ON

Output Signal Output 2 Range (dBm) 10

Output Signal Output 2 Center Freq (Hz) 1.0 G

Output Signal Output 2 Output Path RF

Table 4.7: Settings: configure the external scope

Scope Setting Value / State

Ch1 enable ON

Ch1 range 0.2 V/div

Ch2 enable ON

Ch2 range 0.5 V/div

Timebase 500 ns/div

Trigger source Ch2

Trigger level 200 mV

Run / Stop ON

After configuring the output using the table above, we use the SHFSG+ to generate a trigger output.
There are two ways of generating trigger output signals with the

AWG: as markers that are part of a waveform and played with sample precision, or by controlling
trigger bits through the sequencer.

The method using markers is recommended when precise timing is required, and/or complicated
serial bit patterns need to be played on the Marker outputs. Marker bits are part of every waveform,
and are set to zero by default. Each waveform is represented by an array of 16-bit words: 14 bits of
each word represent the analog waveform data, and the remaining 2 bits represent two digital
marker channels. Hence, upon playback, a digital signal with sample-precise alignment with the
analog output is generated.

Generating a TTL output signal using a sequencer instruction is simpler, but the timing resolution is
lower than when using markers. The sequencer instructions play at the sequencer clock cycle of 4
ns, whereas the markers are part of the waveform and therefore have a resolution of 0.5 ns. The
method using sequencer instructions is useful to generate a single trigger signal at the start of an
AWG program, for instance.

Table 4.8: Comparison: AWG markers and triggers

Marker Trigger

Implementation Part of waveform Sequencer instruction

Timing control High Low

Generation of serial bit patterns Yes No

Cross-device synchronization Yes Yes

4.3. Triggering and Synchronization

56 Zurich Instruments SHFSG+ User Manual

Let us first demonstrate the use of markers. In the following code example we first generate a
Gaussian pulse. This is identical as in the Basic Waveform Playback Tutorial, where the generated
wave already included marker bits - they were simply set to zero by default. We use the marker
function to assign the desired non-zero marker bits to the wave. The marker function takes two
arguments: the first is the length of the wave in samples; the second is the marker configuration in
binary encoding, where the value 0 stands for both marker bits low, the values 1, 2, and 3 stand for
the first, the second, and both marker bits high, respectively. We use this to construct the wave
called w_marker.

const marker_pos = 3000;

wave w_gauss = gauss(8000, 4000, 1000);
wave w_left = marker(marker_pos, 0);
wave w_right = marker(8000-marker_pos, 1);
wave w_marker = join(w_left, w_right);
wave w_gauss_marker = w_gauss + w_marker;

playWave(1, w_gauss_marker);

The waveform addition with the '+' operator adds up analog waveform data but also combines
marker data. The wave w_gauss contains zero marker data, whereas the wave w_marker contains
zero analog data. Consequently the wave called w_gauss_marker contains the merged analog and
marker data. We use the integer constant marker_pos to determine the point where the first marker
bit flips from 0 to 1 somewhere in the middle of the Gaussian pulse.

Note

The add function and the '+' operator combine marker bits by a logical OR operation. This means
combining 0 and 1 yields 1, and combining 1 and 1 yields 1 as well.

There is a certain freedom to assign different marker bits to the Mark outputs. The following table
summarizes the settings to apply in order to output marker bit 1 on

Table 4.9: Settings: configure the AWG marker output and scope trigger

Tab Sub-tab Section # Label Setting / Value / State

DIO Marker Out 1 Signal Output 1 Marker 1

Figure 4.10 shows the AWG signal captured by the scope as a yellow curve. The green curve shows
the second scope channel displaying the marker signal. Try changing the marker_pos constant and
re-running the sequence program to observe the effect on the temporal alignment of the Gaussian
pulse. After the waveform has finished playing, the marker bit returns to a value of zero
automatically, as no more waveform is being played.

Figure 4.10: Gaussian pulse and square marker signal generated by the AWG and
captured by the scope

Let us now demonstrate the use of sequencer instructions to generate a trigger signal. Copy and
paste the following code example into the Sequence Editor.

4.3. Triggering and Synchronization

57 Zurich Instruments SHFSG+ User Manual

wave w_gauss = gauss(8000, 4000, 1000);

setTrigger(1);
playWave(1, w_gauss);
waitWave();
setTrigger(0);

Each AWG core has four trigger output states available to it. The setTrigger function takes a single
argument encoding the four trigger output states in binary manner – the integer number 1
corresponds to a configuration of 0/0/0/1 for the trigger outputs 4/3/2/1. The binary integer notation
of the form 0b0000 is useful for this purpose – e.g. setTrigger(0b0011) will set trigger outputs 1
and 2 to 1, and trigger outputs 3 and 4 to 0. We included a waitWave instruction after the playWave
instruction. It ensures that the subsequent setTrigger instruction is executed only after the
Gaussian wave has finished playing, and not during waveform playback.

Note

The waitWave instruction represents a means to control the timing of instructions in the Wait & Set
and the Playback queues. In the example above, the waitWave instruction puts the playback of the
next instruction in the Wait & Set queue, in this case setTrigger(0), on hold until the waveform is
finished. Without the waitWave instruction, the AWG trigger would return to zero at the beginning of
the waveform playback.

Note

The use of waitWave is explicitly not required between consecutive playWave and playZero
instructions. Sequential instructions in the Playback queue are played immediately after one
another, back to back.

We reconfigure the Mark 1 connector in the DIO tab such that it outputs AWG Trigger 1, instead of
Output 1 Marker 1. The rest of the settings can stay unchanged.

Table 4.10: Settings: configure the AWG trigger output

Tab Sub-tab Section # Label Setting / Value / State

DIO Marker Out 1 Signal AWG Trigger 1

Figure 4.11 shows the AWG signal captured by the scope. This looks very similar to Figure 4.10 in fact.
With this method, we’re less flexible in choosing the trigger time, as the rising trigger edge will always
be at the beginning of the waveform. But we don’t have to bother about assigning the marker bits to
the waveform.

Figure 4.11: Gaussian pulse and trigger signal generated by the AWG and captured by
the scope

4.3. Triggering and Synchronization

58 Zurich Instruments SHFSG+ User Manual

Triggering the AWG

Note

This section shows how to use the SHFSG+ to generate and respond to external triggers. To
synchronize the outputs of different channels on the same SHFSG+, it is recommended to use the
Internal Trigger Unit.

For this part of the tutorial, connect the cables as illustrated below.

Figure 4.12: Connections for the arbitrary waveform generator basic playback tutorial

In this section we show how to trigger the AWG with an external TTL signal. We start by using

of the SHFSG+ to generate a periodic TTL signal. As shown in Figure 4.12, the Mark output of channel
1 is connected to the Trig input of channel 2. We monitor the marker and signal outputs of channel 2
on a scope.

wave m_high = marker(8000,1); //marker high for 8000 samples
wave m_low = marker(8000,0); //marker low for 8000 samples
wave m = join(m_high, m_low);

while (1) {
 playWave(m);
}

Compile and run the above program on the AWG core of channel 1. Then configure the Mark 1 and
Mark 2 to use Output 1 Marker 1:

Table 4.11: Settings: configure the AWG marker output

Tab Sub-tab Section # Setting / Value / State

DIO Marker Source 1 Output 1 Marker 1

DIO Marker Source 2 Output 1 Marker 1

Next we configure channel 2 to respond to the trigger generated by channel 1. Internally, the AWG
core of each channel has 2 digital trigger input channels. These are not directly associated with
physical device inputs but can be freely configured to probe a variety of internal or external signals.
Here, we link the AWG Digital Trigger 1 of Channel 2 to the physical Trig 2 connector, and we configure
it to trigger on the rising edge.

4.3. Triggering and Synchronization

59 Zurich Instruments SHFSG+ User Manual

Table 4.12: Settings: configure the AWG digital trigger input

Tab # Sub-tab Section Label Setting / Value / State

AWG 2 Trigger Digital Trigger 1 Signal Trigger In 2

AWG 2 Trigger Digital Trigger 1 Slope Rise

Finally, we modify the previous AWG program by adding a while loop so that the sequence can be
repeated infinitely and by including a waitDigTrigger instruction just before the playWave
instruction. The result is that upon every repetition inside the infinite while loop, the AWG will wait
for a rising edge on Trig 2.

const marker_pos = 3000;

wave w_gauss = gauss(8000, 4000, 1000);
wave w_left = marker(marker_pos, 0);
wave w_right = marker(8000-marker_pos, 1);
wave w_marker = join(w_left, w_right);
wave w_gauss_marker = w_gauss + w_marker;

while (1) {
 //wait for external trigger
 waitDigTrigger(1);
 playWave(1, w_gauss_marker);
}

Compile and run the above program on the AWG core of channel 2. Figure 4.13 shows the pulse
series as seen on the scope: the pulses are now spaced by the oscillator period of 8 μs, unlike
previously when the period was determined by the length of the waveform w_gauss. Try changing
the trigger signal frequency or unplugging the trigger cable to observe the immediate effect on the
signal.

Figure 4.13: Externally triggered pulse series generated by the AWG.

Synchronizing outputs of different channels

For this part of the tutorial, connect the cables as illustrated below.

4.3. Triggering and Synchronization

60 Zurich Instruments SHFSG+ User Manual

Figure 4.14: Connections for the synchronizing outputs of multiple channels.

In this section we will show how to use the Internal Trigger Unit to synchronize the outputs of
multiple channels of the SHFSG+.

To configure the internal trigger, set the following settings in the tables below.

Table 4.13: Settings: configure the Internal Trigger Unit

Tab Sub-tab Section # Setting / Value / State

DIO Internal Trigger Repetitions 1e9

DIO Internal Trigger Holdoff 100 ns

Table 4.14: Settings: configure the AWGs to use the Internal Trigger Unit

Tab # Sub-tab Section Label Setting / Value / State

AWG 1 Trigger Digital Trigger 1 Signal Internal Trigger

AWG 2 Trigger Digital Trigger 1 Signal Internal Trigger

The number of repetitions (ranging from 1 to more than 1e9) determines how many triggers will be
sent out. The holdoff time (minimum 100 ns, resolution of 100 ns, maximum 4000 s) determines the
time in seconds between the individual trigger events, typically chosen to be longer than the longest
part of the sequence. For example, in a Ramsey experiment, the hold-off time might be slightly
longer than the length of two pi/2-pulses plus the length of the longest evolution time and the
length of the readout pulse. After entering the settings above, the Internal Trigger Unit is configured
but is not yet sending out triggers. We will enable the triggers after uploading our sequences.

Compile and run the sequencer code below (which is the same as in the section above) to

1 and 2 of the SHFSG+.

const MARKER_POS = 3000;

wave w_gauss = gauss(8000, 4000, 1000);
wave w_left = marker(MARKER_POS, 0);
wave w_right = marker(8000-MARKER_POS, 1);
wave w_marker = join(w_left, w_right);
wave w_gauss_marker = w_gauss + w_marker;

while (1) {
 //wait for internal trigger

4.3. Triggering and Synchronization

61 Zurich Instruments SHFSG+ User Manual

 waitDigTrigger(1);
 playWave(1,2, w_gauss_marker);
}

The sequencers are now waiting until they receive a trigger. Enable the internal trigger by clicking
Run/Stop button in the Internal Trigger section of the DIO Tab. Figure 4.15 shows that the outputs of
channels 1 and 2 are synchronized in time.

Figure 4.15: Synchronized output signals of the SHFSG+.

4.4. Digital Modulation

Note

This tutorial is applicable to all SHFSG+ Instruments.

4.4.1. Goals and Requirements

The goal of this tutorial is to demonstrate the use of the digital modulation feature of the AWG . In
order to visualize the generated signals, an oscilloscope with sufficient bandwidth and channels is
required. It can also be helpful to use a scope with FFT functionality to visualize the spectrum of the
output signal.

4.4.2. Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

4.4. Digital Modulation

62 Zurich Instruments SHFSG+ User Manual

Figure 4.16: Connections for the arbitrary waveform generator digital modulation
tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. as is the case after pressing F5 in the browser).

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

4.4.3. Generating a Single Sideband Signal

Note

This tutorial focuses on how to use the sine generator to modulate the output of the AWG core so
that it can be used for generating a pulse sequence at a single sideband. This mode of operation is
distinct from the method of generating a single, continuous frequency described in the Basic Sine
Generation Tutorial, and the two approaches should generally not be employed simultaneously.

In digital modulation mode, the output of the AWG is multiplied with the signal of the internal sine
generator of the instrument. There are numerous advantages to using digital modulation in
comparison to simply generating the sinusoidal signal directly using the waveform memory, such as
the ability to change the frequency without uploading a new waveform, extremely high frequency
resolution independent of AWG waveform length, phase-coherent generation of signals (because
the oscillators keep running even when the AWG is off), and more. The goal of this section is to
demonstrate how to use the modulation mode.

The superheterodyne upconversion scheme of the SHFSG+ consists of a chain of several conversion
steps, which can be summarized in a simple model for the generated RF voltage:

where and are the baseband I and Q waveforms played by the AWG core, is a global
amplitude for scaling the AWG signal, is the oscillator frequency set in the Digital Modulation
tab, is a phase offset of the sine generator and is set in the Digital Modulation tab, is the RF
center frequency, and

VRF(t)=V0 Re[A(wI(t)+iwQ(t))e+iϕe+i2πfOscte+i2πfRFt],(1) \begin{equation}\tag{1} V_{\mathrm{RF}}(t) = V_0 \, \mathrm{Re}\left[A (w_I (t) + i w_Q (t)) e^{+i \phi} e^{+i 2 \pi f_{\mathrm{Osc}} t} e^{+i 2 \pi f_{\mathrm{RF}} t}\right], \end{equation} V (t) = V Re A(w (t) + iw (t))e e e ,RF 0 [I Q
+iϕ +i2πf tOsc +i2πf tRF] (1)

wIw_IwI wQw_QwQ AAA
fOscf_{\mathrm{Osc}}fOsc

ϕ\phiϕ fRFf_{\mathrm{RF}}fRF

4.4. Digital Modulation

63 Zurich Instruments SHFSG+ User Manual

is the maximum output voltage determined by the range setting with a load.

Note

This way of up-converting provides an intuitive way of understanding the Signal Generators' channel
output spectrum. If one defines a waveform in the AWG and performs the standard complex Fourier
transform on it, the channels output spectrum is directly given by shifting the spectrum by the
chosen center frequency, i.e. by replacing DC by the center frequency value.

This expression can be written using real-valued sines and cosines rather than complex
exponentials:

We now look at how the

SHFSG+ actually generates modulated signals. In the LabOne UI, there are four AWG output gains
that can be used to set up single-sideband modulation. These AWG output gains are multiplied by
the AWG outputs. The AWG output gains can be set individually to make it easier to calibrate DRAG
pulses, for example.

Figure 4.17: Digital Modulation tab in the LabOne UI

When modulation is enabled, the AWG output gains control of the signs and amplitudes of the
sinusoids that are multiplied with the AWG outputs. To make use of the four AWG output gains
settings needed for a complex, dual-channel signal, the sequencer code must make use of the
playWave command in the form playWave(1,2, wI, 1,2, wQ). Figure 4.18 shows how the
different parts of the playWave command map to the different gain nodes in the digital modulation
process.

Figure 4.18: Diagram of digital modulation processing chain and settings. Bolded parts
of the text show how the different parts of the 'playWave' command map to the

different gain nodes.

We can summarize the signal generated by the FPGA using the following expression:

V0=2∗10Pmax/10∗10−3 W∗50 Ω V_0 = \sqrt{2 * 10^{\mathrm{P}_{\mathrm{max} }/10} * 10^{-3} \,\mathrm{W} * 50\,\Omega } V =0 2 ∗ 10 ∗ 10 W ∗ 50 ΩP /10max −3

PmaxP_{\mathrm{max} }Pmax 5
0
Ω50\,\Omega

50 Ω

VRF(t)=V0 A [wI(t)cos(2πfOsct+ϕ)−wQ(t)sin(2πfOsct+ϕ)]cos(2πfRFt)−V0 A [wI(t)sin(2πfOsct+ϕ)+wQ(t)cos(2πfOsct+ϕ)]sin(2πfRFt).(2) \begin{equation}\tag{2} \begin{aligned} V_{\mathrm{RF}}(t) = V_0 \, A \, \left[w_I (t) \cos (2 \pi f_{\mathrm{Osc}} t + \phi) - w_Q (t) \sin (2 \pi f_{\mathrm{Osc}} t + \phi)\right] \cos (2 \pi f_{\mathrm{RF}} t) \newline\\ - V_0 \, A \, \left[w_I (t) \sin (2 \pi f_{\mathrm{Osc}} t + \phi) + w_Q (t) \cos (2 \pi f_{\mathrm{Osc}} t + \phi)\right] \sin (2 \pi f_{\mathrm{RF}} t). \end{aligned} \end{equation} V (t) = V A w (t) cos(2πf t+ ϕ) −w (t) sin(2πf t+ ϕ) cos(2πf t)RF 0 [I Osc Q Osc] RF

−V A w (t) sin(2πf t+ ϕ) +w (t) cos(2πf t+ ϕ) sin(2πf t).0 [I Osc Q Osc] RF

(2)

4.4. Digital Modulation

64 Zurich Instruments SHFSG+ User Manual

where of Channel n corresponds to the node path <dev>/SGCHANNELS/<chan>/AWG/
OUTPUTS/<i>/GAINS/<j>. The choice of and
yields the same expression as in Equation 2 and therefore leads to single sideband modulation at
the upper sideband for positive oscillator frequencies. Note that in this simplified overview of the
digital modulation and upconversion chain, we have lumped together the digital upconversion to 2.0
GHz and the digital-to-analog conversion with the analog upconversion pathway into a single
upconversion step. See also Output Tab.

Note

Depending on the selected value of , the voltage measured on a scope may not correspond
exactly to the formula above due to the effect of the filters used in the analog upconversion.

Note

For HDAWG users: The SHFSG+ and HDAWG use different sign conventions for achieving upper
sideband modulation. Because the HDAWG is typically used in combination with physical IQ mixers
when generating an RF signal, the HDAWG assumes a negative time dependence in the exponential,
whereas the SHFSG+ assumes a positive time dependence. To achieve upper sideband modulation
on both instruments, there is therefore a relative sign swap needed on the gain settings and

 .

The following table summarizes the parameter names and their corresponding node paths. For more
information on setting node values via API, see the Using the Python API Tutorial. See also Node
Documentation.

Table 4.15: Summary of parameters used in AWG signal generation

Parameter name Symbol Node path

I waveform Defined in sequence

Q waveform Defined in sequence

AWG output gains <dev>/SGCHANNELS/<chan>/AWG/OUTPUTS/<i>/GAINS/<j>

Global amplitude <dev>/SGCHANNELS/<chan>/AWG/OUTPUTAMPLITUDE

Oscillator frequency <dev>/SGCHANNELS/<chan>/OSCS/<OSC>/FREQ

Sine generator phase <dev>/SGCHANNELS/<chan>/SINES/0/PHASESHIFT

RF center frequency <dev>/SYNTHESIZERS/<synth>/CENTERFREQ

Output range <dev>/SGCHANNELS/<chan>/OUTPUT/RANGE

We now show how to generate a modulated AWG signal. We monitor the AWG signal using one
channel of an external scope and use the second scope channel for triggering purposes. The
following tables summarize the settings to enable the SHFSG+ outputs and configure the sine
generator, as well as to configure the external scope.

Table 4.16: Settings: enable the output

Tab Section Sub-
Section

Label Setting / Value /
State

Output Signal Output 1 On ON

Output Signal Output 1 Range (dBm) 10

Output Channel 1 Center Freq
(Hz)

1.0 G

Output Signal Output 1 Output Path RF

VRF(t)=V0 A [Gain00×wI(t)cos(2πfOsct+ϕ)+Gain01×wQ(t)sin(2πfOsct+ϕ)]cos(2πfRFt)−[Gain10×wI(t)sin(2πfOsct+ϕ)+Gain11×wQ(t)cos(2πfOsct+ϕ)]sin(2πfRFt)(3) \begin{equation}\tag{3} \begin{aligned} V_{\mathrm{RF}}(t) = V_0 \, A \, \left[\mathrm{Gain00} \times w_I (t) \cos (2 \pi f_{\mathrm{Osc}} t + \phi) + \mathrm{Gain01} \times w_Q (t) \sin (2 \pi f_{\mathrm{Osc}} t + \phi) \right] \cos (2 \pi f_{\mathrm{RF}} t) \newline\\ - \left[\mathrm{Gain10} \times w_I (t) \sin (2 \pi f_{\mathrm{Osc}} t + \phi) + \mathrm{Gain11} \times w_Q (t) \cos (2 \pi f_{\mathrm{Osc}} t + \phi) \right] \sin (2 \pi f_{\mathrm{RF}} t) \end{aligned} \end{equation} V (t) = V A Gain00 ×w (t) cos(2πf t+ ϕ) + Gain01 ×w (t) sin(2πf t+ ϕ) cos(2πf t)RF 0 [I Osc Q Osc] RF

− Gain10 ×w (t) sin(2πf t+ ϕ) + Gain11 ×w (t) cos(2πf t+ ϕ) sin(2πf t)[I Osc Q Osc] RF

(3)

Gainij\mathrm{Gain}ijGainij
Gain00=Gain10=Gain11=1.0\mathrm{Gain00} = \mathrm{Gain10} = \mathrm{Gain11} = 1.0Gain00 = Gain10 = Gain11 = 1.0 Gain01=−1.0\mathrm{Gain01} = -1.0Gain01 = −1.0

fOscf_{\mathrm{Osc}}fOsc

Gain01\mathrm{Gain01}Gain01
Gain10\mathrm{Gain10}Gain10

wI(t)w_I (t)w (t)I

wQ(t)w_Q (t)w (t)Q

Gainij\mathrm{Gain}ijGainij

AAA

fOSCf_{\mathrm{OSC}}fOSC

ϕ\phiϕ

fRFf_{\mathrm{RF}}fRF

PmaxP_{\mathrm{max}}Pmax

4.4. Digital Modulation

65 Zurich Instruments SHFSG+ User Manual

Tab Section Sub-
Section

Label Setting / Value /
State

Digital
Modulation

Waveform
Generators

Modulation 1 ON

Digital
Modulation

AWG Outputs Amplitude 0.5

Digital
Modulation

AWG Output Gains I 1 1.0

Digital
Modulation

AWG Output Gains I 2 -1.0

Digital
Modulation

AWG Output Gains Q 1 1.0

Digital
Modulation

AWG Output Gains Q 2 1.0

Digital
Modulation

Channel 1
Oscillators

Frequency
(Hz)

1 10.0 M

Digital
Modulation

Sine Generators I En OFF

Digital
Modulation

Sine Generators Q En OFF

DIO Marker Source 1 Output 1 Marker 1

Table 4.17: Settings: Configure the external scope

Scope Setting Value / State

Ch1 enable ON

Ch1 range 0.2 V/div

Ch2 enable ON

Ch2 range 0.5 V/div

Timebase 1 us/div

Trigger source Ch2

Trigger level 200 mV

Run / Stop ON

Note

For HDAWG users: Enabling digital modulation on the SHFSG+ is analogous to enabling Sine12
modulation on Wave 1 and Sine21 modulation on Wave 2.

A sine generator is a direct digital synthesis (DDS) unit that converts a digital oscillator signal
(essentially just an incrementing phase) to a sinusoid with a certain phase offset and harmonic
multiplier using a look-up table containing one period of the sinusoid signal. The digital oscillator in
turn is a phase accumulator with a very precise frequency derived from the instrument’s main clock.
The digital oscillators on the instrument are represented in the Oscillators section of the Digital
Modulation tab. Each

output channel of the SHFSG+ has 8 oscillators associated with it, although only one can be used by
the sine generator at a time. For details on how to switch between oscillators during a sequence, see
the Command Table Tutorial.

In this example, we use a Gaussian pulse for the I waveform and a derivative of a Gaussian for the Q
waveform. When combined, this generates a DRAG pulse.

wave w_gauss = gauss(1024, 512, 128);
wave w_drag = drag(1024, 512, 128);
wave m_high = marker(512, 1);

4.4. Digital Modulation

66 Zurich Instruments SHFSG+ User Manual

wave m_low = marker(512, 0);
wave m = join(m_high, m_low);
wave w_gauss_marker = w_gauss + m;

resetOscPhase();

playWave(1,2, w_gauss_marker, 1,2, w_drag);

We also configure the FFT settings on the scope.

Table 4.18: Settings: Configure the external scope

Scope Setting Value / State

Acquisition Time 10 us

FFT Center 1 GHz

FFT Span 100 MHz

Resolution BW 200 kHz

Save and play the Sequencer program with the above settings. The upper plot in Figure 4.19 shows
the AWG signals captured by the scope. We see that the resulting DRAG pulse is a combination of a
Gaussian waveform with a derivative of a Gaussian waveform generated by the drag() function in
SeqC. The FFT of the scope trace shows that there is a dip in the spectrum, a key characteristic of
the DRAG pulse combination.

Figure 4.19: Dual-channel signal generated by the AWG and captured by the scope. The
top half of the figure shows a pulse that is a combination of a Gaussian pulse and a
derivative of a Gaussian pulse, modulated at 10 MHz and upconverted with an RF

center frequency of 1.0 GHz. The bottom part of the figure shows the FFT of the scope
trace, demonstrating the characteristic spectral dip of the DRAG pulse.

Note

There are two ways of generating AWG signals with a single frequency component at the front panel
output when digital modulation is enabled. For completely real signals that require only a single
AWG output, playWave(1,2, wI) suffices to generate a single sideband signal. For complex signals
requiring dual-channel waveforms, playWave(1,2, wI, 1,2, wQ) is needed.

Note

To avoid saturating the output when using playWave(1,2, wI, 1,2, wQ) syntax, it is necessary to
either set the value of the global amplitude to 0.5 or to scale the waveform in the sequencer code
similarly. A value of up to 1.0 can safely be used when playWave(1,2, wI) is used for generating
single sideband real signals.

So far in this tutorial, we have shown how to achieve single sideband modulation with the playWave
command, but to efficiently use the instruction memory of the SHFSG+ and ensure smooth, back-
to-back waveform playback, it is recommended to use the command table, which requires assigning

4.4. Digital Modulation

67 Zurich Instruments SHFSG+ User Manual

the waveform an index and using the executeTableEntry command instead of playWave. To assign
an index of 0 to a waveform, the command assignWaveIndex(1,2, wI, 0) should be used for
single-AWG-channel signals and assignWaveIndex(1,2, wI, 1,2, wQ, 0) for dual-channel
signals. For more details, see the Command Table Tutorial.

4.4.4. Rapid Phase Changes

The SHFSG+ supports rapid, real-time changes of the carrier phase in modulation mode through the
sequencer instructions setSinePhase and incrementSinePhase, as well as through the command
table. This capability is particularly valuable when generating long patterns of pulses with varying
phases, e.g. to account for AC Stark shift in qubit control sequences, or to realize phase cycling
protocols.

In addition, there is the possibility to reset the starting phase of one or multiple oscillators at the
beginning of a pulse sequence using the resetOscPhase instruction. Thus it can be ensured that
the carrier-envelope offset, and thus the final output signal, is identical from one repetition to the
next.

In the following AWG sequencer program, we generate a series of 4 dual-channel square pulses that
are played back-to-back. We initialize the oscillator phase by a resetOscPhase instruction. In this
form without an argument, the instruction will reset the phases of all oscillators accessible by this
core (here oscillators 1 through 8 of Channel 1). Alternatively, an argument in binary representation,
e.g. 0b0101, allows us to reset only a subset of these oscillators. We then set the phase of the sine
generator to 45 degrees using the setSinePhase instruction. Subsequently, we play back the dual-
channel waveform 4 times, and after each playback instruction, we increase the phase of the sine
generator by 90 degrees. The corresponding instruction incrementSinePhase takes effect at the
end of the previous waveform playback, which allows us to change the phase precisely in between
waveforms. Upload the following sequence program to the AWG and run the sequence.

const LENGTH = 48;

wave w = ones(LENGTH);
wave m_high = marker(LENGTH/2, 1); //marker high
wave m_low = marker(LENGTH/2, 0); //marker low
wave m = join(m_high, m_low); //join marker waveforms
wave wm = w + m; //combine marker and ones waveform data

while (true) {
 resetOscPhase();

 setSinePhase(45);
 playWave(1,2, wm);

 incrementSinePhase(90);
 playWave(1,2, w);

 incrementSinePhase(90);
 playWave(1,2, w);

 incrementSinePhase(90);
 playWave(1,2, w);
}

Configure the scope according to the following settings.

Table 4.19: Settings: Configure the external scope

Scope Setting Value / State

Ch1 enable ON

Ch1 range 0.2 V/div

Ch2 enable ON

Ch2 range 0.5 V/div

Timebase 10 ns/div

Trigger source Ch2

4.4. Digital Modulation

68 Zurich Instruments SHFSG+ User Manual

Scope Setting Value / State

Trigger level 200 mV

Run / Stop ON

We also change the oscillator frequency to make it easier to visual the phase changes.

Table 4.20: Settings: enable the output

Tab Section Sub-Section Label Setting / Value / State

Digital Modulation Channel 1 Oscillators Frequency (Hz) 1 -500.0 M

Figure 4.20 shows the resulting signal. Three of the instantaneous phase increments of 90 degrees
are visible as transient features. In a real use case, the phase changes usually occur in between
pulses when the envelope signal is zero-valued, and these transients are then absent.

Figure 4.20: Amplitude-modulated dual-channel signal with rapid real-time phase
increments generated by the SHFSG+.

Note

The phase increment due to the incrementSinePhase instruction takes effect at the end of the
previous waveform playback. In case the instruction is placed in the sequencer code before the first
playWave instruction, the phase increment will only happen after the playWave instruction.

4.4.5. Performing Frequency Sweeps

By using the sequencer commands setOscFreq, configFreqSweep, and setSweepStep, it is
possible to set the oscillator frequency as part of a sequence and even perform frequency sweeps
quickly while using a minimum number of sequencer instructions. Using these instructions, the
oscillator frequency can be changed on a timescale of approximately 100 ns. The timing of the
frequency update is deterministic. The waveforms that follow the frequency update will wait until
the update has finished. A waitWave command after the waveform playback instructions is required
to ensure that any subsequent frequency update does not happen during the waveform playback.

Note

The setOscFreq, configFreqSweep, and setSweepStep commands are intended to change the
oscillator frequency between pulses. To sweep the frequency during a pulse, it’s best to encode the
frequency change in the waveform, e.g. using the chirp waveform generation function.

const START_FREQ = -100e6; //start frequency in Hz
const FREQ_INC = 200; //increment in Hz
const N_STEPS = 1e6; //number of frequency steps
const OSC = 0; //oscillator to sweep

4.4. Digital Modulation

69 Zurich Instruments SHFSG+ User Manual

const MEAS = 2048; //measurement window in samples

const LENGTH = 160; //length of pulse in samples

wave w = gauss(LENGTH, 1, LENGTH/2, LENGTH/8);
wave m_high = marker(LENGTH/2, 1); //marker high
wave m_low = marker(LENGTH/2, 0); //marker low
wave m = join(m_high, m_low); //join marker waveforms
wave wm = w + m; //combine marker and ones waveform data

//set up frequency sweep
configFreqSweep(OSC,START_FREQ,FREQ_INC);

var i;
for (i = 0; i < N_STEPS; i++) {
 setSweepStep(OSC,i);

 resetOscPhase();

 playWave(1,2, wm);
 playZero(MEAS);
 waitWave(); //to ensure setSweepStep does not execute during the play
instructions
}

Upload and run the above sequencer code on the AWG core of

channel 1. To make it easier to observe the frequency sweep on a scope, the length of the MEAS
constant can be increased (e.g. with a measurement length of 2e8 samples, the frequency will
update every 10 ms).

Note

Multiple frequency sweeps can be configured in parallel, such that each oscillator of a given channel
can be swept independently of the others.

4.5. Using the Python API

Note

This tutorial is applicable to all SHFSG+ Instruments.

4.5.1. Goals and Requirements

The previous tutorials showed how to use the SHFSG+ with the LabOne user interface. However,
APIs provide an important alternative method to controlling the SHFSG+. In this tutorial, we focus on
the Zurich Instruments Toolkit, showing how to use it to connect to the SHFSG+, as well as how to
upload and play a sequence

that uses user-defined waveforms. The Toolkit is based on the core Python API, zhinst-core. In this
tutorial you will learn how to:

 connect to the instrument using Python
 control the Output, Modulation, and DIO settings of the instrument using nodes
 compile and upload a sequence using Python
 include user-defined waveforms in a sequence with Python

4.5. Using the Python API

70 Zurich Instruments SHFSG+ User Manual

4.5.2. Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

Figure 4.21: Connections for the arbitrary waveform generator Python tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. as is after pressing F5 in the browser).

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

4.5.3. Connecting to to the instrument

Note

This tutorial makes use of the Zurich Instruments Toolkit. Setting a node in the Toolkit uses the
format "device.path.to.node(value)." For the base Python API core, the equivalent node setting would
be daq.set(f'/{device_id}/path/to/node', value).

First we connect to the SHFSG+ using Python. For this we first create a session with the Zurich
Instruments Toolkit and then connect to the instrument using the following code and by replacing
DEVXXXXX with the id of our SHFSG+ instrument, e.g. DEV12001:

Load the LabOne API and other necessary packages
from zhinst.toolkit import Session

DEVICE_ID = 'DEVXXXXX'
SERVER_HOST = 'localhost'

connect to data server
session = Session(SERVER_HOST)

4.5. Using the Python API

71 Zurich Instruments SHFSG+ User Manual

connect to device
device = session.connect_device(DEVICE_ID)

Defining the data server allows users to connect to the instrument in the local network when using
localhost or to specify a specific address, for example when a remote connection needs to be
established to the instrument. Remember that for a remote connection, Connectivity needs to be
set From Everywhere.

After successfully running the above code snippet, we check whether the Data Server, instrument
firmware, and zhinst versions are compatible with each other:

device.check_compatibility()

If it does not throw an error, we are now in the position to access the device. If it returns an error,
resolve the mismatched components identified in the error message.

Often the first parameters that need to be set for every experiment are the Center Frequency and
Range of the

Output Channel. To see the parameter updates that will be performed by the Python script, open the
Output Tab of the GUI and select the All-subtab. In our Python script, we use the following code
snippet to set the nodes for the Center Frequency of

Channel 1 to 6 GHz and the Output Range to 10 dBm.

SG_CHAN_INDEX=0
synth = device.sgchannels[SG_CHAN_INDEX].synthesizer()

rf_frequency = 6.0 # GHz
device.synthesizers[synth].centerfreq(rf_frequency*1e9)
output_range = 10.0
device.sgchannels[SG_CHAN_INDEX].output.range(output_range)

Note

When using the LF path, the corresponding node for setting the center frequency is
device.sgchannels[sg_chan_index].digitalmixer.centerfreq(value). This value can be set
independently for each Signal Generator Channel.

Observe how the corresponding GUI values in the first panel of the Output tab change their values
correspondingly. Note that in both 4- and 8-channel variants of the SHFSG+, there are 4
synthesizers. In the 8-channel variant, neighboring channels (1&2, 3&4, etc.) therefore share one
synthesizer, which is why the synthesizer frequencies are set using the
device.synthesizers[synth].centerfreq node and not within the
device.sgchannels[SG_CHAN_INDEX] branch. To check which synthesizer is being used by a
particular Signal Generator channel, you can query the node:

device.sgchannels[SG_CHAN_INDEX].synthesizer()

Note

Note that in the GUI and on the front panel of the instrument, lists (e.g. Channel numbers) always
start at 1, but all representations in the APIs start counting at 0. Hence, Channel 1 on the front panel
corresponds to SG_CHAN_INDEX=0 in the API.

Note

To find out which node is linked to a specific setting in the GUI, either check out the command log at
the bottom of the user interface or the node tree documentation.

If we set an invalid value, e.g. a value of 6.05 GHz for the Center Frequency (note that this value can
only be set in multiples of 100 MHz) through

device.synthesizers[synth].centerfreq(6.05*1e9)

4.5. Using the Python API

72 Zurich Instruments SHFSG+ User Manual

then the instrument rounds the value automatically to the nearest possible value (here: 6.1 GHz). This
is immediately indicated in the GUI or by querying the node:

device.synthesizers[synth].centerfreq()

In preparation for running a sequence in the next section, we will set several node values together
using the API:

Determine which synthesizer is used by the desired channel
synth = device.sgchannels[SG_CHAN_INDEX].synthesizer()

with device.set_transaction():
RF output settings
device.sgchannels[SG_CHAN_INDEX].output.range(10)

output range in dBm
device.sgchannels[SG_CHAN_INDEX].output.rflfpath(1) # use RF path,

not LF path
device.synthesizers[synth].centerfreq(6.0e9) # synthesizer

frequency in Hz
device.sgchannels[SG_CHAN_INDEX].output.on(1) # enable output

Digital modulation settings
device.sgchannels[SG_CHAN_INDEX].awg.outputamplitude(0.5) # amplitude for

the AWG outputs
device.sgchannels[SG_CHAN_INDEX].oscs[0].freq(10.0e6) # frequency of

oscillator 1 in Hz
device.sgchannels[SG_CHAN_INDEX].oscs[1].freq(-500e6) # frequency of

oscillator 2 in Hz
device.sgchannels[SG_CHAN_INDEX].awg.modulation.enable(1) # enable

digital modulation

Trigger and marker settings
device.sgchannels[SG_CHAN_INDEX].marker.source(4) # use first

marker bit of waveform as marker source

Using these settings, we set the RF center frequency and output power, turn on the output, set up
digital modulation settings for generating complex signals, and select the marker source for
triggering the scope. We also use a transactional set, which is useful for setting many nodes at the
same time. This method is faster than using a daq.setInt or daq.setDouble command for each
node setting, because with a transactional set the communication latency has to be paid only once.

4.5.4. Uploading and running sequences

We now show how to upload a sequence via API. Very often, user-defined waveforms will be needed.
We therefore also cover how to use custom waveforms in a sequence, as it is possible to load a
waveform directly from the API. In the sequence the waveform should be declared using the
placeholder function to define size and type of the waveform.

const LENGTH = 1024;
wave w = placeholder(LENGTH, true, false); // Create a waveform of size LENGTH,
with one marker
assignWaveIndex(1,2, w, 10); // Create a wave table entry with
placeholder waveform, index 10

resetOscPhase(); // Reset oscillator phase
playWave(1,2, w); // Play wave

We upload this sequence to the SHFSG+ using the following Python code:

Define string that contains sequence from above
seqc_program = """\
const LENGTH = 1024;
wave w = placeholder(LENGTH, true, false); // Create a waveform of size LENGTH,
with one marker
assignWaveIndex(1,2, w, 10); // Create a wave table entry with

4.5. Using the Python API

73 Zurich Instruments SHFSG+ User Manual

placeholder waveform, index 10

resetOscPhase(); // Reset oscillator phase
playWave(1,2, w); // Play wave
"""

Upload the sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

In addition to being able to set nodes, the Toolkit offers built-in functions for commonly performed
actions, such as configuring the output and digital modulation settings as well as compiling and
uploading sequences. The uploaded sequence will not run until a valid waveform has been loaded.
This can be done for example in Python.

import numpy as np
from zhinst.toolkit import Waveforms

##Generate a waveform and marker
LENGTH = 1024
wave = np.exp(np.linspace(0, -5, LENGTH)) #exponentially decaying waveform
marker = np.concatenate([np.ones(32), np.zeros(LENGTH-32)]).astype(int) #marker
waveform with 32 samples high

Upload waveforms
waveforms = Waveforms()
waveforms[10] = (wave,None,marker) # I-component wave, Q-component None, marker
device.sgchannels[SG_CHAN_INDEX].awg.write_to_waveform_memory(waveforms)

Now that we’ve uploaded both the sequence and the waveforms, we can run the sequence:

Enable sequencer with single mode true
single = 1
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = single)

After running the sequence, we observe the signal shown in Figure 4.22 on the scope.

Figure 4.22: Waveform loaded by the API

The custom waveform data can be arbitrary, but consider that the final signal will pass through the
analog output stage of the instrument where the signals get interpolated from 2 GSa/s to 6 GSa/s.
This means that the signal may not correspond exactly to the programmed waveform. In particular,
this concerns sharp transitions from one sample to the next.

Depending on the output channel assignment (the optional first arguments of assignWaveIndex
and playWave instructions), the AWG compiler may create implicit waveform table entries.
Therefore, we recommend a usage of the instructions placeholder, assignWaveIndex, and
playWave that is as explicit as possible. The following code, for example, is valid but not
recommended because it is not easy to read:

const LENGTH = 1024;
wave w = placeholder(LENGTH);

4.5. Using the Python API

74 Zurich Instruments SHFSG+ User Manual

assignWaveIndex(1, w, 10);
assignWaveIndex(w, w, 11);

playWave(1, w);
playWave(w, w);

Instead, it’s recommended to use a unique waveform variable name for each intended single-
channel memory entry, and to use this variable name with consistent output channel assignment in
placeholder, assignWaveIndex, and playWave as is done in the following example:

const LENGTH = 1024;
wave w_a = placeholder(LENGTH, true, false); // Allocate a waveform with one
marker
wave w_b = placeholder(LENGTH, true, false); // Allocate a waveform with one
marker
wave w_c = placeholder(LENGTH, false, false); // Allocate a waveform without
markers
assignWaveIndex(1, 2, w_a, 10); // Declare a single-channel
waveform w_a, slot 10
assignWaveIndex(1, 2, w_b, 1, 2, w_c, 11); // Declare a dual-channel
waveform with w_b and w_c respectively as real and imaginary part, slot 11

playWave(1, 2, w_a); // Play a single channel waveform
(only amplitude modulation)
playWave(1, 2, w_b, 1, 2, w_c); // Play a dual channel waveform
(full IQ modulation)

In the latter case, a possible Python code to update the wave table is shown below. Note that we use
the full amount of markers available in the instrument, one per physical channel. The marker integer
array encodes the available markers in its least significant bit.

##Generate a waveform and marker
LENGTH = 1024
wave_a = np.exp(np.linspace(0, -5, LENGTH))
wave_b = np.exp(np.linspace(0, -15, LENGTH))
wave_c = np.exp(np.linspace(0, -2.5, LENGTH))

marker_a = np.concatenate([np.ones(32), np.zeros(LENGTH-32)]).astype(int)
marker_bc = np.concatenate([np.ones(32), np.zeros(LENGTH-32)]).astype(int)

##Convert and send them to the instrument
waveforms = Waveforms()
waveforms[10] = (wave_a,None,marker_a)
waveforms[11] = (wave_b,wave_c,marker_bc)
device.sgchannels[SG_CHAN_INDEX].awg.write_to_waveform_memory(waveforms)

4.6. Pulse-level Sequencing with the Command Table

Note

This tutorial is applicable to all SHFSG+ Instruments.

4.6.1. Goals and Requirements

Pulse-level sequencing is an efficient way to encode pulses in a sequence by uploading a minimal
amount of information to the device, allowing measurements to be performed more quickly and
programmed more intuitively. The goal of this tutorial is to demonstrate pulse-level sequencing
using the command table feature of the SHFSG+.

4.6. Pulse-level Sequencing with the Command Table

75 Zurich Instruments SHFSG+ User Manual

4.6.2. Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) in which the control computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

Figure 4.23: Connections for the arbitrary waveform generator command table tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. after pressing F5 in the browser). Additionally, this tutorial
requires the use of one of our APIs, in order to be able to define and upload the command table
itself. The examples shown here use the Python API - for an introduction see also the Python tutorial.
Similar functionality is also available for other APIs.

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

4.6.3. Configure the Output

Note

This tutorial makes use of the Zurich Instruments Toolkit. Setting a node in the Toolkit uses the
format "device.path.to.node(value)." For the base Python API core, the equivalent node setting would
be daq.set(f'/{DEVICE_ID}/path/to/node', value).

Note

The minimum waveform length when using the command table is 16 samples.

To begin with, we configure the output and digital modulation settings of the SHFSG+, to be able to
observe our signal on a scope. We use the Zurich Instruments Toolkit, available in Python, to set the
corresponding nodes after connecting to the instrument. The code below establishes a connection
to the device before setting the node values (see also the Using the Python API Tutorial).

4.6. Pulse-level Sequencing with the Command Table

76 Zurich Instruments SHFSG+ User Manual

Load the LabOne API and other necessary packages
from zhinst.toolkit import Session, CommandTable

DEVICE_ID = 'DEVXXXXX'
SERVER_HOST = 'localhost'

connect to data server
session = Session(SERVER_HOST)

connect to device
device = session.connect_device(DEVICE_ID)

SG_CHAN_INDEX = 0 # which channel to be used, here: first channel

##determine which synthesizer is used by the desired channel
synth = device.sgchannels[SG_CHAN_INDEX].synthesizer()

with device.set_transaction():
RF output settings
device.sgchannels[SG_CHAN_INDEX].output.range(10) #output range in dBm
device.sgchannels[SG_CHAN_INDEX].output.rflfpath(1) #use RF path, not LF path
device.synthesizers[synth].centerfreq(1.0e9) #set the corresponding

synthesizer frequency in Hz
device.sgchannels[SG_CHAN_INDEX].output.on(1) #enable output
Digital modulation settings
device.sgchannels[SG_CHAN_INDEX].awg.outputamplitude(0.5) #set the amplitude

for the AWG outputs
device.sgchannels[SG_CHAN_INDEX].oscs[0].freq(10.0e6) #frequency of

oscillator 1 in Hz
device.sgchannels[SG_CHAN_INDEX].oscs[1].freq(-150.0e6) #frequency of

oscillator 2 in Hz
device.sgchannels[SG_CHAN_INDEX].awg.modulation.enable(1) #enable digital

modulation
Triggering settings
device.sgchannels[SG_CHAN_INDEX].marker.source(0) #AWG trigger 1

In this case, we will use

output channel 1 with a maximum output power of 10 dBm and an RF center frequency of 1.0 GHz.
We will also enable digital modulation using an oscillator frequency of 10 MHz. This will yield a final
output frequency of 1.01 GHz after configuring upper sideband modulation with the command table
later. The amplitude of the AWG outputs is set to 0.5 to avoid saturating the outputs.

4.6.4. Introduction to the Command Table

The command table allows the sequencer to group waveform playback instructions with other
timing-critical phase and amplitude setting commands into a single instruction that executes within
one sequencer clock cycle of 4 ns. The command table is a unit separate from the sequencer and
waveform memory and can thus be exchanged separately. Both the phase and the amplitude can be
set in absolute and in incremental modes. Additionally, the active oscillator can be set with the
command table, enabling fast, phase-coherent frequency switching on a given output channel. Even
when not using digital modulation or amplitude settings, working with the command table has the
advantage of being more efficient in sequencer instruction memory compared to standard
sequencing. Starting a waveform playback with the command table always requires just a single
sequencer clock cycle, as opposed to 2 or 3 when using a playWave instruction.

When using the command table, three components play together during runtime to generate the
waveform output and apply the phase and amplitude setting instructions:

 Sequencer: the unit executing the runtime instructions, namely in this context the
executeTableEntry instruction. This instruction executes one entry of the command table, and
its input argument is a command table index. In its compiled form, which can be seen in the AWG
Advanced sub-tab, the sequence program can contain up to 32768 instructions.

 Wave table: a list of up to 16000 indexed waveforms. This list is defined by the sequence program
using the index assignment instruction assignWaveIndex combined with a waveform or
waveform placeholder. The wave table index referring to a waveform can be used in two ways: it is

4.6. Pulse-level Sequencing with the Command Table

77 Zurich Instruments SHFSG+ User Manual

referred to from the command table, and it is used to directly write waveform data to the
instrument memory using the node <DEVICE_ID>/SGCHANNELS/<SG_CHAN_INDEX>/AWG/
WAVEFORM/WAVES/<WAVE_INDEX> Node Documentation

 Command table: a list of up to 4096 indexed entries (command table index), each containing the
index of a waveform to be played (wave table index), a sine generator phase setting, a set of four
AWG amplitude settings for complex modulation, and an oscillator index selection. The command
table is specified by a JSON formatted string written to the node <DEVICE_ID>/SGCHANNELS/
<SG_CHAN_INDEX>/AWG/COMMANDTABLE/DATA

4.6.5. Basic command table use

We start by defining a sequencer program that uses the command table.

seqc_program = """\
// Define waveform
wave w_a = gauss(2048, 1, 1024, 256);

// Assign a single channel waveform to wave table entry 0
assignWaveIndex(1,2, w_a, 0);

// Reset the oscillator phase
resetOscPhase();

// Trigger the scope
setTrigger(1);
setTrigger(0);

// execute the first command table entry
executeTableEntry(0);
// execute the second command table entry
executeTableEntry(1);
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

The sequence can be compiled and uploaded via API using the methods shown in the Python API
Tutorial. The sequence defines a Gaussian pulse of unit amplitude and length of 2048 samples. This
waveform is then assigned as a dual-channel waveform with explicit output assignment to the wave
table entry with index 0, and the final lines execute the two first command table entries. This
program cannot be run yet, as the command table is not yet defined.

Note

If a sequence program contains a reference to a command table entry that has not been defined, or
if a command table entry refers to a waveform that has not been defined, the sequence program
can’t be run.

In general the command table is defined as a JSON formatted string. Below, we show an example of
how to define a command table with two table entries using Python. For ease of programming, here
we define the command table as a CommandTable object, which is converted into a JSON string
automatically at upload. Such object also validate the fields of the command table.

Load CommandTable class
from zhinst.toolkit import CommandTable

Initialize command table
ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Index of wave table and command table entries
TABLE_INDEX = 0
WAVE_INDEX = 0

4.6. Pulse-level Sequencing with the Command Table

78 Zurich Instruments SHFSG+ User Manual

gain = 1.0

Waveform with amplitude and phase settings
ct.table[TABLE_INDEX].waveform.index = WAVE_INDEX
ct.table[TABLE_INDEX].amplitude00.value = gain
ct.table[TABLE_INDEX].amplitude01.value = -gain
ct.table[TABLE_INDEX].amplitude10.value = gain
ct.table[TABLE_INDEX].amplitude11.value = gain
ct.table[TABLE_INDEX].phase.value = 0

Same waveform with different amplitude and phase settings
ct.table[TABLE_INDEX+1].waveform.index = WAVE_INDEX
ct.table[TABLE_INDEX+1].amplitude00.value = gain/2
ct.table[TABLE_INDEX+1].amplitude01.value = -gain/2
ct.table[TABLE_INDEX+1].amplitude10.value = gain/2
ct.table[TABLE_INDEX+1].amplitude11.value = gain/2
ct.table[TABLE_INDEX+1].phase.value = 180

In this example, we generate a first command table entry with index "TABLE_INDEX", which plays the
waveform referenced in the wave table at index "WAVE_INDEX", with amplitude and phase settings
specified. The four amplitude settings of the command table have the same effect as the four gain
settings of the Digital Modulation Tutorial, with analogous naming convention, i.e. amplitude01
maps to Gain01. The signs of the amplitudes are chosen to yield upper sideband modulation when
using a positive oscillator frequency.

Note

Here we use a single-channel waveform, since we modulate only the amplitude of our pulses.
Therefore, coefficients amplitude01 and amplitude11 are not strictly needed. We left them here
and in the following examples to show how to use it even with dual-channel waveforms.

To upload the command table to the

SHFSG+, we need to connect to the device and then write the command table to the correct node.
In Python, this is achieved as follows:

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)

Note

During compilation of a sequencer program, any previously uploaded command table is reset, and
will need to be uploaded again before it can be used.

Now that we’ve uploaded both the sequence and the command table, we can run the sequence:

device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = True)

The expected output is shown in Figure 4.24. Note how the amplitude of the second waveform is half
the magnitude of the first waveform, and that there is a phase shift of 180 degrees between them.
This is due to the amplitude and phase settings in the command table. Also note that these
amplitude settings are persistent. If a value is not explicitly specified in the command table, it uses
either the default value or the value set by a previous usage of the 'executeTableEntry' instruction.

4.6. Pulse-level Sequencing with the Command Table

79 Zurich Instruments SHFSG+ User Manual

Figure 4.24: Output of the first channel from the basic command table example

Note

When a command table entry is called, the amplitude and phase are set persistently. Subsequent
waveform playbacks on the same channel will need to take this into account, unless the amplitude
and phase settings are explicitly included for them in their corresponding command table entries.
Additionally, the values of the command table amplitude and phase settings take precedence over
the corresponding gain and phase node settings set via API or in the LabOne UI, e.g. the value of
Gain01 will have no effect if amplitude01 is specified in the command table entry.

4.6.6. Efficient pulse incrementation

One illustrative use case of the command table feature is the efficient incrementation of the
amplitude or phase of a waveform.

We again start by writing a sequencer program that plays two entries of the command table.

seqc_program = """\
// Define a single waveform
wave w_a = ones(1024);

// Assign a single channel waveform to wave table entry
assignWaveIndex(1,2, w_a, 0);

// Reset the oscillator phase
resetOscPhase();

// Trigger the scope
setTrigger(1);
setTrigger(0);

// execute the first command table entry
executeTableEntry(0);
repeat(20) {
 executeTableEntry(1);
}
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

Here we have defined a single wave table entry, where both channels contain the same constant
waveform.

In Python we then define a command table with just two entries, in this case both referencing the
same waveform index. In the second command table entry, we set the increment field to true, such

4.6. Pulse-level Sequencing with the Command Table

80 Zurich Instruments SHFSG+ User Manual

that the amplitude is incremented each time that the second command table entry is called in the
sequence.

Initialize command table
ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Waveform with initial amplitude
ct.table[0].waveform.index = 0
ct.table[0].amplitude00.value = 0
ct.table[0].amplitude01.value = 0
ct.table[0].amplitude10.value = 0
ct.table[0].amplitude11.value = 0

Waveform with incremented amplitude
ct.table[1].waveform.index = 0
ct.table[1].amplitude00.value = 0.05
ct.table[1].amplitude01.value = -0.05
ct.table[1].amplitude10.value = 0.05
ct.table[1].amplitude11.value = 0.05
ct.table[1].amplitude00.increment = True
ct.table[1].amplitude01.increment = True
ct.table[1].amplitude10.increment = True
ct.table[1].amplitude11.increment = True

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)
Enable sequencer
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

After uploading the command table to the instrument and executing the sequencer program, the
channel then produces the output shown in Figure 4.25. Here, the first call to the first command
table entry plays the waveform with all amplitude settings set to 0. The subsequent calls to the
second command table entry increment these amplitudes each time by 0.05, with a negative
increment on amplitude01, and a positive increment on the others. Although in this example we
increment all amplitudes together, it is possible to increment only a subselection of the amplitude
settings as well, by changing the appropriate increment settings to False. Incrementing amplitudes
this way enables waveform memory-efficient amplitude sweeps.

Figure 4.25: Incrementing waveform amplitudes using the command table increment
functionality

4.6. Pulse-level Sequencing with the Command Table

81 Zurich Instruments SHFSG+ User Manual

Note

The amplitude of the waveform generated at the output can be influenced in several different ways:
through the amplitude of the waveform itself, through the amplitude settings in the command table,
through the output amplitude setting in the Modulation Tab, and finally through the Range setting of
the SHFSG+

output channel.

It is possible to perform multi-dimensional amplitude sweeps by making use of the amplitude
registers of the command table. Each channel has four independent amplitude registers (indexed
[0...3]), with each register storing the amplitude last played on that register. By default, amplitude
register with index zero is used. It is therefore possible to keep the amplitude of one register
constant while sweeping the amplitude of another register. This can be useful for probing dynamics
in a multi-level system.

As an example, we will use the following sequence:

seqc_program = """\
//Constant definitions
const readout = 512; //length of readout in samples

//Waveform definition
wave wI1 = gauss(128, 1, 64, 16);
wave wI2 = gauss(256, 1, 128, 32);

//Assign index and outputs
assignWaveIndex(1,2,wI1,0);
assignWaveIndex(1,2,wI2,1);

var i = 10;
executeTableEntry(0);
do {
 executeTableEntry(2);
 executeTableEntry(1);
 playZero(readout);
 i-=1;
} while(i);
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

The first executeTableEntry command initializes the amplitude that will be swept without playing
a pulse. The second executeTableEntry plays a constant-amplitude Gaussian pulse (128 samples
long). The third executeTableEntry plays a different Gaussian pulse (256 samples long), the
amplitude of which will be swept. The loop will play 10 different amplitudes. We also need to define
and upload a command table to go with the sequence:

Initialize command table
ct_schema = device.sgchannels[0].awg.commandtable.load_validation_schema()
ct = CommandTable(ct_schema)

Initialize amplitude register 1
ct.table[0].amplitude00.value = 0.0
ct.table[0].amplitude00.increment = False
ct.table[0].amplitude10.value = 0.0
ct.table[0].amplitude10.increment = False
ct.table[0].amplitudeRegister = 1

Swept Gaussian pulse
ct.table[1].waveform.index = 1
ct.table[1].amplitude00.value = 0.05
ct.table[1].amplitude00.increment = True
ct.table[1].amplitude10.value = 0.05

4.6. Pulse-level Sequencing with the Command Table

82 Zurich Instruments SHFSG+ User Manual

ct.table[1].amplitude10.increment = True
ct.table[1].amplitudeRegister = 1

Constant Gaussian pulse
ct.table[2].waveform.index = 0
ct.table[2].amplitude00.value = 0.9
ct.table[2].amplitude10.value = 0.9
ct.table[2].amplitudeRegister = 0

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)

The first command table entry (index 0) sets the initial amplitude (in this case, 0.0) of amplitude
register 1. The second table entry (index 1) increments the amplitude of amplitude register 1 and
plays the Gaussian pulse with waveform index 1. The third table entry (index 2) plays the constant-
amplitude Gaussian pulse (waveform index 0) using amplitude register 0.

We now run the sequence:

device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

We observe the signal shown in the figure below, which shows a constant-amplitude Gaussian pulse
interleaved with a Gaussian pulse who amplitude is swept. In total, there are 10 different amplitudes
of the swept pulse.

Figure 4.26: Using the amplitude registers to sweep the amplitude of one pulse while
keeping the amplitude of another constant.

Phase sweeps can be achieved in a similar way by using the command table below.

Define command table
Initialize command table
ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Waveform with initial phase
ct.table[0].waveform.index = 0
ct.table[0].phase.value = 90

Waveform with incremented phase
ct.table[1].waveform.index = 0
ct.table[1].phase.value = 0.1
ct.table[1].phase.increment = True

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)
Enable sequencer
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

4.6. Pulse-level Sequencing with the Command Table

83 Zurich Instruments SHFSG+ User Manual

In this case, executing the first table entry will set the phase to 90 degrees, and the second table
entry will increment this value each time it is called in steps of 0.1 degrees.

4.6.7. Pulse-level sequencing with the command table

All previous examples have used the pulse library in the AWG sequencer to define waveforms. In
more advanced scenarios, waveforms are uploaded through the API, as we will demonstrate next.
We start with the following sequence program, where we assign wave table entries using the
placeholder command with a waveform length as argument.

seqc_program = """\
// Define two wave table entries through placeholders
assignWaveIndex(1,2, placeholder(32), 0);
assignWaveIndex(1,2, placeholder(64), 1);

// Reset the oscillator phase
resetOscPhase();

// Trigger the scope
setTrigger(1);
setTrigger(0);

// execute command table
executeTableEntry(0);
executeTableEntry(1);
executeTableEntry(2);
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

In this form, the sequence program cannot be run, first because the command table is not yet
uploaded, and second because the waveform memory in the wave table has not been defined. We
can use the numpy package to define complex-valued Gaussian waveforms directly in Python, and
upload them to the instrument using the appropriate node.

import numpy as np
from zhinst.toolkit import Waveforms

parameters for waveform generation
amp_1 = 1
length_1 = 32
width_1 = 1/4
amp_2 = 1
length_2 = 64
width_2 = 1/4
x_1 = np.linspace(-1, 1, length_1)
x_2 = np.linspace(-1, 1, length_2)

define waveforms as list of real-values arrays - here: Gaussian functions
waves = [

[amp_1*np.exp(-x_1**2/width_1**2)],
[amp_2*np.exp(-x_2**2/width_2**2)]]

upload waveforms to instrument
waveforms = Waveforms()
for i, wave in enumerate(waves):

waveforms[i] = (wave[0])

device.sgchannels[SG_CHAN_INDEX].awg.write_to_waveform_memory(waveforms)

Finally, we also generate and upload a command table to the instrument.

Define command table
Initialize command table

4.6. Pulse-level Sequencing with the Command Table

84 Zurich Instruments SHFSG+ User Manual

ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Waveform 0 with oscillator 1
ct.table[0].waveform.index = 0
ct.table[0].amplitude00.value = 1.0
ct.table[0].amplitude01.value = -1.0
ct.table[0].amplitude10.value = 1.0
ct.table[0].amplitude11.value = 1.0
ct.table[0].phase.value = 0.0
ct.table[0].oscillatorSelect.value = 0

Waveform 1 with oscillator 2
ct.table[1].waveform.index = 0
ct.table[1].amplitude00.value = 1.0
ct.table[1].amplitude01.value = -1.0
ct.table[1].amplitude10.value = 1.0
ct.table[1].amplitude11.value = 1.0
ct.table[1].phase.value = 0.0
ct.table[1].oscillatorSelect.value = 1

Waveform 1 with oscillator 1 and different phase
ct.table[2].waveform.index = 0
ct.table[2].amplitude00.value = 1.0
ct.table[2].amplitude01.value = -1.0
ct.table[2].amplitude10.value = 1.0
ct.table[2].amplitude11.value = 1.0
ct.table[2].phase.value = 90.0
ct.table[2].oscillatorSelect.value = 0

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)
Enable sequencer
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

Running the sequencer program will produce output as shown in Figure 4.27.

Figure 4.27: Advanced command table example output, including oscillator selection

The first command table entry plays a Gaussian pulse with amplitude settings for upper sideband
modulation, a phase of 0 degrees, and using oscillator 1 (at 10 MHz). The second command table
entry plays a different Gaussian pulse envelope with similar amplitude and phase settings, but now
using oscillator 2 (at -500 MHz, leading to an output frequency of 500 MHz). The third and final
command table entry plays the first Gaussian pulse envelope with different amplitude and phase
settings, but again using oscillator 1. Such a set of pulses could correspond to playing an X-gate on
qubit 1, then an X-gate on qubit 2, then a Y/2-gate on qubit 1 again. Using the oscillatorSelect
field thereby allows users to interleave pulses for different qubits while maintaining phase
coherence between oscillator switches. Because each channel has 8 oscillators, this allows gates
for up to 8 different qubits or transitions to be interleaved on the same RF line.

4.6. Pulse-level Sequencing with the Command Table

85 Zurich Instruments SHFSG+ User Manual

It is also possible to define a command table entry that changes parameters without playing a
waveform. This can be particularly useful for efficient nested loops, e.g. Rabi amplitude sweeps with
cyclic or sequential averaging. Furthermore, it is possible to define a playZero (and other waveforms)
from within the command table as well. To see this functionality, upload the following sequence:

seqc_program = """\
// Define waveform
const len = 1024;
const amp = 1;
wave w = gauss(len,amp,len/2,len/8);

// Assign waveform index
assignWaveIndex(1,2, w, 0);

// Reset the oscillator phase
resetOscPhase();

// Trigger the scope
setTrigger(1);
setTrigger(0);

executeTableEntry(0); //set initial parameters
repeat (5) {
 executeTableEntry(1); //play waveform
 executeTableEntry(2); //playZero
 executeTableEntry(3); //set different parameters
}
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

After uploading the sequence, we upload the following command table as well:

Initialize command table
ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Initial amplitude and phase settings
ct.table[0].amplitude00.value = 0.1
ct.table[0].amplitude01.value = -0.1
ct.table[0].amplitude10.value = 0.1
ct.table[0].amplitude11.value = 0.1
ct.table[0].phase.value = 0.0

Play waveform
ct.table[1].waveform.index = 0

Play playZero
ct.table[2].waveform.playZero = True
ct.table[2].waveform.length = 32

Set new parameters
ct.table[3].amplitude00.value = 0.05
ct.table[3].amplitude00.increment = True
ct.table[3].amplitude01.value = -0.05
ct.table[3].amplitude01.increment = True
ct.table[3].amplitude10.value = 0.05
ct.table[3].amplitude10.increment = True
ct.table[3].amplitude11.value = 0.05
ct.table[3].amplitude11.increment = True

Upload command table

4.6. Pulse-level Sequencing with the Command Table

86 Zurich Instruments SHFSG+ User Manual

device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)
Enable sequencer
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

The above combination of sequence and command table will use the first executeTableEntry
command (table index 0) to set initial amplitude and phase parameters without playing a waveform.
The second executeTableEntry command (table index 1) plays a waveform using the parameters
set by the previous command. The third executeTableEntry plays a playZero of length 32
samples. The fourth executeTableEntry (table index 3) sets new parameters without playing a
waveform. Because of the repeat loop, the sequence will play the pulse 5 times, each time with a
different set of parameters. In total, we play a waveform with 5 different sets of parameters, but we
need only two command table entries (table indices 0 and 3) to set the parameters and one entry to
play the waveform (table index 1). We would still need only these three table entries (four including
the playZero) even if we want to do a parameter sweep of 100 or 1000 different values (e.g. with
repeat (100)).

Note

The benefit of using playZero and playHold from within the command table is that they will map to
a single assembly instruction. Alternatively, the instructions playZero and playHold can be used
directly in the sequencer without the command table and still map to a single instruction, if the
following condition are fulfilled: - Length argument less than 1 MSa - Sample rate argument is left
empty or set to AWG_RATE_2000MHZ (the default value)

It is better to use the command table in the case the criteria above are not fulfilled, or for minimal
play length of 16 samples, or if the command table is randomly accessed in real-time with a variable.

4.6.8. Command table entries fields

The documentation of all possible parameters in the command table JSON file can be found by
pulling the schema from the device itself using the node /<dev>/SGCHANNELS/<n>/AWG/
COMMANDTABLE/SCHEMA. The Python CommandTable object automatically uses the schema from the
device when initialized like this:

Initialize command table
ct_schema = awg.commandtable.load_validation_schema()
ct = CommandTable(ct_schema)

Table 4.21 contains all elements that can be programmed as part of a command table entry as well
as the default value which is applied if this element is not specified by the user. Table 4.22 contains
all parameters of a waveform element, as well as each parameter’s default value. Analogously, Table
4.24 contains the parameters of a phase type element (phase), Table 4.25 those of an amplitude
type entry (amplitude00, amplitude01, amplitude10 or amplitude11) and Table 4.23 contains the
oscillator selector (oscillatorSelect).

If a phase element is specified in any entry of the command table, the absolute phase will be set to
zero at the start of the execution.

Table 4.21: Elements of a command table entry

Field Description Type Range/
Value

Mandatory Default

index Index of the entry Integer [0—4095] yes mandatory

waveform Waveform command
and its properties

Waveform no No waveform
played

oscillatorSelect Oscillator used for the
modulation

Oscillator
Select

no No change of
oscillator

phase Phase command of
the modulation

Phase no No change to
phase setting

amplitude00 Amplitude command
for AWG output
gain00

Amplitude no No change to
amplitude
setting

amplitude01 Amplitude command
for AWG output gain01

Amplitude no No change to
amplitude
setting

4.6. Pulse-level Sequencing with the Command Table

87 Zurich Instruments SHFSG+ User Manual

Field Description Type Range/
Value

Mandatory Default

amplitude10 Amplitude command
for AWG output gain10

Amplitude no No change to
amplitude
setting

amplitude11 Amplitude command
for AWG output gain11

Amplitude no No change to
amplitude
setting

Table 4.22: Parameters of the Waveform element of a command table entry

Field Description Type Range/
Value

Mandatory Default

index Index of the waveform to
play as defined with the
assignWaveIndex
sequencer instruction

integer [0—15999] if playZero or
playHold is
False

No
waveform
played

length The length of the
waveform in samples

integer [16—
WFM_LEN]

if playZero or
playHold is
True

the
waveform
length as
declared in
the
sequence

samplingRateDivider Integer exponent n of the
sampling rate divider:

SampleRate / 2n

integer [0—13] no 0

playZero Play a zero-valued
waveform for specified
length of waveform

bool [True,False] no False

playHold Hold the value of the last
waveform and marker
sample played for
specified length

bool [True,False] no False

Table 4.23: Parameters of a Oscillator Select element of a command table entry

Field Description Type Range/
Value

Mandatory Default

value Index of oscillator that is selected for
sine/cosine generation

integer [0—7] Yes mandatory

Table 4.24: Parameters of a Phase element of a command table entry

Field Description Type Range/Value Mandatory Default

value Phase value of the given
sine generator in degree

float [-180.0—180.0) values
outside of this range
will be clamped

Yes mandatory

increment Set to true for incremental
phase value, or to false for
absolute

bool [True,False] No False

Table 4.25: Parameters of an Amplitude element of a command table entry

Field Description Type Range/
Value

Mandatory Default

value Amplitude scaling factor of the given
AWG channel

float [-1.0—1.0] Yes mandatory

increment Set to true for incremental amplitude
value, or to false for absolute

bool [True,False] No False

4.6. Pulse-level Sequencing with the Command Table

88 Zurich Instruments SHFSG+ User Manual

4.7. Characterizing a Two-Qubit System

Note

This tutorial is applicable to all SHFSG+ Instruments. A PQSC instrument is used in this tutorial to
synchronize the output channels of the SHFSG+.

Note

Users can download all LabOne API Python example files from Github, https://github.com/zhinst/
labone-api-examples.

4.7.1. Goals and Requirements

In this tutorial, the SHFSG+ is used to generate pulse sequences for characterizing a two-qubit
system. We implement the pulse sequences using the Python API to measure the lifetimes of the
two qubits, and to demonstrate how to perform Rabi, Ramsey and qubit spectroscopy
measurements.

To visualize the generated output signals of the SHFSG+, an oscilloscope with sufficient bandwidth
and at least 3 channels is required.

4.7.2. Preparation

Connect the cables as illustrated below. The first step to enable the device synchronization is to
connect the SHFSG+ to a PQSC using both a ZSync port and the reference clock of the PQSC, as
shown in Figure 4.28. For this we need to enable the ZSync clock and triggers on the SHFSG+.

Note

The synchronization and triggering of the SHFSG+ output channels can also be realized through an
external trigger source connected to the trigger input connectors on the front panel of the SHFSG+.

Figure 4.28: Connections for Characterizing a Two-Qubit System Tutorial.

The following tables summarizes the necessary settings for each instrument.

Table 4.26: Settings: enable the external reference clock on the PQSC

Tab Section Label Setting / Value / State

Device Configuration Reference clock Input Internal

Device Configuration Reference clock Output Enable

4.7. Characterizing a Two-Qubit System

89 Zurich Instruments SHFSG+ User Manual

https://github.com/zhinst/labone-api-examples
https://github.com/zhinst/labone-api-examples

Tab Section Label Setting / Value / State

Device Configuration Reference clock Output Frequency 100 MHz

Table 4.27: Settings: enable the ZSync and external clock on the SHFSG+

Tab Section Label Setting / Value / State

Device Configuration Input Reference Clock Set Source External

We will also monitor the SHFSG+ outputs using two channels of an external scope, and use a third
scope channel for visualizing the marker output. Connect the outputs of the SHFSG+ to the
oscilloscope as follows:

The following table summarizes the settings used to configure the external scope.

Table 4.28: Settings: Configure the external scope

Scope Setting Value / State

Ch1-3 enable ON

Ch1-2 range 0.2 V/div

Timebase 1 s/div

Trigger source Ch3

Trigger level 100 mV

Run / Stop ON

We also configure the FFT settings on the scope.

Table 4.29: Settings: Configure the external scope

Scope Setting Value / State

Acquisition Time 10 us

FFT Center 1 GHz

FFT Span 2 GHz

Make sure that the instrument is powered on and connected by Ethernet to your local area network
(LAN) in which the control computer resides. After starting LabOne, the default web browser opens
with the LabOne graphical user interface. The tutorial can be started with the default instrument
configuration (e.g. after a power cycle) and the default user interface settings (e.g. after pressing F5
in the browser). Additionally, this tutorial requires the use of one of our APIs, in order to perform the
two qubit characterization measurements. We advise the user to ensure that the version of the
LabOne Python API, LabOne and Firmware of the SHFSG+ device are updated and compatible . The
examples shown here use the Python API. Similar functionality is available also for C+, Matlab and
.Net, among others.

4.7.3. Qubit characterization set up

This tutorial describes how to perform various characterization measurements for a two
superconducting qubit system using the measurement set up shown in Figure 4.29. For this, two
control lines (green) are used to generate two qubits control pulses at microwave frequencies using
Outputs 1 & 2 of the SHFSG+. To gain information about the state of the two qubits without directly
interacting with them, dispersive readout resonators are used to probe the state of each qubit.
Synchronization between the two instruments is ensured through the PQSC, which distributes its
reference clock to both the SHFSG+ and the SHFQA+ through the ZSync link.

Upon a receiving the trigger signal from the PQSC, the two qubit control signals (green) are
generated by the SHFSG+, followed by the multiplexed readout of the two qubits (purple) which is
performed by the SHFQA+ in the readout mode. The readout results are then fed back to the PQSC
for further processing.

μ\muμ

4.7. Characterizing a Two-Qubit System

90 Zurich Instruments SHFSG+ User Manual

Note

Each qubit is dispersively coupled to a readout resonator. Upon detecting the rising edge of a trigger
from the PQSC, the SHFQA+ determines the state of the qubits (|g> ground or |e> excited states) by
detecting any changes in the amplitudes and/or phases of the multiplexed microwave readout
pulses, which probe the transmissions of the two resonators at frequencies and .

Note

This tutorial can also be used to address other quantum systems, such as spin qubits, color centers,
or neutral atoms, although some changes might be needed.

Figure 4.29: Experimental measurement set up. The elements labeled Q1 and Q2
denote the qubits 1 and 2, both of which are dispersively coupled to a resonator.

4.7.4. General Instruments configuration

In this section, we discuss the instrument configuration for the SHFSG+ channels using the LabOne
Python API:

First we connect to the SHFSG+ using Python. For this we first create a session with the Zurich
Instruments Toolkit and then connect to the instrument using the following code and by replacing
DEVXXXXX with the id of our SHFSG+ instrument, e.g. DEV12001:

Load the LabOne API and other necessary packages
from zhinst.toolkit import Session
import numpy as np

DEVICE_ID = 'DEVXXXXX'
SERVER_HOST = 'localhost'

session = Session(SERVER_HOST) ## connect to data server
device = session.connect_device(DEVICE_ID) ## connect to device

Next we define the various output parameters of the SHFSG+ (e.g. center frequency, power range).
The NUMBER_OF_QUBITS parameter, which in this case corresponds to 2 qubits, defines the number
of channels used by the SHFSG+. In this case, channel indices 0 & 1 are used, corresponding to
channels 1 & 2 on the front panel.

For both channels, the central frequency is set to 1 GHz, the output power range is fixed at 10 dBm,
and all node settings are uploaded to the device using a transactional set.

Define parameters for each SG channel
NUMBER_OF_QUBITS = 2
SGCHANNEL_NUMBER = [0,1]
SGCHANNEL_CENTER_FREQUENCY = [1e9,1e9]

fRes1f_{\mathrm{Res1}}fRes1 fRes2f_{\mathrm{Res2}}fRes2

4.7. Characterizing a Two-Qubit System

91 Zurich Instruments SHFSG+ User Manual

SGCHANNEL_POWER_OUT = [10,10]
SGCHANNEL_TRIGGER_INPUT = 1

configure sg channels
with device.set_transaction():

for qubit in range(NUMBER_OF_QUBITS):
print(SGCHANNEL_NUMBER[qubit],int(np.floor(SGCHANNEL_NUMBER[qubit]/2))+1)
device.sgchannels[SGCHANNEL_NUMBER[qubit]].output.on(1)
device.sgchannels[SGCHANNEL_NUMBER[qubit]].output.range(SGCHANNEL_POWER_O

UT)
synth = device.sgchannels[SGCHANNEL_NUMBER[qubit]].synthesizer()
device.synthesizers[synth].centerfreq(SGCHANNEL_CENTER_FREQUENCY[qubit])

4.7.5. Qubit spectroscopy

The first experiment we describe is a qubit spectroscopy measurement, in which the frequencies of
the control signals (green lines) for the two qubits are swept in parallel. A readout pulse (blue line)
determines the qubit state for each frequency step of the control pulse.

In order to program the frequency sweep on both channels 1 & 2 of the SHFSG+, we first need to
define the parameters of the sweep by setting the number of frequency steps
(NUM_SWEEP_STEPS_QUBIT_SPECTROSCOPY) and the integration time for the readout signal for each
qubit. Then, we also define the minimum/maximum frequencies of the sweep to be -100/300 MHz
and -100/200 MHz for channels 1 & 2, respectively. We set also the maximum drive strength to 1 for
both channels.

define parameters
NUM_SWEEP_STEPS_QUBIT_SPECTROSCOPY = 10000
INTEGRATION_TIME_QUBIT_SPECTROSCOPY = 2e-3
preparation
MIN_MAX_FREQUENCIES = [[-100e6,300e6],[100e6,200e6]]
MAX_DRIVE_STRENGTH = [1,1]

In order to perform a frequency sweep on both channels 1 & 2 of the SHFSG+, we need to program
the sequencer of the AWG module using the sequencer command configFreqSweep, which allows
us to configure the frequency sweep by defining the name of the oscillator OSC0, the starting
frequency FREQ_START and the frequency step size FREQ_STEP of the sweep. Before starting to
sweep the frequency, we trigger the external scope using the setTrigger(1) and setTrigger(0)
commands. Then, after waiting for a trigger signal from the PQSC using the command
waitZSyncTrigger(), the oscillator’s frequency is swept using the setSweepStep command, which
increments the oscillator’s frequency by one frequency step. Both channels 1 & 2 of the SHFSG+ are
configured and sent to the device in a single call using a transactional set: daq.set(exp_setting).

seqc_program_sg = [[] for _ in range(NUMBER_OF_QUBITS)]

for qubit in range(NUMBER_OF_QUBITS):
seqc_program_sg[qubit] = f"""\

 const OSC0 = 0;
 const FREQ_START = {MIN_MAX_FREQUENCIES[qubit][0]};
 const FREQ_STEP = {(MIN_MAX_FREQUENCIES[qubit][1]-MIN_MAX_FREQUENCIES[qubit]
[0])/NUM_SWEEP_STEPS_QUBIT_SPECTROSCOPY};

 configFreqSweep(OSC0, FREQ_START, FREQ_STEP);
 // Trigger the scope
 setTrigger(1);
 setTrigger(0);
 // Frequency sweep
 for(var i = 0; i < {NUM_SWEEP_STEPS_QUBIT_SPECTROSCOPY}; i++) {{
 waitZSyncTrigger(); //wait for PQSC trigger
 setSweepStep(OSC0, i);

}}
 """

with device.set_transaction():
device.sgchannels[SGCHANNEL_NUMBER[qubit]].sines[0].i.sin.amplitude(0.5*M

4.7. Characterizing a Two-Qubit System

92 Zurich Instruments SHFSG+ User Manual

AX_DRIVE_STRENGTH[qubit])
device.sgchannels[SGCHANNEL_NUMBER[qubit]].sines[0].i.cos.amplitude(0.5*M

AX_DRIVE_STRENGTH[qubit])
device.sgchannels[SGCHANNEL_NUMBER[qubit]].sines[0].q.sin.amplitude(0.5*M

AX_DRIVE_STRENGTH[qubit])
device.sgchannels[SGCHANNEL_NUMBER[qubit]].sines[0].q.cos.amplitude(0.5*M

AX_DRIVE_STRENGTH[qubit])
device.sgchannels[SGCHANNEL_NUMBER[qubit]].sines[0].i.enable(1)
device.sgchannels[SGCHANNEL_NUMBER[qubit]].sines[0].q.enable(1)

Note

When using an external trigger source, replace the waitZSyncTrigger() command by the
waitDigTrigger(1) command and configure the digital trigger to consume the correct front panel
trigger input, see Triggering the AWG

The sequencer program is then uploaded AWG core of both channels of the SHFSG+ by using the
load_sequencer_program function of the Toolkit. We then run the sequencer program.

upload programs
for qubit in range(NUMBER_OF_QUBITS):

device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.load_sequencer_program(seqc_pr
ogram_sg[qubit])

device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.enable_sequencer(single = 1)

After running the sequence, we measure the following pulse sequence with the scope set to a time
base of 1 s/div. The FFT of the scope trace shows that the frequency component of the signal
sweeps in the frequency domain from 900 MHz to 1.3 GHz, which is basically the frequency sweep
performed by the channel output 1 of the SHFSG+.

Figure 4.30: Signal generated by the AWG and captured by the scope. The top half of
the figure shows a sine signal that is swept in frequency between 900 MHz to 1.3 GHz.

From this measurement, we can estimate the drive frequency needed for each of the two qubits by
measuring the change in the amplitude and/or phase of the readout signal versus the drive
frequency of the control signal.

4.7.6. Rabi Oscillation Measurement

The Rabi oscillation measurement is the second step to characterize our two qubits. In this case, the
two qubits are driven using control pulses of fixed width and variable amplitude. In this example, we
first start by defining the number of Rabi pulses, which we set to 5. We also set the number of

μ\muμ

4.7. Characterizing a Two-Qubit System

93 Zurich Instruments SHFSG+ User Manual

averages for each Rabi sequence, the length of the Rabi pulses for each qubit, as well as the qubit
drive frequencies.

First, we define the different parameters needed for the Rabi measurement:

define parameters
NUM_STEPS_RABI_EXPERIMENT = 5
NUM_AVERAGES_RABI_EXPERIMENT = 2**5
QUBIT_SINGLE_GATE_TIME = [50e-9,50e-9,50e-9,50e-9]
QUBIT_DRIVE_FREQUENCY = [22e6,32e6]
SAMPLING_RATE = 2e9
single_qubit_pulse_time_seqSamples = int(np.max(QUBIT_SINGLE_GATE_TIME)*SAMPLING_
FREQUENCY)
single_qubit_pulse_time_samples = single_qubit_pulse_time_seqSamples*8

We start by defining gaussian pulses in a sequencer program, where we assign a dual-channel
waveform to the wave index 0. We reset the oscillator phases to 0 using the command
resetOscPhase(). Upon receiving the trigger signal from the PQSC, as shown in Figure 4.29, we
execute the command table entry 0 (see the command table definition below) for each Rabi
measurement, which sets the starting value of 0 for all AWG output gains. Then, for each step of the
Rabi sequences we execute the command table entry 1, which increments the AWG output gains
and thereby increase the amplitudes of the gain of each sinusoid which is then multiplied by the
AWG output, leading to an increase in the amplitude of the control pulses in both channels of the
SHFSG+.

Additionally, we configure both channels of the SHFSG+ and we finish by uploading the sequencer
program to the AWG module for both SHFSG+ outputs channels 1 & 2.

for qubit in range(NUMBER_OF_QUBITS):
seqc_program_sg[qubit]=f"""\

// Define a single waveform
wave rabi_pulse=gauss({single_qubit_pulse_time_samples}, 1, {single_qubit_pulse_t
ime_samples/2}, {QUBIT_SINGLE_GATE_TIME[qubit]*SAMPLING_RATE});

// Assign a dual channel waveform to wave table entry
assignWaveIndex(1,2,rabi_pulse, 1,2,rabi_pulse, 0);
resetOscPhase();
// Trigger the scope
setTrigger(1);
setTrigger(0);
repeat ({NUM_AVERAGES_RABI_EXPERIMENT}) {{
 waitZSyncTrigger();
 executeTableEntry(0);
 repeat ({NUM_STEPS_RABI_EXPERIMENT}-1) {{
 waitZSyncTrigger();
 executeTableEntry(1);
 waitWave();
 setTrigger(1);
 playZero(1024);
 waitWave();
 setTrigger(0);
 wait(5*{qubit_lifetime_samples});

}}
}}
 """

Upload command table - generate string from dictionary
with device.set_transaction():

device.sgchannels[SGCHANNEL_NUMBER[qubit]].sines[0].i.enable(0)
device.sgchannels[SGCHANNEL_NUMBER[qubit]].sines[0].q.enable(0)
device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.modulation.enable(1)
device.sgchannels[SGCHANNEL_NUMBER[qubit]].oscs[0].freq(QUBIT_DRIVE_FREQU

ENCY[qubit])

upload programs
for qubit in range(NUMBER_OF_QUBITS):

4.7. Characterizing a Two-Qubit System

94 Zurich Instruments SHFSG+ User Manual

device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.load_sequencer_program(seqc_pr
ogram_sg[qubit])

Here, we have define the command table with 2 entries with indices 0 and 1, both of which play the
dual-channel waveform referenced in the wave table at index 0, which corresponds to the Gaussian
waveform defined previously. The four amplitude settings of the command table have the same
effect as the four gain settings of the Digital Modulation Tutorial. The first command table entry sets
the starting amplitudes of the sweep. The second command table entry increments the current
amplitude by +/- 0.5 increment_value each time the entry is called.

create and upload command table
for qubit in range(NUMBER_OF_QUBITS):

increment_value = MAX_DRIVE_STRENGTH[qubit]/NUM_STEPS_RABI_EXPERIMENT

Initialize command table
ct_schema = device.sgchannels[sg_chan_index].awg.commandtable.load_validation

_schema()
ct = CommandTable(ct_schema)

Initial amplitude
ct.table[table_index].waveform.index = 0
ct.table[table_index].amplitude00.value = 0
ct.table[table_index].amplitude01.value = -0
ct.table[table_index].amplitude10.value = 0
ct.table[table_index].amplitude11.value = 0

Amplitude increments
ct.table[table_index].waveform.index = 0
ct.table[table_index].amplitude00.value = 0.5*increment_value
ct.table[table_index].amplitude00.increment = True
ct.table[table_index].amplitude01.value = -0.5*increment_value
ct.table[table_index].amplitude01.increment = True
ct.table[table_index].amplitude10.value = 0.5*increment_value
ct.table[table_index].amplitude10.increment = True
ct.table[table_index].amplitude11.value = 0.5*increment_value
ct.table[table_index].amplitude11.increment = True

Upload command table and enable sequencer

device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.commandtable.upload_to_device(ct)
device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.enable_sequencer(single = 1)

After uploading the command table as a vector to the correct node of the SHFSG+, we run the
sequence, and start by measuring the following pulse sequences with the scope set to a time base
of 700 ns/div.

4.7. Characterizing a Two-Qubit System

95 Zurich Instruments SHFSG+ User Manual

Figure 4.31: Rabi Oscillation measurement pulses generated (yellow), with a readout
pulse (green) generated by the AWG.

From the results of this measurement, we can determine the control pulse amplitudes needed for
rotations of π or π/2. These amplitudes are parametrized as QUBIT_PI_AMPLITUDE[qubit] and
QUBIT_PI_2_AMPLITUDE[qubit] in our LabOne Python API program, respectively.

4.7.7. Ramsey Fringe Measurement

The Ramsey fringe measurement is also used to characterize our 2 qubits. The measurement starts
by using a π/2 pulse to create an equal superposition of the excited and ground states. After waiting
for a certain evolution time, we apply a second π/2 pulse, followed by the readout of the 2 qubits.
Sweeping the evolution time between the two π/2 pulses gives us information about the coherence
time of the qubit. Resonantly, which results in the exponential decay of the signal with respect to the
coherence time, or we can drive the 2 qubits off-resonantly, which yields an oscillation of the signal
at the detuning frequency.

This experiment starts by defining the different parameters needed for the Ramsey measurement.
We set the parameter NUM_STEPS_RAMSEY_EXPERIMENT to 4, and add
NUM_AVERAGES_RAMSEY_EXPERIMENT = 1, RAMSEY_OFFSET_FREQUENCY=1e6 :

define parameters
NUM_STEPS_RAMSEY_EXPERIMENT = 4
NUM_AVERAGES_RAMSEY_EXPERIMENT = 1
RAMSEY_OFFSET_FREQUENCY = 1e6
MAX_WAIT_TIME_TARGET = 1e-6
wait_time_steps_samples = int(round(MAX_WAIT_TIME_TARGET/(NUM_STEPS_RAMSEY_EXPERI
MENT-1)*SAMPLING_RATE/16)*16)
QUBIT_PI_2_AMPLITUDE = [1,1]

Similarly to what we have seen before. We then define the waveforms and assigning them to the
right index

After this, we define the variable evolution_time_samples which sets the time separation
between two π/2 pulses in the Ramsey experiment. After receiving the trigger signal from the PQSC,
the sequence executes command table entry 0, which applies π/2 pulse to the qubit. A playZero
command follows the π/2 pulse to account for the evolution time evolution_time_samples. Then
we play a second π/2 pulse by executing the command table entry 0 again. After applying a first
Ramsey sequence, we increment the time separation by + wait_time_steps_samples for 4 times
and we repeat this experiment one time since NUM_AVERAGES_RAMSEY_EXPERIMENT = 1.

Additionally, we enable the digital modulation on both channels 1&2 of the SHFSG+ and set the
frequency of the oscillators to the sum of the qubit frequency and the offset frequency, which is
given by RAMSEY_OFFSET_FREQUENCY=1e6. After configuring the outputs of both channels, we finish
by uploading the sequencer program to channels 1 & 2 of the SHFSG+.

4.7. Characterizing a Two-Qubit System

96 Zurich Instruments SHFSG+ User Manual

for qubit in range(NUMBER_OF_QUBITS):
seqc_program_sg[qubit]=f"""

 // Define a single waveform
 wave rabi_pulse=gauss({single_qubit_pulse_time_samples}, 1, {single_qubit_pul
se_time_samples/2}, {QUBIT_SINGLE_GATE_TIME[qubit]*SAMPLING_RATE});

 // Assign a dual channel waveform to wave table entry
 assignWaveIndex(1,2,rabi_pulse, 1,2,rabi_pulse, 0);
 resetOscPhase();
 var i =0;
 // Trigger the scope
 setTrigger(1);
 setTrigger(0);
 repeat ({NUM_AVERAGES_RAMSEY_EXPERIMENT}) {{
 const evolution_time_samples = 0
 for (i = 0; i < {NUM_STEPS_RAMSEY_EXPERIMENT}; i++) {{
 waitZSyncTrigger(1);
 executeTableEntry(0);
 playZero(evolution_time_samples);
 executeTableEntry(0);
 waitWave();
 setTrigger(1);
 playZero(1024);
 waitWave();
 setTrigger(0);
 wait(5*{qubit_lifetime_samples});
 evolution_time_samples = evolution_time_samples +
wait_time_steps_samples;

<table-caption identifier="Table">

}}

<table-caption-end>

}}
 """

device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.modulation.enable(1)

device.sgchannels[SGCHANNEL_NUMBER[qubit]].oscs[0].freq(QUBIT_DRIVE_FREQUENCY[qub
it]+RAMSEY_OFFSET_FREQUENCY)

##upload programs
with device.set_transaction():

device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.load_sequencer_program(seqc_pr
ogram_sg[qubit])

In this case, the command table contains single entry and plays the dual-channel waveform
referenced in the wave table at index 0. We specify the amplitude and the phase settings. The four
amplitude settings of the command table are defined so that the output signal on both the channel
1&2 of the SHFSG+ plays a π/2 pulse. Then, we upload the command table as a vector to the correct
node to the SHFSG+. After uploading the command table and the sequencer program, we run the
sequence.

create and upload command table
for qubit in range(NUMBER_OF_QUBITS):

increment_value = MAX_DRIVE_STRENGTH[qubit]/NUM_STEPS_RABI_EXPERIMENT

Initialize command table
ct_schema = device.sgchannels[sg_chan_index].awg.commandtable.load_validation

_schema()
ct = CommandTable(ct_schema)

4.7. Characterizing a Two-Qubit System

97 Zurich Instruments SHFSG+ User Manual

Define pi/2 pulse
ct.table[table_index].waveform.index = 0
ct.table[table_index].amplitude00.value = 0.5*QUBIT_PI_2_AMPLITUDE[qubit]
ct.table[table_index].amplitude01.value = -0.5*QUBIT_PI_2_AMPLITUDE[qubit]
ct.table[table_index].amplitude10.value = 0.5*QUBIT_PI_2_AMPLITUDE[qubit]
ct.table[table_index].amplitude11.value = 0.5*QUBIT_PI_2_AMPLITUDE[qubit]

Upload command table and enable sequencer

device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.commandtable.upload_to_device(ct)
device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.enable_sequencer(single = 1)

We show the expected result of the sequence in the Figure 4.32. As expected, we observe 5 pulse
sequences of two consecutive π/2 pulses with increasing temporal separation. The playZero
command between two consecutive Gaussian control pulses does not contribute to the memory
use. Therefore, the evolution time between the π/2 pulses can be extended to several seconds
without using waveform memory or increasing compilation and upload time.

Figure 4.32: Ramsey interference experiment pulses using the AWG.

Therefore, the evolution time between the π/2 pulses can be extended to several seconds without
using waveform memory or increasing compilation and upload time.

4.7.8. Qubit Lifetime Measurement

In order to measure the lifetimes of the two qubits, we perform a T1 measurement on both qubits.
The measurement starts after waiting for sufficiently long time , so that the 2 qubits are
in the ground state. Then, we excite both qubits by applying a π pulse to each qubit and wait for a
variable amount of time before reading out the qubit state. The measured signal decays
exponentially with respect to the delay time between control and readout pulses, with the time
constant determined by the qubit’s lifetime.

We define the different parameters needed for the T1 measurement. We start by setting the
parameter NUM_STEPS_T1_EXPERIMENT to 5 and add NUM_AVERAGES_T1_EXPERIMENT = 2**4 :

define parameters
NUM_STEPS_T1_EXPERIMENT = 5
NUM_AVERAGES_T1_EXPERIMENT = 2**4
QUBIT_PI_AMPLITUDE = [2,2]

Similarly to what we have seen before, we define a variable time_ind, which in this case sets the
time separation between the control and readout pulses. After receiving the trigger signal from the
PQSC, we execute the command table entry 0, which applies a π pulse to each qubit. This is followed

τ(τ>>T1)
\
t
a
u
(
\
t
a
u
>
>
T
_

τ(τ >> T)1

4.7. Characterizing a Two-Qubit System

98 Zurich Instruments SHFSG+ User Manual

by a playZero command, which sets the time separation between the control pulse and the
readout signal.

The control channels are configured in the same way as in the Ramsey experiment. After configuring
both channels of the SHFSG+, we finish by uploading the sequencer program to the AWG module for
both SHFSG+ channels 1 & 2.

for qubit in range(NUMBER_OF_QUBITS):
seqc_program_sg[qubit]=f"""

// Define a single waveform
wave rabi_pulse=gauss({single_qubit_pulse_time_samples}, 1, {single_qubit_pulse_t
ime_samples/2}, {QUBIT_SINGLE_GATE_TIME[qubit]*SAMPLING_FREQUENCY});

// Assign a dual channel waveform to wave table entry
assignWaveIndex(1,2,rabi_pulse, 1,2,rabi_pulse, 0);
resetOscPhase();
//Trigger the scope
setTrigger(1);
setTrigger(0);
var time_ind = 0;
repeat ({NUM_AVERAGES_T1_EXPERIMENT}) {{
 for (time_ind = 0; time_ind < {NUM_STEPS_T1_EXPERIMENT}; time_ind++) {{
 waitZSyncTrigger(1);
 executeTableEntry(0);
 playZero({wait_time_steps_samples}*time_ind);
 waitWave();
 setTrigger(1);
 playZero(1024);
 waitWave();
 setTrigger(0);
 wait(5*{qubit_lifetime_samples});

}}
}}
 """

##upload programs
with device.set_transaction():

device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.load_sequencer_program(seqc_pr
ogram_sg[qubit])

Here, the command table contains a single entry with an index 0. The chosen amplitude settings
allow us to play a π pulse for both qubits. We upload the command table as a vector to the correct
node of the SHFSG+. After uploading the command table and the sequencer program, we run the
sequence.

create and upload command table
for qubit in range(NUMBER_OF_QUBITS):

increment_value = MAX_DRIVE_STRENGTH[qubit]/NUM_STEPS_RABI_EXPERIMENT

Initialize command table
ct_schema = device.sgchannels[sg_chan_index].awg.commandtable.load_validation

_schema()
ct = CommandTable(ct_schema)

Define pi pulse
ct.table[table_index].waveform.index = 0
ct.table[table_index].amplitude00.value = 0.5*QUBIT_PI_AMPLITUDE[qubit]
ct.table[table_index].amplitude01.value = -0.5*QUBIT_PI_AMPLITUDE[qubit]
ct.table[table_index].amplitude10.value = 0.5*QUBIT_PI_AMPLITUDE[qubit]
ct.table[table_index].amplitude11.value = 0.5*QUBIT_PI_AMPLITUDE[qubit]

Upload command table and enable sequencer

4.7. Characterizing a Two-Qubit System

99 Zurich Instruments SHFSG+ User Manual

device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.commandtable.upload_to_device(ct)
device.sgchannels[SGCHANNEL_NUMBER[qubit]].awg.enable_sequencer(single = 1)

As expected, we observe 5 pulses with the π pulse amplitude, amplitude, with an increasing delay
between the pi pulse and the readout pulse, as shown in the Figure 4.33.

Figure 4.33: Life time measurement sequence generated by the AWG.

4.7.9. Pulse-length Sweeps

Note

The length of any playZero and playHold commands must be a multiple of 16 samples and a
minimum of 16 samples.

In some scenarios, it may be necessary to sweep the duration of a pulse, e.g. for a Rabi
measurement in which the length of the pulse in samples is swept instead of the amplitude. In such
cases, the sequencer command playHold enables efficient length sweeps to be performed. Just as
playZero instructs the sequencer to play 0 for a specified number of samples without using
waveform memory, the command playHold instructs the sequencer to hold the last I and Q
waveform values for a specified number of samples without using waveform memory. The command
playHold can also hold the values of marker bits.

In the following sequence, we perform a length sweep of a common pulse envelope: the duration of
a flat-top Gaussian pulse is swept using the playHold command:

seqc_str = """\
//Define constants
const AMP = 1;
const LENGTH = 32;
const WIDTH = LENGTH/8;
const LEN_STEP = 16;

//Waveform definition
wave wI = gauss(LENGTH, AMP, LENGTH/2, WIDTH);
wave wIr = cut(wI, 0, LENGTH/2 - 1); //rising edge of 16 samples
wave wIf = cut(wI, LENGTH/2, LENGTH - 1); //falling edge of 16 samples
wave m = marker(LENGTH/2, 1);
wave wIrm = wIr + m; //combine rising waveform and marker data
wave wIfm = wIf + m; //combine falling waveform and marker data

assignWaveIndex(1,2,wIrm,0);

4.7. Characterizing a Two-Qubit System

100 Zurich Instruments SHFSG+ User Manual

assignWaveIndex(1,2,wIfm,1);

var t = 32;
repeat (6) {
 resetOscPhase();
 executeTableEntry(0);
 playHold(t);
 executeTableEntry(1);
 t += LEN_STEP;
}
"""

Upload sequence
device.sgchannels[sg_chan_index].awg.load_sequencer_program(seqc_str)

After defining constants and assigning waveform indices, the sequence plays a Gaussian rising edge
of 16 samples (8 ns) using executeTableEntry, followed by a playHold command. The length of the
playHold is swept from 32 to 128 samples (16 to 64 ns), in steps of 16 samples (8 ns) over the 6
iterations of the repeat loop. The playHold is followed by the falling edge of the flat-top Gaussian
pulse, also of length 16 samples (8 ns).

We next define the corresponding command table, upload it, and enable the sequencer:

Initialize command table
ct_schema = device.sgchannels[sg_chan_index].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Waveform 1
ct.table[0].waveform.index = 0
Waveform 2
ct.table[1].waveform.index = 1

Upload command table
device.sgchannels[sg_chan_index].awg.commandtable.upload_to_device(ct)
Enable sequencer
device.sgchannels[sg_chan_index].awg.enable_sequencer(single = single)

Observing the signal on the oscilloscope, we see that both the length of the waveform and the
marker are swept as expected.

Figure 4.34: Length sweep of a flat-top Gaussian pulse.

4.7. Characterizing a Two-Qubit System

101 Zurich Instruments SHFSG+ User Manual

5. Functional Description
This chapter gives a detailed description of the setup and measurement functionality of the Zurich
Instruments SHFSG+. The sections provide details and a complete settings overview of the setup
configurations - mainly accessible through our LabOne general user interface - and the measurement
functionality blocks depicted in the functional diagram. The explanations focus on introducing the
respective functionalities and how to configure them using either the APIs and/or the LabOne user
interface.

5.1. Setup Functionality

This chapter gives a detailed description of the setup functionality available through the LabOne
User Interface (UI) that is common to all Zurich Instruments' devices. LabOne provides a Data Server
and a Web Server to control the Instrument with any of the most common web browsers (e.g. Firefox,
Chrome, Edge, etc.). This platform-independent architecture supports interaction with the
Instrument using various devices (PCs, tablets, smartphones, etc.) - even at the same time if needed.

On top of standard functionality like acquiring and saving data points, or session-handling, the
SHFSG-specific functionality of the GUI is provided in the Measurement Functionality.

Note

Some of the pictures in the following sections may not show SHFSG-specific nodes, functionality or
pictures.

5.1.1. User Interface Overview

UI Nomenclature

This section provides an overview of the LabOne User Interface, its main elements and naming
conventions. The LabOne User Interface is a browser-based UI provided as the primary interface to
the SHFSG+ instrument. Multiple browser sessions can access the instrument simultaneously and
the user can have displays on multiple computer screens. Parallel to the UI, the instrument can be
controlled and read out by custom programs written in any of the supported languages (e.g.
LabVIEW, MATLAB, Python, C) connecting through the LabOne APIs.

Figure 5.1: LabOne User Interface (default view)

The LabOne User Interface automatically opens some tabs by default after a new UI session has
been started. At start-up, the UI is divided into two tab rows, each containing a tab structure that
gives access to the different LabOne tools. Depending on display size and application, tab rows can
be freely added and deleted with the control elements on the right-hand side of each tab bar.

5. Functional Description

102 Zurich Instruments SHFSG+ User Manual

Similarly, the individual tabs can be deleted or added by selecting app icons from the side bar on the
left. A click on an icon adds the corresponding tab to the display, alternatively the icon can be
dragged and dropped into one of the tab rows. Moreover, tabs can be moved by drag-and-drop
within a row or across rows.

Table 5.1 gives a brief descriptions and naming conventions for the most important UI items.

Table 5.1: LabOne User Interface features

Item
name

Position Description Contains

side bar left-hand
side of the UI

contains app icons for each of the available tabs
- a click on an icon adds or activates the
corresponding tab in the active tab row

app icons

status
bar

bottom of
the UI

contains important status and warning
indicators, device and session information, and
access to the command log

status indicators

main
area

center of the
UI

accommodates all active tabs – new rows can
be added and removed by using the control
elements in the top right corner of each tab row

tab rows, each
consisting of tab bar
and the active tab area

tab area inside of
each tab

provides the active part of each tab consisting
of settings, controls and measurement tools

sections, plots, sub-
tabs, unit selections

Further items are highlighted in Figure 5.2.

Figure 5.2: LabOne User Interface (more items)

Unique Set of Analysis Tools

All instruments feature a comprehensive tool set for signal generation and sequence programming.

The following table gives the overview of all app icons. Note that the selection of app icons may
depend on the upgrade options installed on a given instrument.

Table 5.2: Overview of app icons and short description

Control/
Tool

Option/
Range

Description

Config Provides access to software configuration.

Device Provides instrument specific settings.

Files Access settings and measurement data files on the host computer.

In/Out Gives access to all controls relevant for the Signal Inputs and Signal
Outputs of each channel.

Mod Access to all the settings of the digital modulation.

5.1. Setup Functionality

103 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/
Range

Description

DIO Gives access to all controls relevant for the digital inputs and outputs
including DIO, Trigger Inputs, Trigger Outputs, and Marker Outputs.

AWG Generate arbitrary signals using sequencing and sample-by-sample
definition of waveforms.

ZI Labs Experimental settings and controls.

Table 5.3 provides a quick overview over the different status bar elements along with a short
description.

Table 5.3: Status bar description

Control/
Tool

Option/
Range

Description

Command
log

last
command

Shows the last command. A different formatting (MATLAB, Python, ..)
can be set in the config tab. The log is also saved in [User]
\Documents\Zurich Instruments\LabOne\WebServer\Log

Show Log Show the command log history in a separate browser window.

Errors Errors Display system errors in separate browser tab.

Device devXXX Indicates the device serial number.

Identify
Device

When active, device LED blinks

Shutdown Shuts down the instrument.

MDS grey/green/
red/yellow

Multiple device synchronization indicator. Grey: Nothing to synchronize -
single device on the UI. Green: All devices on the UI are correctly
synchronized. Yellow: MDS sync in progress or only a subset of the
connected devices is synchronized. Red: Devices not synchronized or
error during MDS sync.

REC grey/red A blinking red indicator shows ongoing data recording (related to global
recording settings in the Config tab).

RCO grey/
yellow/red

Router Channel Overflow - Red: present overflow condition on the
channel. Yellow: indicates an overflow occurred in the past.

CF grey/
yellow/red

Clock Failure - Red: present malfunction of the external 10 MHz
reference oscillator. Yellow: indicates a malfunction occurred in the past.

OVI grey/
yellow/red

Signal Input Overload - Red: present overload condition on the signal
input also shown by the red front panel LED. Yellow: indicates an
overload occurred in the past.

OVO grey/
yellow/red

Overload Signal Output - Red: present overload condition on the signal
output. Yellow: indicates an overload occurred in the past.

COM grey/
yellow/red

Packet Loss - Red: present loss of data between the device and the host
PC. Yellow: indicates a loss occurred in the past.

COM grey/
yellow/red

Sample Loss - Red: present loss of sample data between the device and
the host PC. Yellow: indicates a loss occurred in the past.

Reset
status
flags

Clear the current state of the status flags

MOD grey/green MOD - Green: indicates which of the modulation kits is enabled.

PID grey/green PID - Green: indicates which of the PID units is enabled. Red: indicates
PID unit is in PLL or ExtRef mode but is not locked. Yellow: indicates PID
unit was not locked in the past.

Full Screen Toggles the browser between full screen and normal mode.

5.1. Setup Functionality

104 Zurich Instruments SHFSG+ User Manual

Plot Functionality

Several tools, such as the Waveform Viewer, provide a graphical display of data in the form of plots.
These are multi-functional tools with zooming, panning and cursor capability. This section
introduces some of the highlights.

Plot Area Elements

Plots consist of the plot area, the X range and the range controls. The X range (above the plot area)
indicates which section of the wave is displayed by means of the blue zoom region indicators. The
two ranges show the full scale of the plot which does not change when the plot area displays a
zoomed view. The two axes of the plot area instead do change when zoom is applied.

The mouse functionality inside of a plot greatly simplifies and speeds up data viewing and
navigation.

Table 5.4: Mouse functionality inside plots

Name Action Description Performed inside

Panning left click on any
location and move
around

moves the waveforms plot area

Zoom X axis mouse wheel zooms in and out the X
axis

plot area

Zoom Y axis shift + mouse wheel zooms in and out the Y
axis

plot area

Window zoom shift and left mouse
area select

selects the area of the
waveform to be zoomed in

plot area

Absolute jump
of zoom area

left mouse click moves the blue zoom
range indicators

X and Y range, but outside of
the blue zoom range
indicators

Absolute move
of zoom area

left mouse drag-
and-drop

moves the blue zoom
range indicators

X and Y range, inside of the
blue range indicators

Full Scale double click set X and Y axis to full
scale

plot area

Each plot area contains a legend that lists all the shown signals in the respective color. The legend
can be moved to any desired position by means of drag-and-drop.

The X range and Y range plot controls are described in Table 5.5.

Table 5.5: Plot control description

Control/
Tool

Option/
Range

Description

Axis scaling
mode

Selects between automatic, full scale and manual axis scaling.

Axis
mapping
mode

Select between linear, logarithmic and decibel axis mapping.

Axis zoom in Zooms the respective axis in by a factor of 2.

Axis zoom
out

Zooms the respective axis out by a factor of 2.

Rescale axis
to data

Rescale the foreground Y axis in the selected zoom area.

Save figure Generates PNG, JPG or SVG of the plot area or areas for dual plots to
the local download folder.

5.1. Setup Functionality

105 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/
Range

Description

Save data Generates a CSV file consisting of the displayed wave or histogram
data (when histogram math operation is enabled). Select full scale to
save the complete wave. The save data function only saves one shot at
a time (the last displayed wave).

Cursor
control

Cursors can be switch On/Off and set to be moved both independently
or one bound to the other one.

Net Link Provides a LabOne Net Link to use displayed wave data in tools like
Excel, MATLAB, etc.

Cursors and Math

The plot area provides two X and two Y cursors which appear as dashed lines inside of the plot area.
The four cursors are selected and moved by means of the blue handles individually by means of
drag-and-drop. For each axis, there is a primary cursor indicating its absolute position and a
secondary cursor indicating both absolute and relative position to the primary cursor.

Cursors have an absolute position which does not change upon pan or zoom events. In case a cursor
position moves out of the plot area, the corresponding handle is displayed at the edge of the plot
area. Unless the handle is moved, the cursor keeps the current position. This functionality is very
effective to measure large deltas with high precision (as the absolute position of the other cursors
does not move).

The cursor data can also be used to define the input data for the mathematical operations
performed on plotted data. This functionality is available in the Math sub-tab of each tool. The Table
5.6 gives an overview of all the elements and their functionality. The chosen Signals and Operations
are applied to the currently active trace only.

Table 5.6: Plot math description

Control/
Tool

Option/Range Description

Source
Select

Select from a list of input sources for math operations.

Cursor Loc Cursor coordinates as input data.

Cursor Area Consider all data of the active trace inside the rectangle defined by
the cursor positions as input for statistical functions (Min, Max, Avg,
Std).

Tracking Display the value of the active trace at the position of the
horizontal axis cursor X1 or X2.

Plot Area Consider all data of the active trace currently displayed in the plot
as input for statistical functions (Min, Max, Avg, Std).

Peak Find positions and levels of up to 5 highest peaks in the data.

Trough Find positions and levels of up to 5 lowest troughs in the data.

Histogram Display a histogram of the active trace data within the x-axis range.
The histogram is used as input to statistical functions (Avg, Std).
Because of binning, the statistical functions typically yield different
results than those under the selection Plot Area.

Resonance Display a curve fitted to a resonance.

Linear Fit Display a linear regression curve.

Operation
Select

Select from a list of mathematical operations to be performed on
the selected source. Choice offered depends on the selected
source.

Cursor Loc: X1,
X2, X2-X1, Y1, Y2,
Y2-Y1, Y2 / Y1

Cursors positions, their difference and ratio.

5.1. Setup Functionality

106 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/Range Description

Cursor Area: Min,
Max, Avg, Std

Minimum, maximum value, average, and bias-corrected sample
standard deviation for all samples between cursor X1 and X2. All
values are shown in the plot as well.

Tracking: Y(X1),
Y(X2), ratioY,
deltaY

Trace value at cursor positions X1 and X2, the ratio between these
two Y values and their difference.

Plot Area: Min,
Max, Pk Pk, Avg,
Std

Minimum, maximum value, difference between min and max,
average, and bias-corrected sample standard deviation for all
samples in the x axis range.

Peak: Pos, Level Position and level of the peak, starting with the highest one. The
values are also shown in the plot to identify the peak.

Histogram: Avg,
Std, Bin Size,
(Plotter tab only:
SNR, Norm Fit,
Rice Fit)

A histogram is generated from all samples within the x-axis range.
The bin size is given by the resolution of the screen: 1 pixel = 1 bin.
From this histogram, the average and bias-corrected sample
standard deviation is calculated, essentially assuming all data
points in a bin lie in the center of their respective bin. When used in
the plotter tab with demodulator or boxcar signals, there
additionally are the options of SNR estimation and fitting statistical
distributions to the histogram (normal and rice distribution).

Resonance: Q,
BW, Center, Amp,
Phase, Fit Error

A curve is fitted to a resonator. The fit boundaries are determined
by the two cursors X1 and X2. Depending on the type of trace
(Demod R or Demod Phase) either a Lorentzian or an inverse
tangent function is fitted to the trace. The Q is the quality factor of
the fitted curve. BW is the 3dB bandwidth (FWHM) of the fitted
curve. Center is the center frequency. Amp gives the amplitude
(Demod R only), whereas Phase returns the phase at the center
frequency of the resonance (demod Phase only). The fit error is
given by the normalized root-mean-square deviation. It is
normalized by the range of the measured data.

Linear Fit:
Intercept, Slope,
R²

A simple linear least squares regression is performed using a QR
decomposition routine. The fit boundaries are determined by the
two cursors X1 and X2. The parameter outputs are the Y-axis
intercept, slope and the R²-value, which is the coefficient of
determination to determine the goodness-of-fit.

Add Add the selected math function to the result table below.

Add All Add all operations for the selected signal to the result table below.

Clear
Selected

Clear selected lines from the result table above.

Clear All Clear all lines from the result table above.

Copy Copy selected row(s) to Clipboard as CSV

Unit Prefix Adds a suitable prefix to the SI units to allow for better readability
and increase of significant digits displayed.

CSV Values of the current result table are saved as a text file into the
download folder.

Net Link Provides a LabOne Net Link to use the data in tools like Excel,
MATLAB, etc.

Help Opens the LabOne User Interface help.

Note

The standard deviation is calculated using the formula for the unbiased

estimator of the sample standard deviation with a total of N samples and an arithmetic average
 . The formula above is used as-is to calculate the standard deviation for the Histogram Plot Math

tool. For large number of points (Cursor Area and Plot Area tools), the more accurate pairwise
algorithm is used (Chan et al., "Algorithms for Computing the Sample Variance: Analysis and
Recommendations", The American Statistician 37 (1983), 242-247).

1N−1∑i=1N(xi−xˉ)2\sqrt \frac{1}{N-1}\sum_{i=1}^{N}(x_i-\bar{x})^2(x −N−1
1 ∑i=1

N
i)x̄ 2

xix_ixi
xˉ\bar{x}x̄

5.1. Setup Functionality

107 Zurich Instruments SHFSG+ User Manual

Tree Selector

The Tree selector allows one to access streamed measurement data in a hierarchical structure by
checking the boxes of the signals that should be displayed. The tree selector also supports data
selection from multiple instruments, where available. Depending on the tool, the Tree selector is
either displayed in a separate Tree sub-tab, or it is accessible by a click on the button.

Figure 5.3: Tree selector with Display drop-down menu

5.1. Setup Functionality

108 Zurich Instruments SHFSG+ User Manual

Vertical Axis Groups

Vertical Axis groups are available as part of the plot functionality in many of the LabOne tools. Their
purpose is to handle signals with different axis properties within the same plot. Signals with
different units naturally have independent vertical scales even if they are displayed in the same plot.
However, signals with the same unit should preferably share one scaling to enable quantitative
comparison. To this end, the signals are assigned to specific axis group. Each axis group has its own
axis system. This default behavior can be changed by moving one or more signals into a new group.

The tick labels of only one axis group can be shown at once. This is the foreground axis group. To
define the foreground group click on one of the group names in the Vertical Axis Groups box. The
current foreground group gets a high contrast color.

Select foreground group

Click on a signal name or group name inside the Vertical Axis Groups. If a group is empty the
selection is not performed.

Split the default vertical axis group

Use drag-and-drop to move one signal on the field [Drop signal here to add a new group]. This signal
will now have its own axis system.

Change vertical axis group of a signal

Use drag-and-drop to move a signal from one group into another group that has the same unit.

Group separation

In case a group hosts multiple signals and the unit of some of these signals changes, the group will
be split in several groups according to the different new units.

Remove a signal from the group

In order to remove a signal from a group drag-and-drop the signal to a place outside of the Vertical
Axis Groups box.

Remove a vertical axis group

A group is removed as soon as the last signal of a custom group is removed. Default groups will
remain active until they are explicitly removed by drag-and-drop. If a new signal is added that match
the group properties it will be added again to this default group. This ensures that settings of default
groups are not lost, unless explicitly removed.

Rename a vertical axis group

New groups get a default name "Group of ...". This name can be changed by double-clicking on the
group name.

Hide/show a signal

Uncheck/check the check box of the signal. This is faster than fetching a signal from a tree again.

Figure 5.4: Vertical Axis Group typical drag and drop moves.

Demodulator data is only available when using a Zurich Instruments lock-in amplifier from the SHF,
UHF, HF, or MF series.

Table 5.7: Vertical Axis Groups description

5.1. Setup Functionality

109 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/
Range

Description

Vertical
Axis Group

Manages signal groups sharing a common vertical axis. Show or hide
signals by changing the check box state. Split a group by dropping
signals to the field [Drop signal here to add new group]. Remove signals
by dragging them on a free area.

Rename group names by editing the group label. Axis tick labels of the
selected group are shown in the plot. Cursor elements of the active
wave (selected) are added in the cursor math tab.

Signal Type Select signal types for the Vertical Axis Group.

Channel integer
value

Selects a channel to be added.

Signal integer
value

Selects signal to be added.

Add Signal Adds a signal to the plot. The signal will be added to its default group. It
may be moved by drag and drop to its own group. All signals within a
group share a common y-axis. Select a group to bring its axis to the
foreground and display its labels.

Window
Length

2 s to 12 h Window memory depth. Values larger than 10 s may cause excessive
memory consumption for signals with high sampling rates. Auto scale or
pan causes a refresh of the display for which only data within the
defined window length are considered.

Trends

The Trends tool lets the user monitor the temporal evolution of signal features such as minimum and
maximum values, or mean and standard deviation. This feature is available for the tab. Using the
Trends feature, one can monitor all the parameters obtained in the Math sub-tab of the
corresponding tab.

The Trends tool allows the user to analyze recorded data on a different and adjustable time scale
much longer than the fast acquisition of measured signals. It saves time by avoiding post-processing
of recorded signals and it facilitates fine-tuning of experimental parameters as it extracts and
shows the measurement outcome in real time.

To activate the Trends plot, enable the Trends button in the Control sub-tab of the corresponding
main tab. Various signal features can be added to the plot from the Trends sub-tab in the Vertical
Axis Groups . The vertical axis group of Trends has its own Run/Stop button and Length setting
independent from the main plot of the tab. Since the Math quantities are derived from the raw
signals in the main plot, the Trends plot is only shown together with the main plot. The Trends
feature is only available in the LabOne user interface and not at the API level.

5.1.2. Config Tab

The Config tab provides access to all major LabOne settings and is available on all SHFSG+
instruments.

Features

 define instrument connection parameters
 browser session control
 define UI appearance (grids, theme, etc.)
 store and load instrument settings and UI settings
 configure data recording

5.1. Setup Functionality

110 Zurich Instruments SHFSG+ User Manual

Description

The Config tab serves as a control panel for all general LabOne settings and is opened by default on
start-up. Whenever the tab is closed or an additional one of the same type is needed, clicking the
following icon will open a new instance of the tab.

Table 5.8: App icon and short description

Control/Tool Option/Range Description

Config Provides access to software configuration.

The Config tab (see LabOne UI: Config tab) is divided into four sections to control connections,
sessions, settings, user interface appearance and data recording.

Figure 5.5: LabOne UI: Config tab

The Connection section provides information about connection and server versions. Access from
remote locations can be restricted with the connectivity setting.

The Session section provides the session number which is also displayed in the status bar. Clicking
on Session Dialog opens the session dialog window (same as start up screen) that allows one to
load different settings files as well as to connect to other instruments.

The Settings section allows one to load and save instrument and UI settings. The saved settings are
later available in the session dialog.

The User Preferences section contains the settings that are continuously stored and automatically
reloaded the next time an SHFSG+ instrument is used from the same computer account.

For low ambient light conditions the use of the dark display theme is recommended (see Figure 5.6).

Figure 5.6: LabOne UI: Config tab - dark theme

Functional Elements

Table 5.9: Config tab

Control/
Tool

Option/Range Description

About Get information about LabOne software.

Web Server
Version and
Revision

string Web Server version and revision number

Host default is localhost:
127.0.0.1

IP-Address of the LabOne Web Server

Port 4 digit integer LabOne Web Server TCP/IP port

Data Server
Version and
Revision

string Data Server version and revision number

5.1. Setup Functionality

111 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/Range Description

Host default is localhost:
127.0.0.1

IP-Address of the LabOne Data Server

Port default is 8004 TCP/IP port used to connect to the LabOne Data Server.

Connect/
Disconnect

Connect/disconnect the LabOne Data Server of the
currently selected device. If a LabOne Data Server is
connected only devices that are visible to that specific
server are shown in the device list.

Status grey/green Indicates whether the LabOne User Interface is connected
to the selected LabOne data server. Grey: no connection.
Green: connected. Red: error while connecting.

Connectivity From Everywhere Forbid/Allow to connect to this Data Server from other
computers.

Localhost Only

File Upload drop area Drag and drop files in this box to upload files. Clicking on the
box opens a file dialog for file upload.

Supported files: Settings (*.xml).

Session Id integer number Session identifier. A session is a connection between a
client and LabOne Data Server.

Session
Manager

Open the session manager dialog. This allows for device or
session change. The current session can be continued by
pressing cancel.

File Name selection of available
file names

Save/load the device and user interface settings to/from
the selected file on the internal flash drive. The setting files
can be downloaded/uploaded using the Files tab.

Include
Device

Enable Save/Load of Device settings.

Include UI Enable Save/Load of User Interface settings.

Include
Preferences

Enable loading of User Preferences from settings file.

Save Save the user interface and device setting to a file.

Load Load the user interface and device setting from a file.

Display
Theme

Dark Choose theme of the user interface.

Light

Plot Print
Theme

Dark Choose theme for printing SVG plots.

Light

Plot Grid None Select active grid setting for all SVG plots.

Dashed

Solid

Plot
Rendering

Select rendering hint about what tradeoffs to make as the
browser renders SVG plots. The setting has impact on
rendering speed and plot display for both displayed and
saved plots.

Auto Indicates that the browser shall make appropriate tradeoffs
to balance speed, crisp edges and geometric precision, but
with geometric precision given more importance than
speed and crisp edges.

Optimize Speed The browser shall emphasize rendering speed over
geometric precision and crisp edges. This option will
sometimes cause the browser to turn off shape anti-
aliasing.

5.1. Setup Functionality

112 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/Range Description

Crisp Edges Indicates that the browser shall attempt to emphasize the
contrast between clean edges of artwork over rendering
speed and geometric precision. To achieve crisp edges, the
user agent might turn off anti-aliasing for all lines and
curves or possibly just for straight lines which are close to
vertical or horizontal.

Geometric Precision Indicates that the browser shall emphasize geometric
precision over speed and crisp edges.

Resampling
Method

Select the resampling interpolation method. Resampling
corrects for sample misalignment in subsequent scope
shots. This is important when using reduced sample rates
with a time resolution below that of the trigger.

Linear Linear interpolation

PCHIP Piecewise Cubic Hermite Interpolating Polynomial

Show
Shortcuts

ON / OFF Displays a list of keyboard and mouse wheel shortcuts for
manipulating plots.

Dynamic Tabs ON / OFF If enabled, sections inside the application tabs are
collapsed automatically depending on the window width.

Graphical
Mode

Collapsed Select the display mode for the graphical elements. Auto
format will select the format which fits best the current
window width.Auto

Expanded

Log Format .NET Choose the command log format. See status bar and [User]
\Documents\Zurich Instruments\LabOne\WebServer\Log

MATLAB

Python

CSV Delimiter Tab Select which delimiter to insert for CSV files.

Comma

Semicolon

CSV Locale System locale. Use
the symbols set in
the language and
region settings of the
computer

Select the locale used for defining the decimal point and
digit grouping symbols in numeric values in CSV files. The
default locale uses dot for the decimal point and no digit
grouping, e.g. 1005.07. The system locale uses the symbols
set in the language and region settings of the computer.

Default locale. Dot
for the decimal point
and no digit
grouping, e.g. 1005.07

HDF5 Saving Multiple files. Each
measurement goes
in a separate file

For HDF5 file format only: Select whether each
measurement should be stored in a separate file, or
whether all measurements should be saved in a single file.

Single file. All
measurements go in
one file

Auto Start ON / OFF Skip session manager dialog at start-up if selected device is
available.

In case of an error or disconnected device the session
manager will be reactivated.

Update
Reminder

ON / OFF Display a reminder on start-up if the LabOne software
wasn't updated in 180 days.

Update Check ON / OFF Periodically check for new LabOne software over the
internet.

Drive Select the drive for data saving.

Format HDF5 File format of recorded and saved data.

5.1. Setup Functionality

113 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/Range Description

MATLAB

CSV

Open Folder Open recorded data in the system File Explorer.

Folder path indicating file
location

Folder containing the recorded data.

Save Interval Time in seconds Time between saves to disk. A shorter interval means less
system memory consumption, but for certain file formats
(e.g. MATLAB) many small files on disk. A longer interval
means more system memory consumption, but for certain
file formats (e.g. MATLAB) fewer, larger files on disk.

Queue integer number Number of data chunks not yet written to disk.

Size integer number Accumulated size of saved data in the current session.

Record ON / OFF Start and stop saving data to disk as defined in the
selection filter. Length of the files is determined by the
Window Length setting in the Plotter tab.

Writing grey/green Indicates whether data is currently written to disk.

Display filter or regular
expression

Display specific tree branches using one of the preset view
filters or a custom regular expression.

Tree ON / OFF Click on a tree node to activate it.

All Select all tree elements.

None Deselect all tree elements.

5.1.3. Device Tab

The Device tab is the main settings tab for the connected instrument and is available on all SHFSG+
instruments.

Features

 Option and upgrade management
 External clock referencing (10/100 MHz)
 Instrument connectivity parameters
 Device monitor

Description

The Device tab serves mainly as a control panel for all settings specific to the instrument that is
controlled by LabOne in this particular session. Whenever the tab is closed or an additional one of
the same type is needed, clicking the following icon will open a new instance of the tab.

Table 5.10: App icon and short description

Control/Tool Option/Range Description

Device Provides instrument specific settings.

The Device tab is divided into five sections: general instrument information, configuration,
communication parameters, statistics, and a device monitor.

5.1. Setup Functionality

114 Zurich Instruments SHFSG+ User Manual

Figure 5.7: LabOne UI: Device tab

The Information section provides details about the instrument hardware and indicates the installed
upgrade options. This is also the place where new options can be added by entering the provided
option key.

The Configuration section allows one to change the reference from the internal clock to an external
10 / 100 MHz reference. The reference is to be connected to the Clock Input on the instrument back
panel. The section also allows one to select a frequency of 10 or 100 MHz of the reference clock
output, which is generated at the Clock Output on the instrument back panel.

The Communication section offers access to the instruments TCP/IP settings.

The Statistics section gives an overview on communication statistics.

Note

Packet loss on data streaming over UDP, TCP or USB: data packets may be lost if total bandwidth
exceeds the available physical interface bandwidth. Data may also be lost if the host computer is
not able to handle high-bandwidth data.

Packet loss on command streaming over TCP or USB: command packets should never be lost as it
creates an invalid state.

The Device Monitor section is collapsed by default and generally only needed for servicing. It
displays vitality signals of some of the instrument’s hardware components.

Functional Elements

Table 5.11: Device tab

Control/Tool Option/Range Description

Serial 1-4 digit number Device serial number

Type string Device type

FPGA integer number HDL firmware revision.

Digital Board version number Hardware revision of the FPGA base board.

Firmware integer number Revision of the device internal controller software.

Installed Options short names for
each option

Options that are installed on this device.

Install Click to install options on this device. Requires a unique
feature code and a power cycle after entry.

More Information Display additional device information in a separate
browser tab.

Upgrade Device
Options

Display available upgrade options.

Input Reference
Clock Source

Selects Internal, External or the ZSync clock source as
reference. Instruments will be disconnected from ZSync
if clock source is changed to Internal or External.

Internal The internal 100MHz clock is used as the frequency and
time base reference.

5.1. Setup Functionality

115 Zurich Instruments SHFSG+ User Manual

Control/Tool Option/Range Description

External An external clock is intended to be used as the
frequency and time base reference. Provide a clean and
stable 10MHz or 100MHz reference to the appropriate
back panel connector.

ZSync A ZSync clock is intended to be used as the frequency
and time base reference.

Actual Input
Reference Clock
Source

Currently active clock source. This might differ from the
Set Source choice if the set clock is not available.

Internal Internal 100MHz clock is actually used as the frequency
and time base reference.

External An external clock is actually used as the frequency and
time base reference.

ZSync ZSync clock is actually used as the frequency and time
base reference.

Input Reference
Clock Frequency

Indicates the frequency of the input reference clock.

Input Reference
Clock Status

Indicates the status of the input reference clock. Green:
locked. Yellow: the device is busy trying to lock onto the
input reference clock signal. Red: there was an error
locking onto the input reference clock signal. The
instrument is currently not operational.

Output Reference
Clock Enable

Enable clock signal on the reference clock output.

Output Reference
Clock Frequency

Selects the frequency of the output reference clock to
be 10MHz or 100MHz.

Synchronization
Source

Selects the source for synchronization of channels:
internal (default) or external

Internal Synchronization of all channels of a device that have the
corresponding synchronization setting enabled.

External Same as internal plus synchronization to other devices
via ZSync.

Load Factory
Default

Load the factory default settings.

Busy grey/red Indicates that the device is busy with either loading,
saving or erasing a preset.

Error Returns a 0 if the last preset operation was successfully
completed or 1 if the last preset operation was illegal.

0 Last preset operation was successfully completed.

1 Last preset operation was illegal.

Error LED grey/red Turns red if the last operation was illegal.

Interface Active interface between device and data server. In case
multiple options are available, the priority as indicated
on the left applies.

MAC Address 80:2F:DE:xx:xx:xx MAC address of the device. The MAC address is defined
statically, cannot be changed and is unique for each
device.

IPv4 Address default 192.168.1.10 Current IP address of the device. This IP address is
assigned dynamically by a DHCP server, defined
statically, or is a fall-back IP address if the DHCP server
could not be found (for point to point connections).

Static IP ON / OFF Enable this flag if the device is used in a network with
fixed IP assignment without a DHCP server.

IPv4 Address default 192.168.1.10 Static IP address to be written to the device.

IPv4 Mask default
255.255.255.0

Static IP mask to be written to the device.

5.1. Setup Functionality

116 Zurich Instruments SHFSG+ User Manual

Control/Tool Option/Range Description

Gateway default 192.168.1.1 Static IP gateway

Save Click to save the specified IPv4 address, IPv4 Mask and
Gateway to the device. Otherwise, the settings will be
lost after power cycling the device.

5.1.4. File Manager Tab

Features

 Download measurement data, instruments settings and log files to a local device
 Manage file structure (browse, copy, rename, delete) on instrument flash drive and attached USB

mass storage devices
 Update instrument from USB mass storage
 Quick access to measurement files, log files and settings files
 File preview for settings files and log files

Description

The File Manager tab provides standard tools to see and organize the files relevant for the use of the
instrument. Files can be conveniently copied, renamed and deleted. Whenever the tab is closed or
an additional one of the same type is needed, clicking the following icon will open a new instance of
the tab.

Table 5.12: App icon and short description

Control/
Tool

Option/
Range

Description

Files Access settings and measurement data files on the host
computer.

The Files tab (see LabOne UI: File Manager tab) provides three windows for exploring. The left
window allows one to browse through the directory structure, the center window shows the files of
the folder selected in the left window, and the right window displays the content of the file selected
in the center window, e.g. a settings file or log file.

Figure 5.8: LabOne UI: File Manager tab

Functional Elements

Table 5.13: File tab

Control/
Tool

Option/
Range

Description

New Folder Create new folder at current location.

Rename Rename selected file or folder.

Delete Delete selected file(s) and/or folder(s).

Copy Copy selected file(s) and/or folder(s) to Clipboard.

Cut Cut selected file(s) and/or folder(s) to Clipboard.

5.1. Setup Functionality

117 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/
Range

Description

Paste Paste file(s) and/or folder(s) from Clipboard to the selected
directory.

Upload Upload file(s) and/or folder(s) to the selected directory.

Download Download selected file(s) and/or folder(s).

5.1.5. Upgrade Tab

The Upgrade tab serves as a source of information about the possible upgrade options for the
instrument in use. The tab has no functional purpose but provides the user with a quick link to
further information about the upgrade options online.

5.1.6. ZI Labs Tab

The ZI Labs tab contains experimental LabOne functionalities added by the ZI development team.
The settings found here are often relevant to special applications, but have not yet found their
definitive place in one of the other LabOne tabs. Naturally this tab is subject to frequent changes,
and the documentation of the individual features would go beyond the scope of this user manual.
Clicking the following icon will open a new instance of the tab.

Table 5.14: App Icon and short description

Control/Tool Option/Range Description

ZI Labs Experimental settings and controls.

5.2. Measurement Functionality

In this section, the measurement functionality of the SHFSG+ is described, i.e. the functionality that
is useful when setting up and carrying out experiments. Each chapter first introduces the
functionality, provides a summary of the functional elements before - if applicable - explaining the
representation in the LabOne general user interface.

The instrument functionality can be represented by a node tree. Each node can either set, read or
poll settings or data from the device. Most of the functionality resides within the different output
Channels of the SHFSG+, each of which is represented by its own version of the SGChannels branch:
/DEV..../SGCHANNELS/n/.... Functionality that is either independent of the output Channels or
shared between them has its own branch, e.g. common device features (/DEV..../Features/...), or
system features (/DEV..../systems/n/...). All nodes are listed within the node tree documentation.

Note

The following chapters are constantly being upgraded and new documentation is added. For the
latest version of the documentation, please always refer to the online documentation.

5.2.1. Output Tab

The Output tab can be used to configure the center frequency and maximum output power of the
generated signals. It is available on all SHFSG+ instruments.

Features Overview

 Enable/disable output
 Define the Center Frequency of the modulation band
 Define the output power range
 Switch between Radio Frequency (RF) and Low Frequency (LF) paths

5.2. Measurement Functionality

118 Zurich Instruments SHFSG+ User Manual

Description

Table 5.15: App icon and short description

Control/
Tool

Option/
Range

Description

Output Quick overview and access to all the settings for configuring the
analog upconversion path.

The SHFSG+ uses the double super-heterodyne frequency upconversion technique to generate its
RF output frequencies, and each Signal Generator Channel has its own frequency upconversion
chain. Each Signal Generator Channel has two available Output paths: the RF path for generating
signals with center frequencies from 0.6 GHz to 8 GHz, and the LF path for generating signals with
center frequencies from 0 GHz to 2 GHz. When using the RF path, center frequencies determine the
frequency of an analog synthesizer and can be set with a resolution of 0.2 GHz. Both variants of the
SHFSG+ contain 4 synthesizers. In the 4-channel variant, each Signal Generator Channel therefore
has its own synthesizer, whereas in the 8-channel variant, there is 1 synthesizer per Signal Generator
Channel pair. This means that Signal Generator Channels 1 and 2 must share the same RF center
frequency in the 8-channel variant of the SHFSG+ Instrument when using the RF path. To achieve
different output frequencies on Signal Generator Channels 1 and 2 in the 8-channel variant, digital
modulation must be employed (see the Modulation Tab). When using the LF path, the center
frequencies of each channel must be a multiple of 0.1 GHz and can be set independently of the other
channels in all variants of the SHFSG+ Instrument.

Note

The LF and RF paths can be programmed with the same sequences (see the Basic Waveform
Playback Tutorial) but the LF path has a shorter latency than the RF path due to the differences in
the analog part of the signal path. The differences in latencies can be compensated by appropriate
use of the playZero command, described in the Tutorials.

Figure 5.9: Analog Signal Output Stage

When using the Signal Output of the RF path, the digital 1-GHz-wide modulation band centered
around DC is first interpolated by a factor of 3, then digitally upconverted to 2 GHz (light blue
elements) before it is passed to the 14-bit DAC. The resulting 2 GHz analog signal (dark blue
elements) is then converted to 12 GHz by means of a local oscillator at 10 GHz. To remove all
unwanted spurious signals, the signal is strongly filtered before it is down-converted in a second
mixing process with a variable local oscillator. Depending on its software-controllable frequency
value, the final output frequency band has a center frequency between 0.6-8 GHz and a width of
±0.5 GHz. Several amplifiers, attenuators, and filters in the up-conversion chain ensure that the
different elements are not saturated and that the DAC range is faithfully mapped to the selected
Output Range.

When using the LF path, the digital 1-GHz-wide modulation signal is still interpolated by a factor of 3
and passed to the 14-bit DAC, but the analog upconversion chain is bypassed. The center frequency
is determined by setting the frequency of the oscillator used in the digital upconversion (fixed at 2
GHz when using the RF path, and can be set to a multiple of 100 MHz in the range 0 - 2 GHz when
using the LF path). In this way, signals with center frequencies between 0 and 2 GHz can be
generated with the LF path.

The advantages of this up-conversion scheme compared to IQ-mixer-based frequency conversion
are that it is calibration-free, wide-band, and stable, in addition to having superior spurious tone
performance. The optimal selection of the different gains, attenuators, and filters in the frequency
conversion chains are taken over by the SHFSG+, such that only a few settings need to be set in the
Output band parameters of the SHFSG+: Center Frequency, Output Range, and Output On.

5.2. Measurement Functionality

119 Zurich Instruments SHFSG+ User Manual

Note

For both the LF and RF paths, the output power can be set in steps of 5 dBm, in the range -30 dBm
to +10 dBm for the RF path and -30 dBm to +5 dBm for the LF path. If the power is set to a value that
is outside this range or not a multiple of 5 dBm, the value will automatically be rounded to the
nearest multiple of 5 dBm within the range for the path.

Note

It is highly recommended to enable all required inputs and outputs and wait for 2 hours after
powering on the instrument.

Note

Please wait for at least 0.5 seconds after switching the center frequency or power range before
running a measurement.

Output Tab in the LabOne GUI

The Output settings can be accessed through the Output tab of the LabOne general user
interface of the SHFSG+. After clicking on the tab, an overview subtab opens that displays all
settings for all available Signal Generator Channels.

Figure 5.10: The Overview Output Tab of the GUI

With the selectors at the left side of the Output tab, the detailed view of the up-conversion chain for
the different Signal Generator Channels can be displayed. Each detailed view shows the available
settings in the first, leftmost panel. In the second panel, a graphical representation of the currently
selected parameters of the up-conversion chain is displayed.

Figure 5.11: A detailed Output Tab of the GUI

Functional Elements

Table 5.16: Output tab

Control/Tool Option/
Range

Description

Center
Frequency

Center frequency of the output band at the output of the instrument.
A copy of the displayed value is also contained in the read-only node
'/{device}/sgchannels/{n}/centerfreq'.

Center
Frequency

Set center frequency of digital mixer.

5.2. Measurement Functionality

120 Zurich Instruments SHFSG+ User Manual

Control/Tool Option/
Range

Description

Output Digital
Mixer
Frequency

The Center Frequency of the digital mixer for the Signal Output.

Center
Frequency

Center frequency of the detection band at the input/output of the
instrument.

Variable Local
Oscillator
Frequency

This local oscillator converts between the fixed signal band around
12 GHz and the variable readout band at the In/Out connector.
Shared between the Signal Input/Output modules of the same
channel, its value is given by the user-determined Center Frequency
value + 12 GHz.

Input Digital
Mixer
Frequency

The Center Frequency of the digital mixer for the Signal Input.

Variable Local
Oscillator
Frequency

This local oscillator converts between the fixed signal band around
12 GHz and the variable output band at the Out connector. Its value is
given by the user-determined Center Frequency value + 12 GHz.

Range Maximal power at the input of the instrument.

Input Path RF path is
used.

Switch between RF and LF input path.

LF path is
used.

Range Maximal power at the output of the instrument.

Selectable RF
Output Filter

The filter value is selected according to the Center Frequency value
and ensures that higher signal harmonics are removed at the Signal
Output.

Output Path RF path is
used.

Switch between RF and LF output path.

LF path is
used.

RF/LF Interlock Enables the RF/LF path interlock between input and output. If
enabled, the output path is always configured according to the input.

Delay (s) This value adds a delay to both the signal and trigger/marker
outputs.

Channel Select Select which channel is to be cleared.

Reset All Reset all the channels.

Reset Channel Reset only the selected channel.

Mode Configure the NCO reset mode.

5.2.2. Digital Modulation Tab

The Digital Modulation tab can be used to configure the digital oscillators, as well as the settings
used to modulate pulse sequences and generate sinusoidal signals. It is available on all SHFSG+
instruments.

Features

 Sine generator configuration: frequency, oscillator select, harmonic, phase, amplitude
 Gain settings for upper- or lower-sideband modulation
 Enable pulse modulation or continuous signal output

5.2. Measurement Functionality

121 Zurich Instruments SHFSG+ User Manual

Description

Table 5.17: App icon and short description

Control/Tool Option/Range Description

Mod Access to all the settings of the digital modulation.

The Digital Modulation tab (see Figure 5.12) is divided into three sections: Oscillators, Sine
Generators, and Waveform Generators.

Figure 5.12: LabOne UI: Digital Modulation tab

The purpose of the Digital Modulation tab is to configure the digital sine generator of each SHFSG+
channel, to enable the modulation (i.e. multiplication) or addition of sinusoidal and AWG signals. The
tabular layout of the tab provides a quick overview of the status of the different channels of the
instrument.

Conceptually, the tab is laid out as follows: The Oscillators section contains the frequencies of the
eight digital oscillators for each channel. The Sine Generators section contains settings such as
phase and harmonic for the sine generator of each channel, as well as settings for generating
sinusoidal signal outputs. The Waveform Generators section configures how the sine generator is
used to modulate the AWG signals. The signal on a given output can be a multiplication, or addition,
or both, of AWG and sinusoidal signals, depending which modulation modes are enabled.

The individual sinusoidal and AWG signals are configured in the Sine Generators and Waveform
Generators sections, respectively. For an example of how to generate a continuous, sinusoidal signal
on a given channel, the see Basic Sine Generation Tutorial. For an example of how to use the sine
generator to modulate a pulse sequence from the AWG, see the Digital Modulation Tutorial.

The gain settings in the Waveform Generators and the Sine Generators sections are graphically
grouped in pairs, and each pair is associated with an I or Q input to the DAC. For the Sine Generators
section, the I and Q pairs are further separated into Sin and Cos terms. In the Waveform Generators
section, the I and Q pairs of gain settings. In both cases, the default settings are chosen to generate
an upper sideband signal when using a positive oscillator frequency. For a more detailed explanation
of how these gain settings are used in generating signals, see the Digital Modulation Tutorial.

Functional Elements

Table 5.18: MOD tab

Control/
Tool

Option/
Range

Description

SG Channels Select SG Channel to display corresponding set of oscillator
frequencies.

Frequency
(Hz)

Oscillator frequency.

Oscillator
Select

Selection of the oscillator used for the generated sine signal.

Harmonic Multiplies the oscillator's reference frequency with the integer factor
defined by this field.

Frequency
(Hz)

Frequency of the selected oscillator.

5.2. Measurement Functionality

122 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/
Range

Description

Phase Shift
(deg)

Sets the phase of the sine signal.

I Sin
Amplitude

Sets the amplitude of the sine signal sent to the I input of the digital
mixer.

I Cos
Amplitude

Sets the amplitude of the cosine signal sent to the I input of the digital
mixer.

I Enable ON / OFF Enables the I input of the digital mixer.

Q Sin
Amplitude

Sets the amplitude of the sine signal sent to the Q input of the digital
mixer.

Q Cos
Amplitude

Sets the amplitude of the cosine signal sent to the Q input of the digital
mixer.

Q Enable ON / OFF Enables the Q input of the digital mixer.

Run/Stop Runs the AWG sequencer.

Sequencer
Status

grey/
green/red

Displays the status of the sequencer on the instrument. Off: Ready, not
running. Green: Running, not waiting for any trigger event. Yellow:
Running, waiting for a trigger event. Red: Not ready (e.g., pending elf
download, no elf download).

Modulation
Enable

ON / OFF Enables digital modulation of the waveforms generated by the AWG.

AWG Output
Amplitude

Sets the amplitude of the AWG output.

Hold ON / OFF Keep the last sample (constant) on the outputs even after the
waveform program finishes. It is recommended to use only AWG
waveforms with lengths equal to a multiple of 16 together with this
functionality. Waveforms with other lengths are automatically padded
with zeros at the end by the AWG compiler. The status of the hold node
is checked only when the AWG is enabled. If hold is disabled after
enabling the AWG or when the AWG is not running, AWG output values
will still be held.

AWG Output
Gain
Amplitude

Sets the amplitude scaling factor of the given AWG channel. The
amplitude is a dimensionless scaling factor applied to the digital signal.

AWG Output
Gain Enable

ON / OFF Indicates the routing of the AWG signal (row) to the digital mixer inputs
(column).

5.2.3. AWG Tab

The AWG tab is available on all SHFSG+ Signal Generator instruments.

Features

 4- or 8-channel arbitrary waveform generator
 98 kSa waveform memory per channel
 Sequence branching
 Digital modulation
 Cross-domain trigger engine
 Sequence Editor with code highlighting and auto completion
 High-level programming language with waveform generation and editing toolset
 Waveform viewer

Description

The AWG tab gives access to the arbitrary waveform generator functionality. Whenever the tab is
closed or an additional one of the same type is needed, clicking the following icon will open a new
instance of the tab.

5.2. Measurement Functionality

123 Zurich Instruments SHFSG+ User Manual

Table 5.19: App icon and short description

Control/
Tool

Option/
Range

Description

AWG Generate arbitrary signals using sequencing and sample-by-sample
definition of waveforms.

The AWG tab (see Figure 5.13) consists of a settings section on the right side and the Sequence and
Waveform Viewer sub-tabs on the left side. The settings section is further divided into Control,
Waveform, Trigger, and Advanced sub-tabs. The Sequence sub-tab is used for displaying, editing and
compiling a LabOne sequence program. The sequence program defines which waveforms are played
and in which order. The Sequence Editor is the main tool for operating the AWG.

Figure 5.13: LabOne UI: AWG tab

A number of sequence programming examples are available through a drop-down menu at the top
of the Sequence Editor, and additional ones can be found in Tutorials . The LabOne sequence
programming language is specified in detail in LabOne Sequence Programming. The language comes
with a number of predefined waveforms, such as Gaussian, Blackman, sine, or square functions. By
combining those predefined waveforms using the waveform editing tools (add, multiply, cut,
concatenate, etc), signals with a high level of complexity can be generated directly from the
Sequence Editor window. Sample-by-sample definition of the output signal is possible by using
comma-separated value (CSV) files specified by the user .

The AWG features a compiler which translates the high-level sequence program into machine
instructions and waveform data to be stored in the instrument memory as shown in Figure 5.14. The
sequence program is written using high-level control structures and syntax that are inspired by
human language, whereas machine instructions reflect exactly what happens on the hardware level.
Writing the sequence program using a high-level language represents a more natural and efficient
way of working in comparison to writing lists of machine instructions, which is the traditional way of
programming AWGs. Concretely, the improvements rely on features such as:

 combination of waveform generation, editing, and playback sequence in a single script
 easily readable syntax and naming for run-time variables and constants
 optimized waveform memory management, reduced transfers upon waveform changes
 definition of user functions and procedures for advanced structuring
 syntax validation

By design, there is no one-to-one link between the list of statements in the high-level language and
the list of instructions executed by the Sequencer. In order to understand the execution timing, it’s
helpful to consider the internal architecture of the AWG, consisting of the Sequencer itself, the
Waveform Player, and the Waveform Memory.

Figure 5.14: AWG sequence program compilation process

The Sequence Editor provides the editing, compilation, and transfer functionality for sequence
programs. A program typed into the Editor is compiled upon clicking . If the compilation is
successful and Automatic Upload is enabled, the program including all necessary waveform data is
transferred to the device. If the compilation fails, the Status field will display debug messages.
Clicking on allows you to choose a new name for the program. The name of the program

5.2. Measurement Functionality

124 Zurich Instruments SHFSG+ User Manual

that is currently edited is displayed at the top of the editor. External program files as well as
waveform data files can be transferred to the right location easily using the file drag-and-drop zone
in the Config Tab so they become accessible from the user interface. The files can be managed in
the File Manager Tab and their location in the directory structure is shown in Table 5.20. The
program name is displayed in a drop-down box. The box allows quick access to all programs in the
standard sequence program location. It is possible to quickly switch between programs using the
box. Changes made in one program will be preserved when switching to a different program. The file
name of a program will be postfixed by an asterisk in case there are unsaved changes in the source
file. Note that switching programs in the editor is not sufficient to also update the program in the
instrument. In order to send a newly selected program to the instrument, the button must
be clicked.

Table 5.20: Sequence program and waveform file location

File type Location

Waveform files
(Windows)

C:\Users\<user name>\Documents\Zurich
Instruments\LabOne\WebServer\awg\waves

Sequence programs
(Windows)

C:\Users\<user name>\Documents\Zurich
Instruments\LabOne\WebServer\awg\src

Waveform files (Linux) ~/Zurich Instruments/LabOne/WebServer/awg/waves

Sequence programs
(Linux)

~/Zurich Instruments/LabOne/WebServer/awg/src

In the Control sub-tab the user configures signal parameters and controls the execution of the
AWG. The AWG can be started in by clicking on . When enabling the Rerun button, the
Sequencer will be restarted automatically when its program completes. The continuous mode is a
simple way to create an infinite loop, but it results in a considerable timing jitter. To avoid this jitter, it
is recommended to specify infinite loops directly in the sequence program.

The Sampling Rate field is used to control the default playback sampling rate of the AWG. The
sampling rate is dynamic, i.e., can be specified for each waveform by using an optional argument in
the waveform playback instructions in the sequence program. This allows for considerably reducing
waveform upload time for signals that contain both fast and slow components.

The Waveform sub-tab displays information about the waveforms that are used by the current
sequence program, such as their length and channel number. Together with the Waveform viewer
sub-tab, it is a useful tool to visualize the waveforms used in the sequence program.

On the Trigger sub-tab you can configure the trigger inputs of the AWG. Each AWG core has two
internal trigger input channels which can be configured to probe any of the Trig inputs on the
instrument front panel. The Advanced sub-tab displays the compiled list of sequencer instructions
and the current state of the sequencer on the instrument. This can help an advanced user in
debugging a sequence program and understanding its execution.

Sequence Editor Keyboard Shortcuts

The tables below list a number of helpful keyboard shortcuts that are applicable in the LabOne
Sequence Editor.

Table 5.21: Line Operations

Shortcut Action

Ctrl+D Remove line

Alt+Shift+Down Copy lines down

Alt+Shift+Up Copy lines up

Alt+Down Move lines down

Alt+Up Move lines up

Alt+Del Remove to line end

Alt+Backspace Remove to line start

Ctrl+Backspace Remove word left

5.2. Measurement Functionality

125 Zurich Instruments SHFSG+ User Manual

Shortcut Action

Ctrl+Del Remove word right

Table 5.22: Selection

Shortcut Action

Ctrl+A Select all

Shift+Left Select left

Shift+Right Select right

Ctrl+Shift+Left Select word left

Ctrl+Shift+Right Select word right

Shift+Home Select line start

Shift+End Select line end

Alt+Shift+Right Select to line end

Alt+Shift+Left Select to line start

Shift+Up Select up

Shift+Down Select down

Shift+Page Up Select page up

Shift+Page Down Select page down

Ctrl+Shift+Home Select to start

Ctrl+Shift+End Select to end

Ctrl+Shift+D Duplicate selection

Ctrl+Shift+P Select to matching bracket

Table 5.23: Go to

Shortcut Action

Left Go to left

Right Go to right

Ctrl+Left Go to word left

Ctrl+Right Go to word right

Up Go line up

Down Go line down

Alt+Left, Home Go to line start

Alt+Right, End Go to line end

Page Up Go to page up

Page Down Go to page down

Ctrl+Home Go to start

Ctrl+End Go to end

Ctrl+L Go to line

Ctrl+Down Scroll line down

Ctrl+Up Scroll line up

Ctrl+P Go to matching bracket

5.2. Measurement Functionality

126 Zurich Instruments SHFSG+ User Manual

Table 5.24: Find/Replace

Shortcut Action

Ctrl+F Find

Ctrl+H Replace

Ctrl+K Find next

Ctrl+Shift+K Find previous

Table 5.25: Folding

Shortcut Action

Alt+L Fold selection

Alt+Shift+L Unfold

Table 5.26: Other

Shortcut Action

Tab Indent

Shift+Tab Outdent

Ctrl+Z Undo

Ctrl+Shift+Z, Ctrl+Y Redo

Ctrl+/ Toggle comment

Ctrl+Shift+U Change to lower case

Ctrl+U Change to upper case

Ins Overwrite

Ctrl+Shift+E Macros replay

Ctrl+Alt+E Macros recording

Del Delete

LabOne Sequence Programming

A Simple Example

The syntax of the LabOne AWG Sequencer programming language is based on C, but with a few
simplifications. Each statement is concluded with a semicolon, several statements can be grouped
with curly brackets, and comment lines are identified with a double slash. The following example
shows some of the fundamental functionalities: waveform generation, repeated playback, triggering,
and single/dual-channel waveform playback. See Tutorials for a step-by-step introduction with more
examples.

// Define an integer constant
const N = 4096;
// Create two Gaussian pulses with length N points,
// amplitude +1.0 (-1.0), center at N/2, and a width of N/8
wave gauss_pos = 1.0*gauss(N, N/2, N/8);
wave gauss_neg = -1.0*gauss(N, N/2, N/8);
// execute playback sequence 100 times
repeat (100) {
 // Play pulse on AWG channel 1
 playWave(gauss_pos);
 // Play pulses simultaneously on both AWG channels

5.2. Measurement Functionality

127 Zurich Instruments SHFSG+ User Manual

 playWave(gauss_pos, gauss_neg);
}

Keywords and Comments

The following table lists the keywords used in the LabOne AWG Sequencer language.

Table 5.27: Programming keywords

Keyword Description

const Constant declaration

var Integer variable declaration

cvar Compile-time variable declaration

string Constant string declaration

true Boolean true constant

false Boolean false constant

for For-loop declaration

while While-loop declaration

repeat Repeat-loop declaration

if If-statement

else Else-part of an if-statement

switch Switch-statement

case Case-statement within a switch

default Default-statement within a switch

return Return from function or procedure, optionally with a return value

The following code example shows how to use comments.

const a = 10; // This is a line comment. Everything between the double
 // slash and the end of the line will be ignored.

/* This is a block comment. Everything between the start-of-block-comment
and end-of-block-comment markers is ignored.

For example, the following statement will be ignored by the compiler.
const b = 100;
*/

Constants and Variables

Constants may be used to make the program more readable. They may be of integer or floating-
point type. It must be possible for the compiler to compute the value of a constant at compile time,
i.e., on the host computer. Constants are declared using the const keyword.

Compile-time variables may be used in computations and loop iterations during compile time, e.g.
to create large numbers of waveforms in a loop. They may be of integer or floating-point type. They
are used in a similar way as constants, except that they can change their value during compile time
operations. Compile-time variables are declared using the cvar keyword.

Variables may be used for making simple computations during run time, i.e., on the instrument. The
Sequencer supports integer variables, addition, and subtraction. Not supported are floating-point
variables, multiplication, and division. Typical uses of variables are to step waiting times or to tag
digital measurement data with a numerical identifier. Variables are declared using the var keyword.

5.2. Measurement Functionality

128 Zurich Instruments SHFSG+ User Manual

The following code example shows how to use variables.

var b = 100; // Create and initialize a variable

// Repeat the following block of statements 100 times
repeat (100) {
 b = b + 1; // Increment b
 wait(b); // Wait 'b' cycles
}

The following table shows the predefined constants. These constants are intended to be used as
arguments in certain run-time evaluated functions that encode device parameters with integer
numbers. For example, the AWG Sampling Rate is specified as an integer exponent n in the

expression (baseSamplingClock)/2n. The AWG rates constants are specified for the sampling clock
of 2.0 GHz of the SHFSG+.

Constants whose value is marked as "opaque" are meant to always be used instead of their
numerical value.

Table 5.28: Predefined Constants

Name Value Description

AWG_RATE_2000MHZ 0 Constant to set Sampling Rate to 2.0 GHz.

AWG_RATE_1000MHZ 1 Constant to set Sampling Rate to 1.0 GHz.

AWG_RATE_500MHZ 2 Constant to set Sampling Rate to 500 MHz.

AWG_RATE_250MHZ 3 Constant to set Sampling Rate to 250 MHz.

AWG_RATE_125MHZ 4 Constant to set Sampling Rate to 125 MHz.

AWG_RATE_62P5MHZ 5 Constant to set Sampling Rate to 62.5 MHz.

AWG_RATE_31P25MHZ 6 Constant to set Sampling Rate to 31.25 MHz.

AWG_RATE_15P63MHZ 7 Constant to set Sampling Rate to 15.63 MHz.

AWG_RATE_7P81MHZ 8 Constant to set Sampling Rate to 7.81 MHz.

AWG_RATE_3P9MHZ 9 Constant to set Sampling Rate to 3.9 MHz.

AWG_RATE_1P95MHZ 10 Constant to set Sampling Rate to 1.95 MHz.

AWG_RATE_976KHZ 11 Constant to set Sampling Rate to 976 kHz.

AWG_RATE_488KHZ 12 Constant to set Sampling Rate to 488 kHz.

AWG_RATE_244KHZ 13 Constant to set Sampling Rate to 244 kHz.

DEVICE_SAMPLE_RATE <actual
device
sample
rate>

ZSYNC_DATA_RAW opaque
Constant to use as argument to getFeedback or
executeTableEntry. Respectively, returns the last ZSync
message received as-is without processing or execute
the command table entry with index equal to the last
raw ZSync message.

ZSYNC_DATA_PROCESSED_A opaque
Constant to use as argument to
configureFeedbackProcessing, getFeedback or
executeTableEntry. Respectively, configure the
processing of ZSync messages, returns the last ZSync
message received with processing or execute the
command table entry with index equal the last ZSync
message received with processing.

5.2. Measurement Functionality

129 Zurich Instruments SHFSG+ User Manual

Name Value Description

ZSYNC_DATA_PROCESSED_B opaque
Constant to use as argument to
configureFeedbackProcessing, getFeedback or
executeTableEntry. Respectively, configure the
processing of ZSync messages, returns the last ZSync
message received with processing or execute the
command table entry with index equal the last ZSync
message received with processing.

AWG_CHAN1 1 Constant to select channel 1.

AWG_CHAN2 2 Constant to select channel 2.

AWG_MARKER1 1 Constant to select marker 1.

AWG_MARKER2 2 Constant to select marker 2.

AWG_OSC_PHASE_START 1 Constant to trigger the oscillator phase on the positive
edge.

AWG_OSC_PHASE_MIDDLE 0 Constant to trigger the oscillator phase on the negative
edge.

Numbers can be expressed using either of the following formatting.

const a = 10; // Integer notation
const b = -10; // Negative number
const h = 0xdeadbeef; // Hexadecimal integer
const bin = 0b10101; // Binary integer
const f = 0.1e-3; // Floating point number.
const not_float = 10e3; // Not a floating point number

Booleans are specified with the keywords true and false. Furthermore, all numbers that evaluate
to a nonzero value are considered true. All numbers that evaluate to zero are considered false.

Strings are delimited using "" and are interpreted as constants. Strings may be concatenated using
the + operator.

string AWG_PATH = "awgs/0/";
string AWG_GAIN_PATH = AWG_PATH + "gains/0";

Waveform Generation and Editing

The following table contains the definition of functions for waveform generation.

wave zeros(const samples)

Constant amplitude of 0 over the defined number of samples.

Args:

 samples: Number of samples in the waveform

Returns:

resulting waveform

h(x)=0 h(x) = 0 h(x) = 0

5.2. Measurement Functionality

130 Zurich Instruments SHFSG+ User Manual

wave ones(const samples)

Constant amplitude of 1 over the defined number of samples.

Args:

 samples: Number of samples in the waveform

Returns:

resulting waveform

wave sine(const samples, const amplitude=1.0, const phaseOffset, const
nrOfPeriods)

Sine function with arbitrary amplitude (a), phase offset in radians (p), number of periods (f) and
number of samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 nrOfPeriods: Number of Periods within the defined number of samples
 phaseOffset: Phase offset of the signal in radians
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave cosine(const samples, const amplitude=1.0, const phaseOffset, const
nrOfPeriods)

Cosine function with arbitrary amplitude (a), phase offset in radians (p), number of periods (f) and
number of samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 nrOfPeriods: Number of Periods within the defined number of samples
 phaseOffset: Phase offset of the signal in radians
 samples: Number of samples in the waveform

Returns:

resulting waveform

h(x)=1 h(x) = 1 h(x) = 1

h(x)=a⋅sin(2πfxN+p) h(x) = a\cdot\sin(2\pi f \frac{x}{N}+p) h(x) = a ⋅ sin(2πf +
N
x

p)

h(x)=a⋅cos(2πfxN+p) h(x) = a\cdot\cos(2\pi f \frac{x}{N}+p) h(x) = a ⋅ cos(2πf +
N
x

p)

5.2. Measurement Functionality

131 Zurich Instruments SHFSG+ User Manual

wave sinc(const samples, const amplitude=1.0, const position, const beta)

Normalized sinc function with control of peak position (p), amplitude (a), width (\beta) and number of
samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 beta: Width of the function
 position: Peak position of the function
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave ramp(const samples, const startLevel, const endLevel)

Linear ramp from the start (s) to the end level (e) over the number of samples (N).

Args:

 endLevel: level at the last sample of the waveform
 samples: Number of samples in the waveform
 startLevel: level at the first sample of the waveform

Returns:

resulting waveform

wave sawtooth(const samples, const amplitude=1.0, const phaseOffset, const
nrOfPeriods)

Sawtooth function with arbitrary amplitude, phase in radians and number of periods.

Args:

 amplitude: Amplitude of the signal
 nrOfPeriods: Number of Periods within the defined number of samples
 phaseOffset: Phase offset of the signal in radians
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave triangle(const samples, const amplitude=1.0, const phaseOffset, const
nrOfPeriods)

Triangle function with arbitrary amplitude, phase in radians and number of periods.

Args:

 amplitude: Amplitude of the signal
 nrOfPeriods: Number of Periods within the defined number of samples
 phaseOffset: Phase offset of the signal in radians
 samples: Number of samples in the waveform

Returns:

resulting waveform

h(x)={aif x=pa⋅sin(2π⋅beta⋅x−pN)2π⋅beta⋅x−pNelse h(x) = \begin{cases} a & \quad \text{if } x = p \\ a \cdot \frac{\sin(2\pi\cdot beta\cdot \frac{x-p}{N})}{2\pi\cdot beta\cdot \frac{x-p}{N}} & \quad \text{else} \\ \end{cases}
h(x) = {

a

a ⋅
2π⋅beta⋅ N

x−p
sin(2π⋅beta⋅)N

x−p
if x = p

else

h(x)=s+x(e−s)N−1 h(x) = s + \frac{x(e-s)}{N-1} h(x) = s+
N − 1
x(e− s)

5.2. Measurement Functionality

132 Zurich Instruments SHFSG+ User Manual

wave gauss(const samples, const amplitude=1.0, const position, const width)

Gaussian pulse with arbitrary amplitude (a), position (p), width (w) and number of samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 position: Peak position of the pulse
 samples: Number of samples in the waveform
 width: Width of the pulse

Returns:

resulting waveform

wave drag(const samples, const amplitude=1.0, const position, const width)

Derivative of Gaussian pulse with arbitrary amplitude (a), position (p), width (w) and number of
samples (N) normalized to a maximum amplitude of 1.

Args:

 amplitude: Amplitude of the signal (optional)
 position: Center point position of the pulse
 samples: Number of samples in the waveform
 width: Width of the pulse

Returns:

resulting waveform

wave blackman(const samples, const amplitude=1.0, const alpha)

Blackman window function with arbitrary amplitude (a), alpha parameter and number of samples (N).

Args:

 alpha: Width of the function
 amplitude: Amplitude of the signal (optional)
 samples: Number of samples in the waveform

Returns:

resulting waveform

h(x)=a⋅e−(x−p)22⋅w2 h(x) = a \cdot e^{-\frac{(x-p)^2}{2 \cdot w^2}} h(x) = a ⋅ e−
2⋅w2

(x−p)2

h(x)=a⋅e(p−x)w⋅e−(x−p)22⋅w2 h(x) = a \cdot \frac{\sqrt{e}(p-x)}{w} \cdot e^{-\frac{(x-p)^2}{2 \cdot w^2}} h(x) = a ⋅ ⋅
w

(p− x)e
e−

2⋅w2
(x−p)2

h(x)=a⋅(α0−α1cos(2πxN−1)+α2cos(4πxN−1))α0=1−α2;α1=12;α2=α2; \begin{align*} h(x) =& a \cdot (\alpha_0 - \alpha_1 \cos(\frac{2\pi x}{N-1}) \\ &+ \alpha_2\cos(\frac{4\pi x}{N-1})) \\ \alpha_0 =& \frac{1-\alpha}{2}; \quad \alpha_1 = \frac{1}{2}; \quad \alpha_2 = \frac{\alpha}{2}; \end{align*} h(x) =

α =0

a ⋅ (α − α cos()0 1 N − 1
2πx

+ α cos())2 N − 1
4πx

; α = ; α = ;
2

1 − α
1 2

1
2 2

α

5.2. Measurement Functionality

133 Zurich Instruments SHFSG+ User Manual

wave hamming(const samples, const amplitude=1.0)

Hamming window function with arbitrary amplitude (a) and number of samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave hann(const samples, const amplitude=1.0)

Hann window function with arbitrary amplitude (a) and number of samples (N).

Args:

 amplitude: Amplitude of the signal
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave rect(const samples, const amplitude)

Rectangle function, constants amplitude (a) over the defined number of samples.

Args:

 amplitude: Amplitude of the signal
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave marker(const samples, const markerValue)

Generate a waveform with marker bits set to the specified value. The analog part of the waveform is
zero.

Args:

 markerValue: Value of the marker bits
 samples: Number of samples in the waveform

Returns:

resulting waveform

h(x)=a⋅(α−βcos(2πxN−1))with α=0.54 and β=0.46 \begin{align*} h(x) = a \cdot (\alpha - \beta \cos(\frac{2\pi x}{N-1})) \\ \text{with }\alpha = 0.54 \text{ and } \beta = 0.46 \end{align*} h(x) = a ⋅ (α− β cos())
N − 1
2πx

with α = 0.54 and β = 0.46

h(x)=a⋅0.5⋅(1−cos(2πxN−1)) h(x) = a \cdot 0.5 \cdot (1 - \cos(\frac{2\pi x}{N-1})) h(x) = a ⋅ 0.5 ⋅ (1 − cos())
N − 1
2πx

h(x)=a h(x) = \text{a} h(x) = a

5.2. Measurement Functionality

134 Zurich Instruments SHFSG+ User Manual

wave rand(const samples, const amplitude=1.0, const mean, const stdDev)

White noise with arbitrary amplitude, power and standard deviation.

Args:

 amplitude: Amplitude of the signal
 mean: Average signal level
 samples: Number of samples in the waveform
 stdDev: Standard deviation of the noise signal

Returns:

resulting waveform

wave randomGauss(const samples, const amplitude=1.0, const mean, const stdDev)

White noise with arbitrary amplitude, power and standard deviation.

Args:

 amplitude: Amplitude of the signal
 mean: Average signal level
 samples: Number of samples in the waveform
 stdDev: Standard deviation of the noise signal

Returns:

resulting waveform

wave randomUniform(const samples, const amplitude=1.0)

Random waveform with uniform distribution.

Args:

 amplitude: Amplitude of the signal
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave lfsrGaloisMarker(const samples, const markerBit, const polynomial, const
initial)

Generate a waveform with specified marker bit set to the Galois LFSR (linear-feedback shift register)
generated sequence. The analog part of the waveform is zero. The LFSR characteristic polynomial is
a member of the Galois Field of two elements and represented in binary form. See wikipedia entries
for "Finite field arithmetic" and "Linear-feedback shift register (Galois LFSR)".

Args:

 initial: LFSR initial state, any nonzero value will work, usually 0x1
 markerBit: Marker bit to set (1 or 2)
 polynomial: LFSR characteristic polynomial in binary representation (max shift length 32), use

0x90000 for QRSS / PRBS-20
 samples: Number of samples in the waveform

Returns:

resulting waveform

5.2. Measurement Functionality

135 Zurich Instruments SHFSG+ User Manual

wave chirp(const samples, const amplitude=1.0, const startFreq, const stopFreq,
const phase=0)

Frequency chirp function with arbitrary amplitude, start and stop frequency, initial phase in radians
and number of samples. Start and stop frequency are expressed in units of the AWG Sampling Rate.
The amplitude can only be defined if the initial phase is defined as well.

Args:

 amplitude: Amplitude of the signal (optional)
 phase: Initial phase of the signal (optional)
 samples: Number of samples in the waveform
 startFreq: Start frequency of the signal
 stopFreq: Stop Frequency of the signal

Returns:

resulting waveform

wave rrc(const samples, const amplitude=1.0, const position, const beta, const
width)

Root raised cosine function with arbitrary amplitude (a), position (p), roll-off factor (\beta) and width
(w) and number of samples (N).

Args:

 amplitude: Amplitude of the signal
 beta: Roll-off factor
 position: Center point position of the pulse
 samples: Number of samples in the waveform
 width: Width of the pulse

Returns:

Resulting waveform

wave vect(const value,...)

Specify a waveform sample by sample. Each sample is defined by one of an arbitrary number of
input arguments. Only recommended for short waveforms that consist of less than 100 samples.
Larger waveforms may be defined in a CSV file.

Args:

 value: Waveform amplitude at the respective sample

Returns:

resulting waveform

h(y)=asin(yπ(1−β))+4yβcos(yπ(1+β))yπ(1−(4yβ)2)with y(x)=2wx−pN \begin{align*} h(y) = a \frac{\sin(y \pi(1-\beta)) + 4 y \beta\cos(y \pi(1+\beta))}{y \pi(1-(4 y \beta)^2)} \\ \text{with } y(x) = 2 w \frac{x - p}{N} \end{align*} h(y) = a
yπ(1 − (4yβ))2

sin(yπ(1 − β)) + 4yβ cos(yπ(1 + β))

with y(x) = 2w
N

x− p

5.2. Measurement Functionality

136 Zurich Instruments SHFSG+ User Manual

wave placeholder(const samples, const marker0=false, const marker1=false)

Creates space for a single-channel waveform, optionally with markers, without actually generating
any waveform data when compiling the sequence program. Actual waveform data needs to be
uploaded separately via the "<dev>/AWGS/<n>/WAVEFORM/WAVES/<index>" API nodes after the
sequence compilation and upload. The waveform index can be explicitly assigned to the generated
placeholder wave using the assignWaveIndex instruction.

Args:

 marker0: true if marker bit 0 must be used (default false)
 marker1: true if marker bit 1 must be used (default false)
 samples: Number of samples in the waveform

Returns:

waveform object

The following table contains the definition of functions for waveform editing.

wave join(wave wave1, wave wave2, const interpolLength=0)

Connect two or more waveforms with optional linear interpolation between the waveforms.

Args:

 interpolLength: Number of samples to interpolate between waveforms (optional, default 0)
 wave1: Input waveform
 wave2: Input waveform

Returns:

joined waveform

wave join(wave wave1, wave wave2,...)

Connect two or more waveforms.

Args:

 wave1: Input waveform
 wave2: Input waveform

Returns:

joined waveform

wave interleave(wave wave1, wave wave2,...)

Interleave two or more waveforms sample by sample.

Args:

 wave1: Input waveform
 wave2: Input waveform

Returns:

interleaved waveform

5.2. Measurement Functionality

137 Zurich Instruments SHFSG+ User Manual

wave add(wave wave1, wave wave2,...)

Add two or more waveforms sample by sample. Alternatively, the "+" operator may be used for
waveform addition.

Args:

 wave1: Input waveform
 wave2: Input waveform

Returns:

sum waveform

wave multiply(wave wave1, wave wave2,...)

Multiply two or more waveforms sample by sample. Alternatively, the "*" operator may be used for
waveform multiplication.

Args:

 wave1: Input waveform
 wave2: Input waveform

Returns:

product waveform

wave scale(wave waveform, const factor)

Scale the input waveform with the factor and return the scaled waveform. The input waveform
remains unchanged.

Args:

 factor: Scaling factor
 waveform: Input waveform

Returns:

scaled waveform

wave flip(wave waveform)

Flip the input waveform back to front and return the flipped waveform. The input waveform remains
unchanged.

Args:

 waveform: Input waveform

Returns:

flipped waveform

wave cut(wave waveform, const from, const to)

Cuts a segment out of the input waveform and returns it. The input waveform remains unchanged.
The segment is flipped in case that "from" is larger than "to".

Args:

 from: First sample of the cut waveform
 to: Last sample of the cut waveform
 waveform: Input waveform

Returns:

cut waveform

5.2. Measurement Functionality

138 Zurich Instruments SHFSG+ User Manual

wave filter(wave b, wave a, wave x)

Filter generates a rational transfer function with the waveforms a and b as numerator and
denominator coefficients. The transfer function is normalized by the first element of a, which has to
be non-zero. The filter is applied to the input waveform x and returns the filtered waveform.

Args:

 a: Denominator coefficients
 b: Numerator coefficients
 x: Input waveform

Returns:

filtered waveform

wave circshift(wave a, const n)

Circularly shifts a 1D waveform and returns it.

Args:

 n: Number of elements to shift
 waveform: Input waveform

Returns:

circularly shifted waveform

Waveform Playback and Predefined Functions

The following table contains the definition of functions for waveform playback and other purposes.

void setDIO(var value)

Writes the value as a 32-bit value to the DIO bus.

The value can be either a const or a var value. Configure the Mode setting in the DIO tab when using
this command. The DIO interface speed of 50 MHz limits the rate at which the DIO output value is
updated.

Args:

 value: The value to write to the DIO (const or var)

var getDIO()

Reads a 32-bit value from the DIO bus.

Returns:

var containing the read value

y(n)=1a0( ∑i=0Mbixn−i−∑i=1Naiyn−i )with M=length(b)−1 and N=length(a)−1 \begin{align*} y(n) = \frac{1}{a_0}\left(\!\sum_{i=0}^{M}b_i x_{n-i} - \sum_{i=1}^{N}a_i y_{n-i}\!\right) \\ \text{with } M = \text{length}(b)-1 \\ \text{ and } N = \text{length}(a)-1 \end{align*}
y(n) = b x − a y

a0

1
(
i=0

∑
M

i n−i

i=1

∑
N

i n−i)

with M = length(b) − 1

 and N = length(a) − 1

5.2. Measurement Functionality

139 Zurich Instruments SHFSG+ User Manual

var getDIOTriggered()

Reads a 32-bit value from the DIO bus as recorded at the last DIO trigger position.

Returns:

var containing the read value

void setTrigger(var value)

Sets the AWG Trigger output signals.

The state of all four AWG Trigger output signals is represented by the bits in the binary
representation of the integer value. Binary notation of the form 0b0000 is recommended for
readability.

Args:

 value: to be written to the trigger output lines

void wait(var cycles)

Waits for the given number of Sequencer clock cycles (4 ns per cycle). The execution of the
instruction adds an offset of 2 clock cycles, i.e., the statement wait(3) leads to a waiting time of 5 * 4
ns = 20 ns.

Note: the minimum waiting time amounts to 3 cycles, which means that wait(0) and wait(1) will both
result in a waiting time of 3 * 4 ns = 12 ns.

Args:

 cycles: number of cycles to wait

void waitDIOTrigger()

Waits until the DIO interface trigger is active. The trigger is specified by the Strobe Index and Strobe
Slope settings in the AWG Sequencer tab.

var getDigTrigger(const index)

Gets the state of the indexed Digital Trigger input (1 or 2).

The physical signal connected to the AWG Digital Trigger input is to be configured in the Trigger sub-
tab of the AWG tab.

Args:

 index: index of the Digital Trigger input to be read; can be either 1 or 2

Returns:

trigger state, either 0 or 1

void error(string msg,...)

Throws the given error message when reached.

Args:

 msg: Message to be displayed

void info(string msg,...)

Returns the specified message when reached.

Args:

 msg: Message to be displayed

5.2. Measurement Functionality

140 Zurich Instruments SHFSG+ User Manual

void waitWave()

Waits until the AWG is done playing the current waveform.

void randomSeed()

Generate a new seed for the subsequent random vector commands.

void assignWaveIndex(const output, wave waveform, const index)

void assignWaveIndex(wave waveform, const index)

void playWave(const output, wave waveform, const rate=AWG_RATE_DEFAULT)

Starts to play the given waveforms on the defined output channels. The playback begins as soon as
the previous waveform playback is finished.

Args:

 output: defines on which output the following waveform is played
 rate: sample rate with which the AWG plays the waveforms (default set in the user interface).
 waveform: waveform to be played

void playWave(const output, wave waveform,...)

Starts to play the given waveforms on the defined output channels. It can contain multiple
waveforms with an output definition. The playback begins as soon as the previous waveform
playback is finished.

Args:

 output: defines on which output the following waveform is played
 waveform: waveform to be played

void playWave(wave waveform, const rate=AWG_RATE_DEFAULT)

Starts to play the given waveforms, output channels are assigned automatically depending on the
number of input waveforms. The playback begins as soon as the previous waveform playback is
finished.

Args:

 rate: sample rate with which the AWG plays the waveforms (default set in the user interface).
 waveform: waveform to be played

void playWave(wave waveform,...)

Starts to play the given waveforms, output channels are assigned automatically depending on the
number of input waveforms. The playback begins as soon as the previous waveform playback is
finished.

Args:

 waveform: waveform to be played

void setUserReg(const register, var value)

Writes a value to one of the User Registers (indexed 0 to 15).

The User Registers may be used for communicating information to the LabOne User Interface or a
running API program.

Args:

 register: The register index (0 to 15) to be written to
 value: The integer value to be written

5.2. Measurement Functionality

141 Zurich Instruments SHFSG+ User Manual

var getUserReg(const register)

Reads the value from one of the User Registers (indexed 0 to 15). The User Registers may be used for
communicating information to the LabOne User Interface or a running API program.

Args:

 register: The register to be read (0 to 15)

Returns:

current register value

void playZero(var samples)

Starts to play zeros on all channels for the specified number of samples. Behaves as if same length
all-zeros waveform is played using playWave, but without consuming waveform memory.

Args:

 samples: Number of samples to be played. The same min length and granularity applies as for
regular waveforms.

void playZero(var samples, const rate)

Starts to play zeros on all channels for the specified number of samples. Behaves as if same length
all-zeros waveform is played using playWave, but without consuming waveform memory.

Args:

 rate: Sample rate with which the AWG plays zeros (default set in the user interface).
 samples: Number of samples to be played. The same min length and granularity applies as for

regular waveforms.

void waitDigTrigger(const index)

Waits for the reception of a trigger signal on the indexed Digital Trigger (index 1 or 2). The physical
signals connected to the two AWG Digital Triggers are to be configured in the Trigger sub-tab of the
AWG Sequencer tab. The Digital Triggers are configured separately for each AWG Core.

Args:

 index: Index of the digital trigger input; can be either 1 or 2.

void executeTableEntry(var index)

Execute the entry of the command table with the given index. An entry of the command table
contains a waveform playback instruction as well as instructions for real-time setting of sine
generators phases, oscillator select and output amplitude.

Args:

 index: table entry that shall be executed.

void setPRNGSeed(var value)

Sets the seed for the linear-shift feedback register lsfr of the pseudo random number generator
(PRNG).

The seed is a 16 bit int32_t value. Zero is invalid as seed.

Args:

 value: seed value to be configured

5.2. Measurement Functionality

142 Zurich Instruments SHFSG+ User Manual

var getPRNGValue()

Returns a random value from the pseudo-random number generator (PRNG). The PRNG is
implemented as a Galois linear-shift feedback register according to the pseudo code below. The
feedback register lsfr is initialized to a seed value using the function setPRNGSeed. The values lower
and upper are set using the function setPRNGRange. The feedback register lsfr is stored from one
call of the function getPRNGValue to the next, which renders the pseudo code recursive. In the
pseudo code, XOR and AND are bitwise logical operators, and >> is the right bit shift operator.
Pseudo code: lsb = lsfr AND 1; lsfr = lsfr >> 1; if (lsb == 1) then: lsfr = 0xb400 XOR lsfr; rand = ((lsfr *
(upper-lower+1) >> 16) + lower) AND 0xffff;.

Returns:

Random value rand

void setPRNGRange(var lower, var upper)

Configures the range of the pseudo random number generator (PRNG) to generate output in range
[lower, upper].

Args:

 lower: lower bound of range, 0 ... 2**16-1
 upper: upper bound of range, 0 ... 2**16-1

void setSinePhase(const phase)

Set the phase in units of degree of the sine generator of the AWG core in use. The phase is reset to 0
after execution of the sequence program.

Args:

 phase: Phase value [degree]

void incrementSinePhase(const phase)

Increment the phase in units of degree of the sine generator of the AWG core in use.

Args:

 phase: Phase value [degree]

void playHold(var samples)

Hold the last played value for the specified number of samples samples. Behaves as if same length
constant waveform is played using playWave, but without consuming waveform memory.

Args:

 samples: Number of samples to be played. The same min length and granularity applies as for
regular waveforms.

void playHold(var samples, const rate)

Hold the last played value for the specified number of samples samples. Behaves as if same length
constant waveform is played using playWave, but without consuming waveform memory.

Args:

 rate: Sample rate with which the AWG plays zeros (default set in the user interface).
 samples: Number of samples to be played. The same min length and granularity applies as for

regular waveforms.

void playWaveDIO()

Starts to play a waveform from the table defined by the command table. The waveform is selected
according to the integer codeword currently read on the DIO interface. The codeword is specified by
the Codeword Mask and Codeword Shift settings in the AWG Sequencer tab.

5.2. Measurement Functionality

143 Zurich Instruments SHFSG+ User Manual

void waitSineOscPhase()

Waits until the oscillator phase of the sine generator reaches a zero crossing (negative -> positive,
start of sine period) of I component.

void configFreqSweep(const oscillator_index, const freq_start, const
freq_increment)

Configures a frequency sweep.

Args:

 freq_increment: Specify how much to increment the frequency for each step of the sweep [Hz]
 freq_start: Specify the start frequency value for the sweep [Hz]
 oscillator_index: Index of the oscillator that will be used for the sweep

void resetOscPhase(const mask)

Reset the phase of the oscillators specified by the binary mask argument. Each AWG core can
access the oscillators of its QA/SGCHANNEL.

Args:

 mask: one-hot encoding to reset phase of individual oscillators

void resetOscPhase()

Reset the phase of all oscillators controllable by the AWG core.

void setSweepStep(const oscillator_index, var sweep_index)

Executes a step within a frequency sweep.

Args:

 oscillator_index: Index of the oscillator that will be used for the sweep
 sweep_index: Sets the step index, from which the frequency is set

void setOscFreq(const oscillator_index, const freq)

Configures the frequency of an oscillator.

Args:

 freq: Frequency to be set [Hz]
 oscillator_index: Index of oscillator

var getFeedback(const data_type)

Read the last received feedback message. The argument specify which data the function should
return.

Args:

 data_type: Specifies which data the function should return: ZSYNC_DATA_RAW: Returns the
last ZSync message received as-is without processing. ZSYNC_DATA_PROCESSED_A: Returns
the last ZSync message received with processing. ZSYNC_DATA_PROCESSED_B: Returns the
last ZSync message received with processing.

Returns:

var containing the read value

5.2. Measurement Functionality

144 Zurich Instruments SHFSG+ User Manual

var getFeedback(const data_type, var wait_cycles)

Read the last received feedback message. The argument specify which data the function should
return.

Args:

 data_type: Specifies which data the function should return: ZSYNC_DATA_RAW: Returns the
last ZSync message received as-is without processing. ZSYNC_DATA_PROCESSED_A: Returns
the last ZSync message received with processing. ZSYNC_DATA_PROCESSED_B: Returns the
last ZSync message received with processing.

 wait_cycles: Wait for the specified number of cycles after the most recent waitZSyncTrigger()
instruction.

Returns:

var containing the read value

void waitZSyncTrigger()

Waits for a trigger over ZSync.

void resetRTLoggerTimestamp()

Reset the timestamp counter of the Real-Time Logger.

Expressions

Expressions may be used for making computations based on mathematical functions and operators.
There are two kinds of expressions: those evaluated at compile time (the moment of clicking "Save"
or "Save as..." in the user interface), and those evaluated at run time (after clicking "Run/Stop" or
"Start"). Compile-time evaluated expressions only involve constants (const) or compile-time
variables (cvar) and can be computed at compile time by the host computer. Such expressions can
make use of standard mathematical functions and floating point arithmetic. Run-time evaluated
expressions involve variables (var) and are evaluated by the Sequencer on the instrument. Due to
the limited computational capabilities of the Sequencer, these expressions may only operate on
integer numbers and there are less operators available than at compile time.

The following table contains the list of mathematical functions supported at compile time.

Table 5.29: Mathematical Functions

Function Description

const abs(const c) absolute value

const acos(const c) inverse cosine

const acosh(const c) hyperbolic inverse cosine

const asin(const c) inverse sine

const asinh(const c) hyperbolic inverse sine

const atan(const c) inverse tangent

const atanh(const c) hyperbolic inverse tangent

const cos(const c) cosine

const cosh(const c) hyperbolic cosine

const exp(const c) exponential function

const ln(const c) logarithm to base e (2.71828...)

const log(const c) logarithm to the base 10

const log2(const c) logarithm to the base 2

const log10(const c) logarithm to the base 10

const sign(const c) sign function -1 if x<0; 1 if x>0

5.2. Measurement Functionality

145 Zurich Instruments SHFSG+ User Manual

Function Description

const sin(const c) sine

const sinh(const c) hyperbolic sine

const sqrt(const c) square root

const tan(const c) tangent

const tanh(const c) hyperbolic tangent

const ceil(const c) smallest integer value not less than the argument

const round(const c) round to nearest integer

const floor(const c) largest integer value not greater than the argument

const avg(const c1, const c2,...) mean value of all arguments

const max(const c1, const c2,...) maximum of all arguments

const min(const c1, const c2,...) minimum of all arguments

const pow(const base, const exp) first argument raised to the power of second argument

const sum(const c1, const c2,...) sum of all arguments

The following table contains the list of predefined mathematical constants. These can be used for
convenience in compile-time evaluated expressions.

Table 5.30: Predefined Constants

Name Value Description

M_E 2.71828182845904523536028747135266250 e

M_LOG2E 1.44269504088896340735992468100189214 log2(e)

M_LOG10E 0.434294481903251827651128918916605082 log10(e)

M_LN2 0.693147180559945309417232121458176568 loge(2)

M_LN10 2.30258509299404568401799145468436421 loge(10)

M_PI 3.14159265358979323846264338327950288 pi

M_PI_2 1.57079632679489661923132169163975144 pi/2

M_PI_4 0.785398163397448309615660845819875721 pi/4

M_1_PI 0.318309886183790671537767526745028724 1/pi

M_2_PI 0.636619772367581343075535053490057448 2/pi

M_2_SQRTPI 1.12837916709551257389615890312154517 2/sqrt(pi)

M_SQRT2 1.41421356237309504880168872420969808 sqrt(2)

M_SQRT1_2 0.707106781186547524400844362104849039 1/sqrt(2)

Table 5.31: Operators supported at compile time

Operator Description Priority

= assignment -1

+=, -=, *=, /=, %=, &=,
|=, <<=, >>=

assignment by sum, difference, product, quotient,
remainder, AND, OR, left shift, and right shift

-1

|| logical OR 1

&& logical AND 2

| bit-wise logical OR 3

& bit-wise logical AND 4

!= not equal 5

== equal 5

5.2. Measurement Functionality

146 Zurich Instruments SHFSG+ User Manual

Operator Description Priority

<= less or equal 6

>= greater or equal 6

> greater than 6

< less than 6

<< arithmetic left bit shift 7

>> arithmetic right bit shift 7

+ addition 8

- subtraction 8

* multiplication 9

/ division 9

~ bit-wise logical negation 10

Table 5.32: Operators supported at run time

Operator Description Priority

= assignment -1

+=, -=, *=, /=, %=, &=,
|=, <<=, >>=

assignment by sum, difference, product, quotient,
remainder, AND, OR, left shift, and right shift

-1

|| logical OR 1

&& logical AND 2

| bit-wise logical OR 3

& bit-wise logical AND 4

== equal 5

!= not equal 5

<= less or equal 6

>= greater or equal 6

> greater than 6

< less than 6

<< left bit shift 7

>> right bit shift 7

+ addition 8

- subtraction 8

~ bit-wise logical negation 9

Control Structures

Functions may be declared using the var keyword. Procedures may be declared using the void
keyword. Functions must return a value, which should be specified using the return keyword.
Procedures can not return values. Functions and procedures may be declared with an arbitrary
number of arguments. The return keyword may also be used without arguments to return from an
arbitrary point within the function or procedure. Functions and procedures may contain variable and
constant declarations. These declarations are local to the scope of the function or procedure.

var function_name(argument1, argument2, ...) {
 // Statements to be executed as part of the function.

5.2. Measurement Functionality

147 Zurich Instruments SHFSG+ User Manual

 return constant-or-variable;
}

void procedure_name(argument1, argument2, ...) {
 // Statements to be executed as part of the procedure.
 // Optional return statement
 return;
}

An if-then-else structure is used to create a conditional branching point in a sequencer program.

// If-then-else statement syntax
if (expression) {
 // Statements to execute if 'expression' evaluates to 'true'.
} else {
 // Statements to execute if 'expression' evaluates to 'false'.
}

// If-then-else statement short syntax
(expression)?(statement if true):(statement if false)

// If-then-else statement example
const REQUEST_BIT = 0x0001;
const ACKNOWLEDGE_BIT = 0x0002;
const IDLE_BIT = 0x8000;
var dio = getDIO();
if (dio & REQUEST_BIT) {
 dio = dio | ACKNOWLEDGE_BIT;
 setDIO(dio);
} else {
 dio = dio | IDLE_BIT;
 setDIO(dio);
}

A switch-case structure serves to define a conditional branching point similarly to the if-then-
else statement, but is used to split the sequencer thread into more than two branches. Unlike the
if-then-else structure, the switch statement is synchronous, which means that the execution
time is the same for all branches and determined by the execution time of the longest branch. If no
default case is provided and no case matches the condition, all cases will be skipped. The case
arguments need to be of type const.

// Switch-case statement syntax
switch (expression) {
 case const-expression:
 expression;
 ...
 default:
 expression;
}

// Switch-case statement example
switch (getDIO()) {
 case 0:
 playWave(gauss(1024,1.0,512,64));
 case 1:
 playWave(gauss(1024,1.0,512,128));
 case 2:
 playWave(drag(1024,1.0,512,64));
 default:
 playWave(drag(1024,1.0,512,128));
}

The for loop is used to iterate through a code block several times. The initialization statement
is executed before the loop starts. The end-expression is evaluated at the start of each iteration
and determines when the loop should stop. The loop is executed as long as this expression is true.
The iteration-expression is executed at the end of each loop iteration.

5.2. Measurement Functionality

148 Zurich Instruments SHFSG+ User Manual

Depending on how the for loop is set up, it can be either evaluated at compile time or at run time.
Run-time evaluation is typically used to play series of waveforms. Compile-time evaluation is
typically used for advanced waveform generation, e.g. to generate a series of waveforms with varying
amplitude. For a run-time evaluated for loop, use the var data type as a loop index. To ensure that a
loop is evaluated at compile time, use the cvar data type as a loop index. Furthermore, the compile-
time for loop should only contain waveform generation/editing operations and it can’t contain any
variables of type var. The following code example shows both versions of the loop.

// For loop syntax
for (initialization; end-expression; iteration-expression) {
 // Statements to execute while end-expression evaluates to true
}

// FOR loop example to assemble a train of pulses into
// a single waveform (compile-time execution)
cvar gain_factor; // CVAR: integer or float values allowed
wave w_pulse_series;
for (gain_factor = 0; gain_factor < 1.0; gain_factor = gain_factor + 0.1) {
 w_pulse_series = join(w_pulse_series, gain_factor*gauss(1008, 504, 100));
}

// Playback of waveform defined using compile-time FOR loop
playWave(w_pulse_series);

// FOR loop example to vary waiting time between
// waveform playbacks (run-time execution)
var i; // VAR: integer values allowed
for (i = 0; i < 1000; i = i + 100) {
 playWave(gauss(1008, 504, 100));
 waitWave();
 wait(i);
}

The while loop is a simplified version of the for loop. The end-expression is evaluated at the start
of each loop iteration. The contents of the loop are executed as long as this expression is true. Like
the for loop, this loop comes in a compile-time version (if the end-expression involves only cvar and
const) and in a run-time version (if the end-expression involves also var data types).

// While loop syntax
while (end-expression) {
 // Statements to execute while end-expression evaluates to true
}

// While loop example
const STOP_BIT = 0x8000;
var run = 1;
var i = 0;
var dio = 0;
while (run) {
 dio = getDIO();
 run = dio & STOP_BIT;

 dio = dio | (i & 0xff);
 setDIO(dio);
 i = i + 1;
}

The repeat loop is a simplified version of the for loop. It repeats the contents of the loop a fixed
number of times. In contrast to the for loop, the repetition number of the repeat loop must be
known at compile time, i.e., const-expression can only depend on constants and not on variables.
Unlike the for and the while loop, this loop comes only in a run-time version. Thus, no cvar data
types may be modified in the loop body.

// Repeat loop syntax
repeat (constant-expression) {

5.2. Measurement Functionality

149 Zurich Instruments SHFSG+ User Manual

 // Statements to execute
}

// Repeat loop example
repeat (100) {
 setDIO(0x1);
 wait(10);
 setDIO(0x0);
 wait(10);
}

Usage of playZero and playHold commands

The functionalities of playHold and playZero are both available either through sequencer
commands or through the command table. To use within a sequence, only the length in samples
must be specified, as in playHold(32) or playZero(128). The sequencer commands also accept a
sampling rate as a second optional argument, which reduces the sampling rate only for the duration
of the command. For example, playZero(128, AWG_RATE_1000MHZ) will play 128 samples of zeros
at a sampling rate of 1.0 GSa/s, corresponding to 128 ns.

To use playZero or playHold within the command table, a command table entry must be made. See
Pulse-level Sequencing with the Command Table for more information on using playZero within the
command table. Similar syntax applies for using playHold within the command table. The table
entries can be used within a sequence by adding the appropriate executeTableEntry command to
the sequencer code.

Depending on the experiment being performed, it can make sense to use the playZero sequencer
command in some cases and the command table version in other cases (and similarly for playHold).
Generally speaking, the sequencer commands should be used when the length is variable, when the
length is 2^20 - 1 or fewer samples, or when the optional sampling rate argument is used. When using
a variable argument, such as when performing a sweep of the evolution time between two pulses
with playZero or of the length of a pulse with playHold (see Characterizing a Two-Qubit System) ,
the sequencer command must be used, as the playZero and playHold functionality within the
command table cannot support variable arguments. A similar restriction applies to the optional
sampling rate argument.

When the length is 2^20 - 1 or fewer samples, the sequencer commands map to a single assembly
instruction. Once the length is more than or equal to 2^20 samples, however, the sequencer
commands map to at least two assembly instructions instead. Additionally, when using the optional
sampling rate divider argument of the sequencer commands, playZero and playHold always map
to at least three assembly instructions, regardless of the length in samples. When using the
command table to perform playZero or playHold functionality, the corresponding
executeTableEntry command always maps to a single assembly instruction, regardless of the
length of the playZero or playHold, at the cost of using a command table entry.

Using Qubit Feedback Data in a Sequence

The AWG can make decisions depending on the feedback data received over ZSync or internal
feedback. There are two primary ways to use the feedback data received: by using the command
getFeedback and storing the result in a variable, or by using the feedback data directly as the
argument of executeTableEntry. To directly make decisions about which pulse to play, it is
recommended to use the feedback arguments of the executeTableEntry. For example, active reset
in which the qubit data is passed to an SG Channel over a ZSync connection to a PQSC could involve
a snippet of code like the following:

configureFeedbackProcessing(ZSYNC_DATA_PROCESSED_A, RESULT_INDEX, RESULT_SIZE,
OFFSET);
waitZSyncTrigger();
executeTableEntry(ZSYNC_DATA_PROCESSED_A, feedback_time);

The first instruction, configureFeedbackProcessing is used to configure the processing of the
feedback data. The message will be reduced and an optional offset could be added. If the
instruction is omitted, no trimming of the message will be done and the offset will be zero.
Alternatively, the constant ZSYNC_DATA_RAW could be used in the following instructions, and no
processing will be performed. The first argument of executeTableEntry determines which
command table entry should be played, and the second argument accounts for the time between

5.2. Measurement Functionality

150 Zurich Instruments SHFSG+ User Manual

when the ZSync trigger is received and when the updated qubit readout data is available for use. The
exact value of feedback_time (specified in number of sequencer clock cycles) depends on the
combination of equipment being used as well as the experiment being performed and must be
characterized by the user. For this example, the command table has been defined to play no pulse if
the appropriate bit of the trimmed message is 0 or to play a pi-pulse if is 1:

Qubit was in state 0
table[0].waveform.playZero = True
table[0].waveform.length = PI_PULSE_LENGTH

Qubit was in state 1
table[1].waveform.index = 0
table[1].amplitude00.value = PI_AMPLITUDE
table[1].amplitude01.value = -PI_AMPLITUDE
table[1].amplitude10.value = PI_AMPLITUDE
table[1].amplitude11.value = PI_AMPLITUDE

In other cases, storing the results of getFeedback in a variable is the recommended route. For
example, repeat until success requires repeated checking of the qubit readout data, but does not
require a pulse to be played until the success criterion is met. Such an experiment might include
sequencer code snippet like the following:

configureFeedbackProcessing(ZSYNC_DATA_PROCESSED_A, RESULT_INDEX, RESULT_SIZE,
OFFSET);
waitZSyncTrigger();

do {
 // preceding code
 failure = getFeedback(ZSYNC_DATA_PROCESSED_A, feedback_time); // check for
failure
 // following code
} while (failure)

// Success pulse
playWave(1, 2, w_success);

The success pulse is played only once the success condition has been met, and the type of pulse
played does not directly depend on the feedback data received.

When testing a new sequence, it can also be useful to store the feedback message, as the value of
the variable can be monitored by writing to a user register:

waitZSyncTrigger();
feedback_data = getFeedback(ZSYNC_DATA_RAW, feedback_time);
setUserReg(0, feedback_data);

The above code will write the feedback data available at feedback_time sequencer clock cycles
after the ZSync trigger is received. The data is written to user register 0.

Synchronizing Multiple AWG Cores

In many cases, using a common start trigger at an appropriate point in the sequence is enough to
ensure that the start of the output signals of the AWG cores are aligned in time. In some cases,
however, actions with non-deterministic timing can cause the AWG cores to become out of sync with
each other. To ensure that the AWG cores start their waveform playback in sync, even in the
presence of actions with non-deterministic timing, it is possible to enable a synchronization check
between the different AWG cores. Each SG channel has its own synchronization node (/device/
sgchannels/[SG_CHAN_INDEX]/synchronization/enable, see Node Documentation). If the
synchronization node of a channel is enabled (i.e. set to 1), the AWG core of that channel will
participate in a synchronization check, which can be useful when executing actions with a non-
deterministic timing such as loading of new sequences. This check is performed after the prefetch
step of a sequence (i.e. after the sequencer instruction data, command table data, and waveform
data have been transferred from the external to the internal memory of the AWG module but before
the first sequencer instruction is executed), and each participating AWG core will wait until all of the
participants in the synchronization check have returned a “ready” status. It is possible to even
synchronize an entire QCCS setup in this way by setting the node /device/system/

5.2. Measurement Functionality

151 Zurich Instruments SHFSG+ User Manual

synchronization/source to external (numerical value of 1). When the source is external, the
instrument will report its ready status to the PQSC to which the instrument is connected, and the
PQSC will wait for all instruments connected to it to report a ready status. If the source is set to
internal (i.e. a numerical value of 0), then only the AWG cores on the instrument that have
synchronization enabled participate in the synchronization check. Also note that if the source of the
SHFSG+ is set to internal, the PQSC will not consider the instrument as participating in the
synchronization check and will ignore the ready status of that instrument. Finally, to ensure that
trigger generation is coordinated with the synchronization check of the AWG cores, it is possible to
have the internal trigger unit participate in the synchronization check by setting the node /device/
system/internaltrigger/synchronization/enable to True (i.e. to 1). A similar node is available
on the PQSC. When the trigger synchronization is enabled, the same number of trigger events with
the same holdoff time will be generated between subsequent synchronization checks.

Functional Elements

Table 5.33: AWG tab: Control sub-tab

Control/Tool Option/
Range

Description

Start Runs the AWG.

Sampling Rate AWG sampling rate. This value is used by default and can be
overridden in the Sequence program. The numeric values are
rounded for display purposes. The exact values are equal to the
base sampling rate divided by 2^n, where n is an integer between 0
and 13.

Round oscillator
frequencies.

Round oscillator frequencies to nearest commensurable with 225
MHz.

Status Display compiler errors and warnings.

Compile Status grey/green/
yellow/red

Sequence program compilation status. Grey: No compilation
started yet. Green: Compilation successful. Yellow: Compiler
warnings (see status field). Red: Compilation failed (see status
field).

Upload Progress 0% to 100% The percentage of the sequencer program already uploaded to the
device.

Upload Status grey/
yellow/
green

Indicates the upload status of the compiled AWG sequence. Grey:
Nothing has been uploaded. Yellow: Upload in progress. Green:
Compiled sequence has been uploaded.

Register
selector

Select the number of the user register value to be edited.

Register 0 to 2^32 Integer user register value. The sequencer has reading and writing
access to the user register values during run time.

Input File External source code file to be compiled.

Example File Load pre-installed example sequence program.

New Create a new sequence program.

Revert Undo the changes made to the current program and go back to
the contents of the original file.

Save (Ctrl+S) Compile and save the current program displayed in the Sequence
Editor. Overwrites the original file.

Save as...
(Ctrl+Shift+S)

Compile and save the current program displayed in the Sequence
Editor under a new name.

Automatic
upload

ON / OFF If enabled, the sequence program is automatically uploaded to the
device after clicking Save and if the compilation was successful.

To Device Sequence program will be compiled and, if the compilation was
successful, uploaded to the device.

Multi-Device ON / OFF Compile the program for use with multiple devices. If enabled, the
program will be compiled for and uploaded to the devices
currently synchronized in the Multi-Device Sync tab.

5.2. Measurement Functionality

152 Zurich Instruments SHFSG+ User Manual

Control/Tool Option/
Range

Description

Sync Status grey/green/
yellow

Sequence program synchronization status. Grey: No program
loaded on device. Green: Program in sync with device. Yellow:
Sequence program in editor differs from the one running on the
device.

Table 5.34: AWG tab: Waveform sub-tab

Control/
Tool

Option/
Range

Description

Wave
Selection

Select wave for display in the waveform viewer. If greyed out, the
corresponding wave is too long for display.

Waveforms Lists all waveforms used by the current sequence program.

Mem Usage
(%)

0 to 100 Amount of the used waveform data relative to the device cache
memory. The cache memory provides space for 64 kSa of waveform
data per AWG core.

Table 5.35: AWG tab: Trigger sub-tab

Control/Tool Option/
Range

Description

Trigger State grey/
green

State of the Trigger. Grey: No trigger detected. Green: Trigger
detected.

Slope Select the signal edge that should activate the trigger. The trigger
will be level sensitive when the Level option is selected.

Level (V) numeric
value

Defines the analog trigger level.

Auxiliary Trigger
State

grey/
green

State of the Auxiliary Trigger. Grey: No trigger detected. Green:
Trigger detected.

Signal Selects the digital trigger source signal.

DIO/Zsync
Trigger state

grey/
green

Indicates that triggers are generated from the DIO or ZSync
interface to the AWG.

Read DIO/ZSync Each AWG can be configured to either receive DIO data or ZSync
data.

Valid Index 16 to 31 Selects the index n of the DIO interface bit (notation DIO[n] in the
Specification chapter of the User Manual) to be used as a VALID
signal input, i.e. a qualifier indicating that a valid codeword is
available on the DIO interface.

Valid Polarity Polarity of the VALID bit that indicates that a codeword is available
on the DIO interface.

None VALID bit is ignored.

Low VALID bit must be logical low.

High VALID bit must be logical high.

Both VALID bit may be logical high or logical low.

Codeword Mask 0 to 1023 10-bit value to select the bits of the DIO interface input state
(notation DIO[n] in the Specification chapter of the User Manual) to
be used as a codeword in connection with the playWaveDIO
sequencer instruction. The Codeword Mask is combined with the
DIO interface input state by a bitwise AND operation after applying
the Codeword Shift.

Codeword Shift 0 to 31 Defines the integer bit shift to be applied to the input state of the
DIO interface (notation DIO[n] in the Specification chapter of the
User Manual) to be used as a codeword for waveform selection in
connection with the playWaveDIO sequencer instruction.

High bits 32-bit value indicating which bits on the DIO interface are detected
as logic high.

5.2. Measurement Functionality

153 Zurich Instruments SHFSG+ User Manual

Control/Tool Option/
Range

Description

Low bits 32-bit value indicating which bits on the DIO interface are detected
as logic low.

Timing Error grey/red Indicates a timing error. A timing error is defined as an event where
either the VALID or any of the data bits on the DIO interface change
value at the same time as the STROBE bit.

Synchronization
Enable

Enable multi-channel synchronization for this channel. The program
will only execute once all channels with enabled synchronization
are ready.

Table 5.36: AWG tab: Advanced sub-tab

Control/
Tool

Option/
Range

Description

Sequence
Editor

Display and edit the sequence program.

Assembly Text display Displays the current sequence program in compiled form. Every line
corresponds to one hardware instruction.

Counter Current position in the list of sequence instructions during execution.

Status Running,
Idle, Waiting

Displays the status of the sequencer on the instrument. Off: Ready, not
running. Green: Running, not waiting for any trigger event. Yellow:
Running, waiting for a trigger event. Red: Not ready (e.g., pending elf
download, no elf downloaded)

Rerun ON / OFF Reruns the Sequencer program continuously. This way of looping a
program results in timing jitter. For a jitter free signal implement a loop
directly in the sequence program.

Mem
Usage (%)

0 to 100 Size of the current sequence program relative to the device cache
memory. The cache memory provides space for a maximum of 16384
instructions.

Clear Clears the command table description for the selected AWG Core.

Status grey/green/
red

Displays the status of the command table of the selected AWG Core.
Grey: no table description uploaded, Green: table description
successfully uploaded, Red: Error occurred during uploading of the
table description.

5.2.4. DIO Tab

The DIO tab provides access to the settings and controls of the digital inputs and outputs. It is
available on all SHFSG+ Instruments.

Features

 Monitor and control of 32-bit DIO port
 Configure Trigger Inputs and Marker Outputs
 Configure the Internal Trigger settings

Description

The DIO tab is the main panel to control the digital inputs and outputs as well as the trigger levels.
Whenever the tab is closed or an additional one of the same type is needed, clicking the following
icon will open a new instance of the tab.

Table 5.37: App icon and short description

5.2. Measurement Functionality

154 Zurich Instruments SHFSG+ User Manual

Control/
Tool

Option/
Range

Description

DIO Gives access to all controls relevant for the digital inputs and outputs
including DIO, Trigger Inputs, Trigger Outputs, and Marker Outputs.

Figure 5.15: LabOne UI: DIO tab

The Digital I/O section provides numerical monitors to observe the states of the digital inputs and
outputs. Moreover, with the values set in the Output column and the Drive button activated the
states can also be actively set in different numerical formats. The Trigger section shows the settings
for the 4 or 8 Trig inputs on the front panel. The LED status indicator helps in monitoring the input
signal state and selecting the threshold. The Marker section allows users to assign internal marker
bits to the 4 or 8 Mark outputs on the front panel. Alternatively, the outputs can be set to static high
or low values. In the System Settings section, the number of repetitions and the holdoff time of the
Internal Trigger can be configured. The Internal Trigger is useful for synchronizing the outputs of
different channels on the same instrument. The marker outputs have a configurable delay, with a
resolution of 1 ns.

Digital I/O

The Digital I/O has 3 operation modes: Manual means controlled manually, QA Sequencer n means
controlled by QA Sequencer n, QA there are the 32-bit DIO port is in use.

Figure 5.16 shows the architecture of the DIO port. It features 32 bits that can be configured byte-
wise as inputs or outputs by means of a drive signal. The digital output data is latched
synchronously with the falling edge of the internal clock, which is running at 50 MHz. The internal
sampling clock is available at the DOL pin of the DIO connector. Digital input data can either be
sampled by the internal clock or by an external clock provided through the CLKI pin. A decimated
version of the input clock is used to sample the input data. The Decimation unit counts the clocks to
decimation and then latches the input data. The default decimation is 5625000, corresponding to a
digital input sampling rate of 1 sample per second.

5.2. Measurement Functionality

155 Zurich Instruments SHFSG+ User Manual

Figure 5.16: DIO input/output architecture

In Manual mode, each DIO pin can be controlled manually according to Figure 5.16 and the DIO
interface specification is detailed in Specifications.

ZSync Interface

The ZSync link of the Zurich Instruments' Quantum Computing Control System (QCCS) enables
Instrument synchronization and communication on the system level through the Zurich
Instruments' PQSC Programmable Quantum System Controller. This architecture is able to support
quantum algorithms run in scalable quantum processors.

In particular, the ZSync links distribute the system clock to all Instruments and synchronize all
Instruments to sub-nanosecond levels. Besides status monitoring to ensure quality and reliability of
qubit tune-up routines, it provides a bidirectional data interface to send readout results to, or obtain
sequence instructions from the PQSC.

The ZSync links adhere to strict real-time behavior: all data transfers are predictable to single clock
cycle precision. In the SHFSG+, the link is optimized for maximum data transfer bandwidth to the
central controller. For example, twice the bandwidth is reserved for results being transferred to the
PQSC with respect to the allocated bandwidth for instructions that are received from the PQSC. This
enables global feedback and error correction through centralized syndrome decoding and
synchronized actions on the global QCCS system level.

5.2. Measurement Functionality

156 Zurich Instruments SHFSG+ User Manual

https://www.zhinst.com/ch/en/quantum-computing-systems/qccs
https://www.zhinst.com/ch/en/products/pqsc-programmable-quantum-system-controller

Feedback through the PQSC

Note

More information on the ZSync, and how to properly link the SHFSG+ with the QCCS can be found in
the user manual of the PQSC Programmable Quantum System Controller.

Using the startQA- command, the SHFQA+ or the Quantum Analyzer Channel of the SHFQC+
generates a readout result and forwards it to the PQSC over the ZSync. Depending on the address
provided, the PQSC stores it in the register bank - the center of the feedback in the QCCS system.
After processing, the PQSC then forwards the results to other devices in the QCCS, such as the
SHFSG+.

The register bank requires a readout to have an address and a mask along with the readout data.
Each component is sent in a separate ZSync message. The address is sent first, followed by the
mask, and then the data, see Figure 5.17. To reduce latency, the address and the mask are sent
during the readout, and the data is then sent as soon as the discriminated qubit results are ready.

Figure 5.17: Readout Result communication via ZSync

Functional Elements

Table 5.38: Digital input and output channels, reference and trigger

Control/Tool Option/Range Description

DIO mode Select DIO mode

Manual Enables manual control of the DIO output bits.

Sequencer Enables control of DIO values by the Sequencer.

Result Sends discriminated Readout Results to the DIO.

DIO mode Select DIO mode

Manual Enables manual control of the DIO output bits.

SG Sequencer 1 Enables control of DIO values by the sequencer of SG
channel 1.

SG Sequencer 2 Enables control of DIO values by the sequencer of SG
channel 2.

SG Sequencer 3 Enables control of DIO values by the sequencer of SG
channel 3.

SG Sequencer 4 Enables control of DIO values by the sequencer of SG
channel 4.

SG Sequencer 5 Enables control of DIO values by the sequencer of SG
channel 5.

SG Sequencer 6 Enables control of DIO values by the sequencer of SG
channel 6.

QA Result
Overflow

grey/yellow/red Red: present overflow condition on the DIO interface
during readout. Yellow: indicates an overflow occurred in
the past. An overflow can happen if readouts are triggered
faster than the maximum possible data-rate of the DIO
interface.

DIO bits label Partitioning of the 32 bits of the DIO into 4 buses of 8 bits
each. Each bus can be used as an input or output.

5.2. Measurement Functionality

157 Zurich Instruments SHFSG+ User Manual

Control/Tool Option/Range Description

DIO input numeric value in
either Hex or
Binary format

Current digital values at the DIO input port.

DIO output numeric value in
either hexadecimal
or binary format

Digital output values. Enable drive to apply the signals to
the output.

DIO drive ON / OFF When on, the corresponding 8-bit bus is in output mode.
When off, it is in input mode.

Format Select DIO view format.

Hexadecimal DIO view format is hexadecimal.

Binary DIO view format is binary.

Clock Select DIO internal or external clocking.

Interface Selects the interface standard to use on the 32-bit DIO
interface. This setting is persistent across device reboots.

LVCMOS A single-ended, 3.3V CMOS interface is used.

LVDS A differential, LVDS compatible interface is used.

Trigger level Trigger voltage level at which the trigger input toggles
between low and high. Use 50% amplitude for digital input
and consider the trigger hysteresis.

50 Ω 50 Ω/1 kΩ Trigger input impedance: When on, the trigger input
impedance is 50 Ω, when off 1 kΩ.

Trigger Input Low
status

Indicates the current low level trigger state.

Off A low state is not being triggered.

On A low state is being triggered.

Trigger Input
High status

Indicates the current high level trigger state.

Off A high state is not being triggered.

On A high state is being triggered.

Marker output
signal

Select the signal assigned to the marker output.

Delay (s) This delay adds an offset that acts only on the trigger/
marker output. The total delay to the trigger/marker
output is the sum of this value and the value of the output
delay node.

Run/Stop Enable internal trigger generator.

Repetitions Number of triggers to be generated.

Holdoff Hold-off time between generated triggers.

Progress The fraction of the triggers generated so far.

Synchronization Enable synchronization. Trigger generation will only start
once all synchronization participants have reported a
ready status. Synchronization checks will be repeated
with the same trigger generation settings (holdoff and
repetitions) until synchronization is disabled.

5.2.5. Output Router and Adder

The Output Router and Adder is a software upgrade option for the SHFSG+. The option can be
installed in the field.

Features

 Signals from up to three additional Digital Signal Units can be routed and added to any Output

5.2. Measurement Functionality

158 Zurich Instruments SHFSG+ User Manual

 Independent amplitude and phase control for each routed signal
 Ability to enable each routed signal separately
 Overflow counter to indicate if the added signals saturate the DAC
 Gain access to additional Digital Signal Units for extended signal generation capabilities on some

instruments

Description

The Output Router and Adder is a feature that allows the user to flexibly route the signals generated
by different Digital Signal Units to any front panel Output . The same signal can be routed to multiple
Outputs at once, and the user has completely independent amplitude and phase control of each
routed instance of a signal. This can have uses in crosstalk compensation on the RF lines for
superconducting qubits, but it can also be used to simultaneously drive multiple hyperfine
transitions in color centers, to perform state transfer protocols in quantum optics, or to perform
other experiments where frequency multiplexing is needed.

The Output Router and Adder works by introducing additional signal line connections between the
different digital signal pathways that lead to the analog upconversion chains of the Outputs. The
functional diagram below highlights how a signal could be routed from the Digital Signal Unit of
Channel 2 to the Output of Channel 1.

Figure 5.18: Diagram showing how the digital signals are routed between Channels. The
default signal pathways are shown in black, whereas the additional pathways and

controls are highlighted in light blue.

In this case, the digital signal generated by AWG 2 and modulated by the Digital Modulation settings
of Channel 2 is routed to the digital signal line that leads to the analog upconversion chain of Output
1, with the routed signal indicated by the light blue connections leading from Channel 2 to Channel 1.
The user has the ability to add an additional amplitude scaling factor and phase shift to the routed
signal, indicated by and in the diagram. The signal that is generated at Output 1 will
therefore be a linear combination of the signal normally generated from AWG core 1, as well as an
amplitude-scaled and phase-shifted version of the signal generated by AWG core 2 and Digital
Modulation settings of Channel 2. For detailed information on how the signals from the Digital Signal
Units are generated and how the Digital Modulation settings are applied, please refer to the Digital
Modulation Tutorial. Similarly, for more information on how the DAC and the Frequency
Upconversion Chain convert the digital signals into the final analog signal at the desired RF center
frequency, please refer to the Output Tab.

A11A_{11}A11 ϕ11\phi_{11}ϕ11

5.2. Measurement Functionality

159 Zurich Instruments SHFSG+ User Manual

Note

It is not possible to route marker or trigger output data between Channels: Only waveform
information is routed.

Each Channel has three routes, corresponding to the three additional digital signals that can be
added to the default signal pathway of that channel. Each route has its own enable/disable switch,
source (to select which channel the signal should be drawn from), amplitude scaling factor, and
phase shift. All of the signal routing, signal addition, amplitude scaling, and phase shifting happens
digitally, before the digital-to-analog conversion and associated analog upconversion chain. The
node device.sgchannels[n].outputrouter.overflowcount() can be queried to determine
whether the total signal, comprising the default signal for that Output as well as all routed signals
that are added to it, has produced an overflow at the DAC, indicating that the signal was clipped. If
the Output Router and Adder has detected an overflow in the past, it automatically clamps the
signal to be within the range [-1, 1], possibly distorting the signal. Both the amplitude scaling factor
and the phase shift of each routed signal are floating numbers that are serialized to 16 bits before
being written to the FPGA. The table below summarizes each of the different node settings that are
part of the Output Router and Adder.

Table 5.39: Output Router and Adder node settings

Name Node Description

Channel n
Output
Router
Enable

device.sgchannels[n].outputrouter.enable() Enables (1) or disables (0) the Output Router and Adder of Channel n

Channel n
Output
Router
Overflow
Indicator

device.sgchannels[n].outputrouter.overflowcount() Indicates the number of overflow events that have occurred

Channel n
Route m
Enable

device.sgchannels[n].outputrouter.routes[m].enable() Enables (1) or disables (0) Route m (0-2) of the Output Router and
Adder of Channel n

Channel n
Route m
Source

device.sgchannels[n].outputrouter.routes[m].source() Index of the Channel from which Route m accepts the additional
digital signal. Note that it is not possible to use the same Channel
index on different Routes on the same Channel at the same time (e.g.
it is not possible to have both
device.sgchannels[0].outputrouter.routes[0].source(1) and
device.sgchannels[0].outputrouter.routes[1].source(1)
simultaneously). Similarly, the Output Router of a Channel does not
accept its own index as a Source (e.g. it is not allowed to set
device.sgchannels[n].outputrouter.routes[m].source(n))

Channel n
Route m
Amplitude

device.sgchannels[n].outputrouter.routes[m].amplitude() Amplitude scaling factor (between 0 and 1, serialized into 16 bits)
applied to the routed signal. Indicated by in diagrams and
equations.

Channel n
Route m
Phase

device.sgchannels[n].outputrouter.routes[m].phase() Phase shift (any real value, serialized into 16 bits) applied to the
routed signal. Indicated by in diagrams and equations.

Based on the figure and table above, we can write down the total I and Q signals that are present on
Channel 1. Before reaching the Output Router and Adder, Channels 1 and 2 create the following I and
Q signals:

where all of the symbols are as defined in the Digital Modulation Tutorial, and the subscript
indicates from which Channel the signal or setting originates. At this stage, these are digital I and Q
signals, not analog voltages, that will be sent to the double-superheterodyne upconversion scheme
explained in the Output Tab. It is these digitally modulated I and Q signals that are routed between
channels. In this case, we are using the default signal of Channel 1 as well as the first route of the

AnmA_{nm}Anm

ϕnm\phi_{nm}ϕnm

VI,Ch1(t)=Gain00Ch1×wI,Ch1(t)cos(2πfOsc,Ch1t+ϕCh1)+Gain01Ch1×wQ,Ch1(t)sin(2πfOsc,Ch1t+ϕCh1)VQ,Ch1(t)=Gain10Ch1×wI,Ch1(t)sin(2πfOsc,Ch1t+ϕCh1)+Gain11Ch1×wQ,Ch1(t)cos(2πfOsc,Ch1t+ϕCh1)VI,Ch2(t)=Gain00Ch2×wI,Ch2(t)cos(2πfOsc,Ch2t+ϕCh2)+Gain01Ch2×wQ,Ch2(t)sin(2πfOsc,Ch2t+ϕCh2)VQ,Ch2(t)=Gain10Ch2×wI,Ch2(t)sin(2πfOsc,Ch2t+ϕCh2)+Gain11Ch2×wQ,Ch2(t)cos(2πfOsc,Ch2t+ϕCh2) V_{I,\mathrm{Ch1}}(t) = \mathrm{Gain00_{\mathrm{Ch1}}} \times w_{I,\mathrm{Ch1}} (t) \cos(2 \pi f_{\mathrm{Osc,\mathrm{Ch1}}} t + \phi_\mathrm{Ch1}) + \mathrm{Gain01_{\mathrm{Ch1}}} \times w_{Q,\mathrm{Ch1}} (t) \sin(2 \pi f_{\mathrm{Osc,\mathrm{Ch1}}} t + \phi_\mathrm{Ch1}) \\ \newline V_{Q,\mathrm{Ch1}}(t) = \mathrm{Gain10_{\mathrm{Ch1}}} \times w_{I,\mathrm{Ch1}} (t) \sin(2 \pi f_{\mathrm{Osc,\mathrm{Ch1}}} t + \phi_\mathrm{Ch1}) + \mathrm{Gain11_{\mathrm{Ch1}}} \times w_{Q,\mathrm{Ch1}} (t) \cos(2 \pi f_{\mathrm{Osc,\mathrm{Ch1}}} t + \phi_\mathrm{Ch1}) \\ \newline V_{I,\mathrm{Ch2}}(t) = \mathrm{Gain00_{\mathrm{Ch2}}} \times w_{I,\mathrm{Ch2}} (t) \cos(2 \pi f_{\mathrm{Osc,\mathrm{Ch2}}} t + \phi_\mathrm{Ch2}) + \mathrm{Gain01_{\mathrm{Ch2}}} \times w_{Q,\mathrm{Ch2}} (t) \sin(2 \pi f_{\mathrm{Osc,\mathrm{Ch2}}} t + \phi_\mathrm{Ch2}) \\ \newline V_{Q,\mathrm{Ch2}}(t) = \mathrm{Gain10_{\mathrm{Ch2}}} \times w_{I,\mathrm{Ch2}} (t) \sin(2 \pi f_{\mathrm{Osc,\mathrm{Ch2}}} t + \phi_\mathrm{Ch2}) + \mathrm{Gain11_{\mathrm{Ch2}}} \times w_{Q,\mathrm{Ch2}} (t) \cos(2 \pi f_{\mathrm{Osc,\mathrm{Ch2}}} t + \phi_\mathrm{Ch2}) V (t) =I,Ch1 Gain00 ×Ch1 w (t) cos(2πf t+I,Ch1 Osc,Ch1 ϕ) +Ch1 Gain01 ×Ch1 w (t) sin(2πf t+Q,Ch1 Osc,Ch1 ϕ)Ch1

V (t) =Q,Ch1 Gain10 ×Ch1 w (t) sin(2πf t+I,Ch1 Osc,Ch1 ϕ) +Ch1 Gain11 ×Ch1 w (t) cos(2πf t+Q,Ch1 Osc,Ch1 ϕ)Ch1

V (t) =I,Ch2 Gain00 ×Ch2 w (t) cos(2πf t+I,Ch2 Osc,Ch2 ϕ) +Ch2 Gain01 ×Ch2 w (t) sin(2πf t+Q,Ch2 Osc,Ch2 ϕ)Ch2

V (t) =Q,Ch2 Gain10 ×Ch2 w (t) sin(2πf t+I,Ch2 Osc,Ch2 ϕ) +Ch2 Gain11 ×Ch2 w (t) cos(2πf t+Q,Ch2 Osc,Ch2 ϕ)Ch2

Chn\mathrm{Ch}nChn

5.2. Measurement Functionality

160 Zurich Instruments SHFSG+ User Manual

Output Router and Adder, with Channel 2 as the source for that route. The total I and Q signals that
are sent to the DAC and Output of Channel 1 are therefore given by the following equation:

where and stand for the node settings
device.sgchannels[0].outputrouter.routes[0].amplitude() and
device.sgchannels[0].outputrouter.routes[0].phase(), as described in the table above.
Because all of the signal routing and adding happens digitally, all frequency components of the total
signal should lie within the 1 GHz bandwidth of the analog upconversion chain, or there is a risk of
attenuating parts of the generated RF signal. For use cases in which frequency multiplexing in a
bandwidth exceeding 1 GHz is needed, it is recommended to combine the desired RF signals
external to the instrument. This also means that all channels between which crosstalk
compensation is being performed must share the same RF center frequency, such that the
compensation pulse appears at the correct frequency at the Output.

Note that enabling the Output Router on a given channel increases the output latency by 26 ns (52
samples), as the signal pathway is extended to include additional signal addition stages. It is highly
recommended to enable the Output Router on all channels that are sharing signals in any way, to
ensure that the signals at the Outputs on the front panel remain synchronized. For example, if AWG
core 2 is generating a signal that is routed to Output 1, it is recommended to enable the Output
Router on Channel 2 as well, even though it is not adding signals from other channels to its own
output. This is to ensure that the relative timing of the signal from Channel 2 played on Output 2
lines up with the Channel 2 signal played on Output 1.

For instruments that have fewer than the maximum possible number of AWG cores for the
instrument class, additional Digital Signal Units become available. This means that an SHFSG4 will
have access to 8 AWG cores in total, as well as the corresponding Digital Modulation settings and
other digital signal settings, such as the digital trigger and the mask, shift, and offset settings for
processing data received over DIO or ZSync. The first 4 AWG cores (indices 0 – 3) and corresponding
Digital Modulation settings come with the SHFSG4 by default. The 4 additional Digital Signal Units
(indices 4-7) grant access to both another AWG core and Digital Modulation settings with which to
modulate the AWG signals, as well as other several other settings needed to configure the digital
signal pathways. The additional Digital Signal Units have all the same settings and abilities as the
channels that come with the base version of the instrument, but they are not associated with an
Output on the front panel by default and therefore do not generate an output signal unless their
signals are intentionally routed to an Output using the Output Router and Adder. The table below
lists the functionality that is NOT available on the additional Digital Signal Units.

Table 5.40: Node settings that are NOT available on the additional Digital Signal Units made available
with the Output Router and Adder

Name Node

Channel n Digitalmixer Center
Frequency

device.sgchannels[n].digitalmixer.centerfreq()

Channel n Marker Source device.sgchannels[n].marker.source()

Channel n Output Center Frequency device.sgchannels[n].centerfreq()

Channel n Output Delay device.sgchannels[n].output.delay()

Channel n Output Filter device.sgchannels[n].output.filter()

Channel n Output On device.sgchannels[n].output.on()

Channel n Output Over Range Counter device.sgchannels[n].output.overrangecount()

Channel n Output Range device.sgchannels[n].output.range()

Channel n Output RFLF Path device.sgchannels[n].output.rflfpath()

Channel n Synthesizer device.sgchannels[n].synthesizer()

Channel n Trigger Delay device.sgchannels[n].trigger.delay()

Channel n Trigger Impedance (50 Ohm) device.sgchannels[n].trigger.imp50()

Channel n Trigger Level device.sgchannels[n].trigger.level()

Channel n Trigger Value device.sgchannels[n].trigger.value()

All of the above settings involve analog settings or other settings involved in the upconversion chain
that do not apply to the additional Digital Signal Units. Although the node

VI,Ch1,Total(t)=VI,Ch1(t)+A00(VI,Ch2(t)cos(ϕ00)−VQ,Ch2(t)sin(ϕ00))VQ,Ch1,Total(t)=VQ,Ch1(t)+A00(VI,Ch2(t)sin(ϕ00)+VQ,Ch2(t)cos(ϕ00)) V_{I,\mathrm{Ch1},\mathrm{Total}}(t) = V_{I,\mathrm{Ch1}}(t) + A_{00} \left(V_{I,\mathrm{Ch2}}(t) \cos(\phi_{00}) - V_{Q,\mathrm{Ch2}}(t) \sin(\phi_{00}) \right) \\ \newline V_{Q,\mathrm{Ch1},\mathrm{Total}}(t) = V_{Q,\mathrm{Ch1}}(t) + A_{00} \left(V_{I,\mathrm{Ch2}}(t) \sin(\phi_{00}) + V_{Q,\mathrm{Ch2}}(t) \cos(\phi_{00}) \right) V (t) =I,Ch1,Total V (t) +I,Ch1 A V (t) cos(ϕ) − V (t) sin(ϕ)00 (I,Ch2 00 Q,Ch2 00)
V (t) =Q,Ch1,Total V (t) +Q,Ch1 A V (t) sin(ϕ) + V (t) cos(ϕ)00 (I,Ch2 00 Q,Ch2 00)

A00A_{00}A00 ϕ00\phi_{00}ϕ00

5.2. Measurement Functionality

161 Zurich Instruments SHFSG+ User Manual

device.sgchannels[n].output.delay() is a digital delay, its effects are applied after the Output
Router and Adder but before the DAC and is therefore not needed for the additional Digital Signal
Units. Having the delay node implemented after the Output Router and Adder also ensures that the
delay on a given Output is common to all signals applied on that line.

How-To: Route signals between Channels 1, 2, 4, and 6

For motivation, consider a superconducting qubit chip in which Channels 1 – 6 (e.g. of an SHFSG8)
are connected to Qubits 1 – 6 and in which Qubit 4 experiences strong crosstalk to Qubits 1, 2, and 6.
Assuming the amplitude of the crosstalk has been characterized, as has the necessary phase shift
for the compensation pulse, we can use the following node settings to enable the instrument to
automatically play compensation pulses, such that the net effect of the crosstalk at the qubit is
negated.

We assume that the instrument has already been connected to and that all of the AWGs and Digital
Modulation settings have been programmed or set up.

Define paths for Output Routers of each channel used
ch1_rtr = device.sgchannels[0].outputrouter
ch2_rtr = device.sgchannels[1].outputrouter
ch4_rtr = device.sgchannels[3].outputrouter
ch6_rtr = device.sgchannels[5].outputrouter

with sg.set_transaction():
Signals routed to Output 1
ch1_rtr.enable(1) # allow other signals to be added to the output of this

channel
ch1_rtr.routes[0].enable(1) # enable route 1
ch1_rtr.routes[0].source(3) # for route 1, use SG channel 4 as the source
ch1_rtr.routes[0].amplitude(AMP_Q4_TO_Q1) # apply an amplitude scaling factor

of AMP_Q4_TO_Q1, corresponding to the amount of leakage from charge line 4 into
qubit 1

ch1_rtr.routes[0].phase(PHASE_Q4_TO_Q1)
apply a phase shift of PHASE_Q4_TO_Q1 degrees to the routed signal,
corresponding to the phase shift needed to cancel out the leakage from charge
line 4 into qubit 1

Signals routed to Output 2
ch2_rtr.enable(1) # allow other signals to be added to the output of this

channel
ch2_rtr.routes[0].enable(1) # enable route 1
ch2_rtr.routes[0].source(3) # for route 1, use SG channel 4 as the source
ch2_rtr.routes[0].amplitude(AMP_Q4_TO_Q2) # apply an amplitude scaling factor

of AMP_Q4_TO_Q6 to the routed signal
ch2_rtr.routes[0].phase(PHASE_Q4_TO_Q2) # apply a phase shift of PHASE_Q4_TO_Q2

Signals routed to Output 4
ch4_rtr.enable(1) # allow other signals to be added to the output of this

channel
Route 1
ch4_rtr.routes[0].enable(1) # enable route 1
ch4_rtr.routes[0].source(0) # for route 1, use SG channel 1 as the source
ch4_rtr.routes[0].amplitude(AMP_Q1_TO_Q4) # apply an amplitude scaling factor

of AMP_Q1_TO_Q4 to the routed signal
ch4_rtr.routes[0].phase(PHASE_Q1_TO_Q4) # apply a phase shift of PHASE_Q1_TO_Q4

Route 2
ch4_rtr.routes[1].enable(1) # enable route 2
ch4_rtr.routes[1].source(1) # for route 2, use SG channel 2 as the source
ch4_rtr.routes[1].amplitude(AMP_Q2_TO_Q4) # apply an amplitude scaling factor

of AMP_Q2_TO_Q4 to the routed signal
ch4_rtr.routes[0].phase(PHASE_Q2_TO_Q4) # apply a phase shift of PHASE_Q2_TO_Q4

5.2. Measurement Functionality

162 Zurich Instruments SHFSG+ User Manual

Route 3
ch4_rtr.routes[2].enable(1) # enable route 1
ch4_rtr.routes[2].source(5) # for route 3, use SG channel 6 as the source
ch4_rtr.routes[2].amplitude(AMP_Q6_TO_Q4) # apply an amplitude scaling factor

of AMP_Q6_TO_Q4 to the routed signal
ch4_rtr.routes[2].phase(PHASE_Q6_TO_Q4) # apply a phase shift of PHASE_Q6_TO_Q4

Signals routed to Output 6
ch6_rtr.enable(1) # allow other signals to be added to the output of this

channel
ch6_rtr.routes[0].enable(1) # enable route 1
ch6_rtr.routes[0].source(3) # for route 1, use SG channel 4 as the source
ch6_rtr.routes[0].amplitude(AMP_Q4_TO_Q6) # apply an amplitude scaling factor

of AMP_Q4_TO_Q6 to the routed signal
ch6_rtr.routes[0].phase(PHASE_Q4_TO_Q6)

apply a phase shift of PHASE_Q4_TO_Q6 degrees to the routed signal

With these settings, any sequence played on Channel 4 will automatically play compensation pulses
on Outputs 1, 2, and 6. Similarly, any sequence played on Channels 1, 2, or 6 will automatically play a
compensation pulse on Output 4 (so long as the corresponding AWG cores and analog Outputs are
all enabled).

Since we are adding many signals together on Output 4, there is a risk that the total signal could
saturate the DAC at some points. To check whether this is the case, a user can query the node
device.sgchannels[3].outputrouter.overflowcount(). The result is the number of overflows
that have occurred so far, and a non-zero result means that an overflow has occurred in the past,
and the digital signals must be scaled down. This can be accomplished, for example, by increasing
the range setting of the Output and reducing the digital amplitudes of all signals to compensate. A
result of 0 means that no overflow has occurred.

5.2. Measurement Functionality

163 Zurich Instruments SHFSG+ User Manual

6. Specifications

Important

Unless otherwise stated, all specifications apply after 30 minutes of instrument warm-up.

For measurements in which high gate fidelity is crucial, it is highly recommended to enable all
required outputs and wait for 2 hours after powering on the instrument.

Important

Important changes in the specification parameters are explicitly mentioned in the revision history of
this document.

6.1. General Specifications

Table 6.1: General and storage

Parameter Min Typ Max

storage temperature –25 °C - 65 °C

storage relative humidity (non-
condensing)

- - 95%

operating temperature 5 °C - 40 °C

operating relative humidity (non-
condensing)

- - 90%

specification temperature 18 °C - 28 °C

power consumption - - 300 W

operating environment IEC61010, indoor location, installation category II, pollution
degree 2

operating altitude up to 2000 meters

power inlet fuses 250 V, 2 A, fast acting, 5 x 20 mm

power supply AC line 100-240 V (±10%), 50/60 Hz

dimensions (width x depth x height) 45.0 × 39.7 × 13.2 cm (no handle), 17.7 × 15.6 × 5.2 inch, 19 inch
rack compatible

weight 15 kg (33 lb)

recommended calibration interval 2 years

Table 6.2: Maximum ratings

Parameter Min Typ Max

damage threshold Out - - +30 dBm

damage threshold Mark Out –0.7 V - +4 V

damage threshold Trig In (1 kΩ input impedance) –11 V - +11 V

damage threshold Trig In (50 Ω input impedance) –6 V - +6 V

damage threshold Aux In (DC) -10 V - +10 V

damage threshold Aux In (AC) - - +20 dBm

damage threshold External Clk In (DC) –3 V - +3 V

damage threshold External Clk In (AC, with DC offset 0 V) - - +13.5 dBm

6. Specifications

164 Zurich Instruments SHFSG+ User Manual

Parameter Min Typ Max

damage threshold External Clk Out (DC) –3 V - +3 V

MDS In / Out –0.7 V - +4 V

DIO In / Out in default configuration 3.3 V CMOS/TTL –0.7 V - +4 V

torque limit front panel SMA connectors - - 0.5 Nm

torque limit back panel SMA connectors - - 1.0 Nm

Table 6.3: Host computer requirements

Parameter Description

supported Windows operating
systems

Windows 10, 11 on x86-64

supported macOS operating
systems

macOS 10.11+ on x86-64 and ARMv8

supported Linux distributions GNU/Linux (Ubuntu 14.04+, CentOS 7+, Debian 8+) on x86-64
and ARMv8

supported processors x86-64 (Intel, AMD), ARMv8 (e.g., Raspberry Pi 4 and newer,
Apple M-series)

6.2. Analog Interface Specifications

Table 6.4: Signal Outputs

Parameter Details Min Typ Max

connectors - SMA, front panel single-ended

impedance - - 50 Ω -

coupling LF path DC

RF path AC

synthesizers SHFSG4+ One per channel

SHFSG8+ One per channel pair

synthesizer frequency range 0.6-8 GHz

instantaneous bandwidth (–3dB) RF path ±500 MHz

LF path DC - 2500 MHz

total frequency range DC - 8.5
GHz

range RF path, into 50 Ω -30
dBm

- +10
dBm

LF path, into 50 Ω -30
dBm

- +5
dBm

output level accuracy into 50 Ω - ±(1 dBm of
setting)

-

output level temperature drift - 0.15 dB/°C -

D/A converter vertical resolution - 14 bit

D/A converter sampling rate after internal x3 interpolation 6 GSa/s

voltage spectral noise density RF path, 10 dBm range - -143 dBm/Hz -

phase noise RF path, 5 GHz, 10 kHz offset
frequency

- -110 dBc/Hz -

RF path, 5 GHz, 10 MHz offset
frequency

- -138 dBc/Hz -

6.2. Analog Interface Specifications

165 Zurich Instruments SHFSG+ User Manual

Parameter Details Min Typ Max

spurious free dynamic range
(excluding harmonics)

RF path, 10 dBm range,
CW tone, signal amplitude 10
dBm (0 dBFS)

- 48 dBc -

worst harmonic component 10 dBm range 1 GHz - -40 dBc -

4 GHz - -40 dBc -

6 GHz - -38 dBc -

8 GHz - -36 dBc -

Table 6.5: Time Domain Output Characteristics

Parameter Details Min Typ Max

skew adjustment resolution - 500 ps

Table 6.6: Marker Outputs & Trigger Inputs

Parameter Details Min Typ Max

marker outputs - 1 per channel

marker outputs connector - SMA, front panel single-ended

marker output high voltage - - 3.3 V -

marker output low voltage - - 0 V -

marker output impedance - - 50 Ω -

marker output rise time 20% to 80% - - 300 ps -

trigger inputs - 1 per channel

trigger inputs connector - SMA, front panel single-ended

trigger input impedance - 50 Ω / 1 kΩ

trigger input voltage range 50 Ω impedance –5 V - 5 V

1 kΩ impedance –10 V - 10 V

trigger input threshold range 50 Ω impedance –5 V - 5 V

1 kΩ impedance –10 V - 10 V

trigger input threshold resolution - - < 0.4 mV -

trigger input threshold hysteresis - - > 60 mV -

Table 6.7: Other Inputs and Outputs

Parameter Details min Typ Max

reference clock input - SMA on back panel

reference clock input
impedance

- 50 Ω, AC coupled

reference clock input
frequency

- 10 / 100 MHz

reference clock input
amplitude

10 MHz -4
dBm

- +13
dBm

100 MHz –5
dBm

- +13
dBm

reference clock output - SMA on back panel

reference clock output
impedance

50 Ω, AC coupled

reference clock output
amplitude

into 50 Ω 2 Vpp - 5 Vpp

6.2. Analog Interface Specifications

166 Zurich Instruments SHFSG+ User Manual

Parameter Details min Typ Max

reference clock output
frequency

10/100 MHz

reference clock output
jitter

derived from integrated phase noise
measurement (12 kHz to 20 MHz offset
frequency)

- 280 fs
RMS

-

Table 6.8: Oscillator and Clocks

Parameter Details Min Typ Max

internal clock type - OCXO

internal clock long term accuracy / aging - - - ±0.3 ppm/year

internal clock short term stability (1 s) - - - ±0.05 ppm

internal clock initial accuracy - - - ±0.5 ppm

internal clock temperature stability –20°C to 70°C - - ±0.5 ppm

internal clock phase noise offset 100 Hz - –135 dBc/Hz -

offset 1 kHz - –157 dBc/Hz -

6.3. Digital Waveform Generation Specifications

Table 6.9: Waveform Generation

Parameter Details Specification

number of AWG cores for SHFSG+ base version 1 per channel

for SHFSG+ with SHFSG-
RTR

8 total

AWG sampling rate dual-channel 2 GSa/s

waveform memory per output
channel

- 96 kSa 1

sequence length - 32 kInstructions instructions per

core 2

waveform granularity - 16 samples

minimum waveform length - 16 samples (with command table)

sequencer clock frequency - 250 MHz

6.4. Digital Interface Specifications

Table 6.10: Digital Interfaces

Parameter Description

host computer
connection

USB 3.0, 1.6 Gbit/s (1 communication, 1 maintenance)

1GbE, LAN / Ethernet, 1 Gbit/s

DIO port 4 x 8 bit, general purpose digital input/output port, 3.3 V TTL
specification

ZSync peripheral port connector for ZI proprietary bus to communicate with external
peripherals

6.4.1. DIO Port

The DIO port is a VHDCI 68 pin connector as introduced by the SPI-3 document of the SCSI-3
specification. It is a female connector that requires a 32 mm wide male connector. The interface
standard is switchable between LVDS (low-voltage differential signalling) and LVCMOS/LVTTL. The

6.3. Digital Waveform Generation Specifications

167 Zurich Instruments SHFSG+ User Manual

DIO port features 32 user-controlled bits that can all be configured byte-wise as inputs or outputs in
LVCMOS/LVTTL mode, whereas in LVDS mode, half of the bits are always configured as inputs. For
more specifics on how the user-definable pins can be set.

Figure 6.1: DIO HD 68 pin connector

Table 6.11: Electrical Specifications

Parameter Details Min Typ Max

supported DIO interface
standards

- LVCMOS/LVTTL (single-ended, 3.3 V); LVDS
(differential)

high-level input voltage VIH LVCMOS/
LVTTL

2.0 V - -

low-level input voltage VIL LVCMOS/
LVTTL

- - 0.8 V

high-level output voltage VOH LVCMOS/
LVTTL
at IOH < 12 mA

2.6 V - -

low-level output voltage VOL LVCMOS/
LVTTL
at IOL < 12 mA

- - 0.4 V

high-level output current IOH
(sourcing)

LVCMOS/
LVTTL

- - 12 mA

low-level output current IOL
(sinking)

LVCMOS/
LVTTL

- - 12 mA

input differential voltage VID LVDS 100 mV - 600 mV

input common-mode voltage
VICM

LVDS 0.3 V - 2.35 V

output differential voltage VOD LVDS 247 mV - 454 mV

output common-mode voltage
VOCM

LVDS 1.125 V - 1.375 V

Table 6.12: DIO Pin Assignment in LVCMOS/LVTTL Mode

Pin Name Description

68 CLKI digital input

67 unused leave unconnected

66 .. 59 DIO[31:24] digital input or output byte (set by user)

58 .. 51 DIO[23:16] digital input or output byte (set by user)

50 .. 43 DIO[15:8] digital input or output byte (set by user)

42 .. 35 DIO[7:0] digital input or output byte (set by user)

34 GND digital ground

33 unused leave unconnected

32 .. 1 GND digital ground

6.4. Digital Interface Specifications

168 Zurich Instruments SHFSG+ User Manual

Table 6.13: DIO Pin Assignment in LVDS Mode

Pin Name Description

68 CLKI+ digital input

67 unused leave unconnected

66 .. 59 DI+[31:24] digital input byte

58 .. 51 DI+[23:16] digital input byte

50 .. 43 DIO+[15:8] digital input or output byte (set by user)

42 .. 35 DIO+[7:0] digital input or output byte (set by user)

34 CLKI– digital input

33 unused leave unconnected

32 .. 25 DI–[31:24] digital input byte

24 .. 17 DI–[23:16] digital input byte

16 .. 9 DIO–[15:8] digital input or output byte (set by user)

8 .. 1 DIO–[7:0] digital input or output byte (set by user)

With binary prefix: 1 kSa = 1024 Sa ↩
With binary prefix: 1 kInstructions = 1024 Instructions ↩

1.
2.

6.4. Digital Interface Specifications

169 Zurich Instruments SHFSG+ User Manual

7. Device Node Tree
This chapter contains reference documentation for the settings and measurement data available on
SHFSG+ Instruments. Whilst Functional Description describes many of these settings in terms of
the features available in the LabOne User Interface, this chapter describes them on the device level
and provides a hierarchically organized and comprehensive list of device functionality.

Since these settings and data streams may be written and read using the LabOne APIs (Application
Programming Interfaces) this chapter is of particular interest to users who would like to perform
measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

Please see:

 Introduction for an introduction of how the instrument's settings and measurement data are
organized hierarchically in the Data Server's so-called "Node Tree".

 Reference Node Documentation for a reference list of the settings and measurement data
available on SHFSG+ Instruments, organized by branch in the Node Tree.

7.1. Introduction

This chapter provides an overview of how an instrument's configuration and output is organized by
the Data Server.

All communication with an instrument occurs via the Data Server program the instrument is
connected to (see LabOne Software Architecture for an overview of LabOne's software
components). Although the instrument's settings are stored locally on the device, it is the Data
Server's task to ensure it maintains the values of the current settings and makes these settings (and
any subscribed data) available to all its current clients. A client may be the LabOne User Interface or
a user's own program implemented using one of the LabOne Application Programming Interfaces,
e.g., Python.

The instrument's settings and data are organized by the Data Server in a file-system-like
hierarchical structure called the node tree. When an instrument is connected to a Data Server, its
device ID becomes a top-level branch in the Data Server's node tree. The features of the instrument
are organized as branches underneath the top-level device branch and the individual instrument
settings are leaves of these branches.

For example, the auxiliary outputs of the instrument with device ID "dev1000" are located in the tree
in the branch:

/dev1000/auxouts/

In turn, each individual auxiliary output channel has its own branch underneath the "AUXOUTS"
branch.

/dev1000/auxouts/0/
/dev1000/auxouts/1/
/dev1000/auxouts/2/
/dev1000/auxouts/3/

Whilst the auxiliary outputs and other channels are labelled on the instrument's panels and the User
Interface using 1-based indexing, the Data Server's node tree uses 0-based indexing. Individual
settings (and data) of an auxiliary output are available as leaves underneath the corresponding
channel's branch:

/dev1000/auxouts/0/demodselect
/dev1000/auxouts/0/limitlower
/dev1000/auxouts/0/limitupper
/dev1000/auxouts/0/offset
/dev1000/auxouts/0/outputselect
/dev1000/auxouts/0/preoffset
/dev1000/auxouts/0/scale
/dev1000/auxouts/0/value

These are all individual node paths in the node tree; the lowest-level nodes which represent a single
instrument setting or data stream. Whether the node is an instrument setting or data-stream and

7. Device Node Tree

170 Zurich Instruments SHFSG+ User Manual

which type of data it contains or provides is well-defined and documented on a per-node basis in
the Reference Node Documentation section in the relevant instrument-specific user manual. The
different properties and types are explained in Node Properties and Data Types .

For instrument settings, a Data Server client modifies the node's value by specifying the appropriate
path and a value to the Data Server as a (path, value) pair. When an instrument's setting is changed
in the LabOne User Interface, the path and the value of the node that was changed are displayed in
the Status Bar in the bottom of the Window. This is described in more detail in Exploring the Node
Tree.

Module Parameters

LabOne Core Modules, such as the Sweeper, also use a similar tree-like structure to organize their
parameters. Please note, however, that module nodes are not visible in the Data Server's node tree;
they are local to the instance of the module created in a LabOne client and are not synchronized
between clients.

7.1.1. Node Properties and Data Types

A node may have one or more of the following properties:

Property Description

Read Data can be read from the node.

Write Data can be written to the node.

Setting The node corresponds to a writable instrument configuration. The data of these nodes
are persisted in snapshots of the instrument and stored in the LabOne XML settings
files.

Streaming A node with the read attribute that provides instrument data, typically at a user-
configured rate. The data is usually a more complex data type, for example
demodulator data is returned as ZIDemodSample. A full list of streaming nodes is
available in the Programming Manual in the Chapter Instrument Communication. Their
availability depends on the device class (e.g. MF) and the option set installed on the
device.

Pipelined If the sequence pipeliner mode is off the value set to the node is applied immediately.
Otherwise, it goes to the staging area of the sequence pipeliner instead. Multiple
pipelined nodes can be programmed as part of a job definition, that is finalized by
writing a one to the relevant commit node.

A node may contain data of the following types:

Integer Integer data.

Double Double precision floating point data.

String A string array.

Integer
(enumerated)

As for Integer, but the node only allows certain values.

Composite
data type

For example, ZIDemodSample. These custom data types are structures whose
fields contain the instrument output, a timestamp and other relevant instrument
settings such as the demodulator oscillator frequency. Documentation of custom
data types is available in

7.1.2. Exploring the Node Tree

In the LabOne User Interface

A convenient method to learn which node is responsible for a specific instrument setting is to check
the Command Log history in the bottom of the LabOne User Interface. The command in the Status
Bar gets updated every time a configuration change is made. Figure 7.1 shows how the equivalent

7.1. Introduction

171 Zurich Instruments SHFSG+ User Manual

MATLAB command is displayed after modifying the value of the auxiliary output 1's offset. The
format of the LabOne UI's command history can be configured in the Config Tab (MATLAB, Python
and .NET are available). The entire history generated in the current UI session can be viewed by
clicking the "Show Log" button.

Figure 7.1: When a device's configuration is modified in the LabOne User Interface, the
Status Bar displays the equivalent command to perform the same configuration via a
LabOne programming interface. Here, the MATLAB code to modify auxiliary output 1's
offset value is provided. When "Show Log" is clicked the entire configuration history is

displayed in a new browser tab.

In a LabOne Programming Interface

A list of nodes (under a specific branch) can be requested from the Data Server in an API client using
the listNodes command (MATLAB, Python, .NET) or ziAPIListNodes() function (C API). Please see
each API's command reference for more help using the listNodes command. To obtain a list of all
the nodes that provide data from an instrument at a high rate, so-called streaming nodes, the
streamingonly flag can be provided to listNodes. More information on data streaming and
streaming nodes is available in the LabOne Programming Manual.

The detailed descriptions of nodes that is provided in Reference Node Documentation is accessible
directly in the LabOne MATLAB or Python programming interfaces using the "help" command. The
help command is daq.help(path) in Python and ziDAQ('help', path) in MATLAB. The
command returns a description of the instrument node including access properties, data type, units
and available options. The "help" command also handles wildcards to return a detailed description
of all nodes matching the path. An example is provided below.

daq = zhinst.core.ziDAQServer('localhost', 8004, 6)
daq.help('/dev1000/auxouts/0/offset')
Out:
/dev1000/auxouts/0/OFFSET#
Add the specified offset voltage to the signal after scaling. Auxiliary

Output
Value = (Signal+Preoffset)*Scale + Offset
Properties: Read, Write, Setting
Type: Double
Unit: V

7.1.3. Data Server Nodes

The Data Server has nodes in the node tree available under the top-level /zi/ branch. These nodes
give information about the version and state of the Data Server the client is connected to. For
example, the nodes:

 /zi/about/version
 /zi/about/revision

are read-only nodes that contain information about the release version and revision of the Data
Server. The nodes under the /zi/devices/ list which devices are connected, discoverable and
visible to the Data Server.

The nodes:

 /zi/config/open
 /zi/config/port

are settings nodes that can be used to configure which port the Data Server listens to for incoming
client connections and whether it may accept connections from clients on hosts other than the
localhost.

7.1. Introduction

172 Zurich Instruments SHFSG+ User Manual

Nodes that are of particular use to programmers are:

 /zi/debug/logpath - the location of the Data Server's log in the PC's file system,
 /zi/debug/level - the current log-level of the Data Server (configurable; has the Write

attribute),
 /zi/debug/log - the last Data Server log entries as a string array.

The Global nodes of the LabOne Data Server are listed in the Instrument Communication chapter of
the LabOne Programming Manual

7.2. Reference Node Documentation

This section describes all the nodes in the data server’s node tree organized by branch.

7.2.1. CLOCKBASE

/dev..../clockbase

Properties: Read
Type: Double
Unit: Hz

Returns the internal clock frequency of the device.

7.2.2. DIOS

/dev..../dios/n/drive

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

When on (1), the corresponding 8-bit bus is in output mode. When off (0), it is in input mode. Bit 0
corresponds to the least significant byte. For example, the value 1 drives the least significant byte,
the value 8 drives the most significant byte.

/dev..../dios/n/input

Properties: Read
Type: Integer (64 bit)
Unit: None

Gives the value of the DIO input for those bytes where drive is disabled.

/dev..../dios/n/interface

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Selects the interface standard to use on the 32-bit DIO interface. A value of 0 means that a 3.3 V
CMOS interface is used. A value of 1 means that an LVDS compatible interface is used.

7.2. Reference Node Documentation

173 Zurich Instruments SHFSG+ User Manual

/dev..../dios/n/mode

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Select DIO mode

0 "manual": Enables manual control of the DIO output bits.

48
"sgchan0seq", "sgchannel0_sequencer": Enables control of DIO values by the
sequencer of SG channel 1.

49
"sgchan1seq", "sgchannel1_sequencer": Enables control of DIO values by the
sequencer of SG channel 2.

50
"sgchan2seq", "sgchannel2_sequencer": Enables control of DIO values by the
sequencer of SG channel 3.

51
"sgchan3seq", "sgchannel3_sequencer": Enables control of DIO values by the
sequencer of SG channel 4.

/dev..../dios/n/output

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Sets the value of the DIO output for those bytes where 'drive' is enabled.

7.2.3. FEATURES

/dev..../features/code

Properties: Write
Type: String
Unit: None

Node providing a mechanism to write feature codes.

/dev..../features/devtype

Properties: Read
Type: String
Unit: None

Returns the device type.

/dev..../features/options

Properties: Read
Type: String
Unit: None

Returns enabled options.

/dev..../features/serial

Properties: Read
Type: String
Unit: None

Device serial number.

7.2. Reference Node Documentation

174 Zurich Instruments SHFSG+ User Manual

7.2.4. SGCHANNELS

/dev..../sgchannels/n/awg/auxtriggers/n/channel

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Selects the digital trigger source signal.

0 "trigin0", "trigger_input0": Trigger In 1
1 "trigin1", "trigger_input1": Trigger In 2
2 "trigin2", "trigger_input2": Trigger In 3
3 "trigin3", "trigger_input3": Trigger In 4
4 "trigin4", "trigger_input4": Trigger In 5
5 "trigin5", "trigger_input5": Trigger In 6
6 "trigin6", "trigger_input6": Trigger In 7
7 "trigin7", "trigger_input7": Trigger In 8
8 "inttrig", "internal_trigger": Internal Trigger

/dev..../sgchannels/n/awg/auxtriggers/n/slope

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Select the signal edge that should activate the trigger. The trigger will be level sensitive when the
Level option is selected.

0 "level_sensitive": Level sensitive trigger
1 "rising_edge": Rising edge trigger
2 "falling_edge": Falling edge trigger
3 "both_edges": Rising or falling edge trigger

/dev..../sgchannels/n/awg/auxtriggers/n/state

Properties: Read
Type: Integer (64 bit)
Unit: None

State of the Auxiliary Trigger: No trigger detected/trigger detected.

/dev..../sgchannels/n/awg/commandtable/clear

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Writing to this node clears all data previously loaded to the command table of the device. If the
sequence pipeliner mode is not off, the command table in the sequence pipeliner staging area is
cleared instead.

/dev..../sgchannels/n/awg/commandtable/data

Properties: Read, Write, Pipelined
Type: ZIVectorData
Unit: None

Data contained in the command table in JSON format.

7.2. Reference Node Documentation

175 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/awg/commandtable/schema

Properties: Read
Type: ZIVectorData
Unit: None

JSON schema describing the command table JSON format (read-only).

/dev..../sgchannels/n/awg/commandtable/status

Properties: Read, Pipelined
Type: Integer (64 bit)
Unit: None

Status of the command table on the instrument. If the sequence pipeliner mode is not off, the
status of the command table in the sequence pipeliner staging area is shown instead. Bit 0: data
uploaded to the command table; Bit 1, Bit 2: reserved; Bit 3: uploading of data to the command table
failed due to a JSON parsing error.

/dev..../sgchannels/n/awg/dio/error/timing

Properties: Read
Type: Integer (64 bit)
Unit: None

A 32-bit value indicating which bits on the DIO interface may have timing errors. A timing error is
defined as an event where either the VALID or any of the data bits on the DIO interface change value
at the same time as the STROBE bit.

/dev..../sgchannels/n/awg/dio/error/width

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates a width (i.e. jitter) error on either the STROBE (bit 0 of the value) or VALID bit (bit 1 of the
result). A width error indicates that there was jitter detected on the given bit, meaning that an active
period was either shorter or longer than the configured expected width.

/dev..../sgchannels/n/awg/dio/highbits

Properties: Read
Type: Integer (64 bit)
Unit: None

32-bit value indicating which bits on the 32-bit interface are detected as having a logic high value.

/dev..../sgchannels/n/awg/dio/lowbits

Properties: Read
Type: Integer (64 bit)
Unit: None

32-bit value indicating which bits on the 32-bit interface are detected as having a logic low value.

/dev..../sgchannels/n/awg/dio/mask/shift

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Defines the amount of bit shifting to apply for the DIO wave selection in connection with
playWaveDIO().

7.2. Reference Node Documentation

176 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/awg/dio/mask/value

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Selects the DIO bits to be used for waveform selection in connection with playWaveDIO().

/dev..../sgchannels/n/awg/dio/state

Properties: Read
Type: Integer (64 bit)
Unit: None

When asserted, indicates that triggers are generated from the DIO interface to the AWG.

/dev..../sgchannels/n/awg/dio/strobe/index

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Select the DIO bit to use as the STROBE signal.

/dev..../sgchannels/n/awg/dio/strobe/slope

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Select the signal edge of the STROBE signal for use in timing alignment.

0 "off": Off
1 "rising_edge": Rising edge trigger
2 "falling_edge": Falling edge trigger
3 "both_edges": Rising or falling edge trigger

/dev..../sgchannels/n/awg/dio/strobe/width

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Specifies the expected width of active pulses on the STROBE bit.

/dev..../sgchannels/n/awg/dio/valid/index

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Select the DIO bit to use as the VALID signal to indicate a valid input is available.

/dev..../sgchannels/n/awg/dio/valid/polarity

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Polarity of the VALID bit that indicates that a valid input is available.

0 "none": None: VALID bit is ignored.
1 "low": Low: VALID bit must be logical zero.
2 "high": High: VALID bit must be logical high.
3 "both": Both: VALID bit may be logical high or zero.

7.2. Reference Node Documentation

177 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/awg/dio/valid/width

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Expected width of an active pulse on the VALID bit.

/dev..../sgchannels/n/awg/diozsyncswitch

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Defines which interface input to use with this AWG

0 "dio": DIO interface will be used as input.
1 "zsync": ZSync interface will be used as input.

/dev..../sgchannels/n/awg/elf/checksum

Properties: Read, Pipelined
Type: Integer (64 bit)
Unit: None

Checksum of the uploaded ELF file.

/dev..../sgchannels/n/awg/elf/data

Properties: Write, Pipelined
Type: ZIVectorData
Unit: None

Accepts the data of the sequencer ELF file. If the sequence pipeliner mode is not off, the data of the
ELF file goes to the staging area of the sequence pipeliner instead.

/dev..../sgchannels/n/awg/elf/length

Properties: Read, Pipelined
Type: Integer (64 bit)
Unit: None

Length of the compiled ELF file.

/dev..../sgchannels/n/awg/elf/memoryusage

Properties: Read, Pipelined
Type: Double
Unit: None

Size of the uploaded ELF file relative to the size of the main memory.

/dev..../sgchannels/n/awg/elf/name

Properties: Read, Pipelined
Type: ZIVectorData
Unit: None

The name of the uploaded ELF file.

7.2. Reference Node Documentation

178 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/awg/elf/progress

Properties: Read, Pipelined
Type: Double
Unit: %

The percentage of the sequencer program already uploaded to the device.

/dev..../sgchannels/n/awg/enable

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Activates the AWG.

/dev..../sgchannels/n/awg/modulation/enable

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Enable or disable digital modulation.

0 "off": Modulation off
1 "on": Modulation on

/dev..../sgchannels/n/awg/outputamplitude

Properties: Read, Write, Setting
Type: Double
Unit: None

Amplitude scale factor applied to both AWG outputs.

/dev..../sgchannels/n/awg/outputs/n/enables/n

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates the routing of the AWG signal (k index) to the digital mixer input (m index).

/dev..../sgchannels/n/awg/outputs/n/gains/n

Properties: Read, Write, Setting
Type: Double
Unit: None

Gain factor applied to the AWG Output at the given output multiplier stage. The final signal
amplitude is proportional to the Range voltage setting of the Wave signal outputs.

/dev..../sgchannels/n/awg/outputs/n/hold

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Keep the last sample (constant) on the output even after the waveform program finishes.

7.2. Reference Node Documentation

179 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/awg/ready

Properties: Read, Pipelined
Type: Integer (64 bit)
Unit: None

A value of True means that the AWG has a compiled waveform and is ready to be enabled. If the
sequence pipeliner is not off, a value of True means that the sequence in the staging area is ready to
be committed to the pipeline.

/dev..../sgchannels/n/awg/reset

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Clears the configured AWG program and resets the state to not ready.

/dev..../sgchannels/n/awg/rtlogger/clear

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Clears the logger data.

/dev..../sgchannels/n/awg/rtlogger/data

Properties: Read
Type: ZIVectorData
Unit: None

Vector node with the logged events.

/dev..../sgchannels/n/awg/rtlogger/enable

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Activates the Real-time Logger.

/dev..../sgchannels/n/awg/rtlogger/input

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Select input data of logger.

0 "dio": DIO interface will be used as input.
1 "zsync": ZSync interface will be used as input.

7.2. Reference Node Documentation

180 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/awg/rtlogger/mode

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Selects the operation mode.

0
"normal": Normal: Logger starts with the AWG and overwrites old values as soon
as the memory limit of 1024 entries is reached.

1

"timestamp": Timestamp-triggered: Logger starts with the AWG, waits for the
first valid trigger, and only starts recording data after the time specified by the
starttimestamp. Recording stops as soon as the memory limit of 1024 entries is
reached.

/dev..../sgchannels/n/awg/rtlogger/starttimestamp

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Timestamp at which to start logging for timestamp-triggered mode.

/dev..../sgchannels/n/awg/rtlogger/status

Properties: Read
Type: Integer (enumerated)
Unit: None

Operation state.

0 "idle": Idle: Logger is not running.
1 "normal": Normal: Logger is running in normal mode.

2
"ts_wait": Wait for timestamp: Logger is in timestamp-triggered mode and waits
for start timestamp.

3 "ts_active": Active: Logger is in timestamp-triggered mode and logging.

4
"ts_full": Log Full: Logger is in timestamp-triggered mode and has stopped
logging because log is full.

/dev..../sgchannels/n/awg/rtlogger/timebase

Properties: Read
Type: Double
Unit: s

Minimal time difference between two timestamps. The value matches the AWG sequencer execution
rate (4 ns)

/dev..../sgchannels/n/awg/sequencer/assembly

Properties: Read
Type: ZIVectorData
Unit: None

Displays the current sequence program in compiled form. Every line corresponds to one hardware
instruction.

/dev..../sgchannels/n/awg/sequencer/memoryusage

Properties: Read
Type: Double
Unit: None

Size of the current Sequencer program relative to the available instruction memory of 32
kInstructions (32'768 instructions).

7.2. Reference Node Documentation

181 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/awg/sequencer/pc

Properties: Read
Type: Integer (64 bit)
Unit: None

Current position in the list of sequence instructions during execution.

/dev..../sgchannels/n/awg/sequencer/program

Properties: Read
Type: ZIVectorData
Unit: None

Displays the source code of the current sequence program.

/dev..../sgchannels/n/awg/sequencer/status

Properties: Read
Type: Integer (64 bit)
Unit: None

Status of the sequencer on the instrument. Bit 0: sequencer is running; Bit 1: reserved; Bit 2:
sequencer is waiting for a trigger to arrive; Bit 3: AWG has detected an error; Bit 4: sequencer is
waiting for synchronization with other channels.

/dev..../sgchannels/n/awg/sequencer/triggered

Properties: Read
Type: Integer (64 bit)
Unit: None

When 1, indicates that the AWG Sequencer has been triggered.

/dev..../sgchannels/n/awg/single

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Puts the AWG into single shot mode.

/dev..../sgchannels/n/awg/time

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

AWG sampling rate. The numeric values here are equal to the base sampling rate of 2.0 GHz divided
by 2^n, where n is the node value. This value is used by default and can be overridden in the
Sequence program.

0 2.0 GHz
1 1.0 GHz
2 500 MHz
3 250 MHz
4 125 MHz
5 62.50 MHz
6 31.25 MHz
7 15.63 MHz
8 7.81 MHz
9 3.91 MHz
10 1.95 MHz
11 976.56 kHz
12 488.28 kHz
13 244.14 kHz

7.2. Reference Node Documentation

182 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/awg/userregs/n

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Integer user register value. The sequencer has reading and writing access to the user register values
during run time.

/dev..../sgchannels/n/awg/waveform/descriptors

Properties: Read
Type: ZIVectorData
Unit: None

JSON-formatted string containing a dictionary of various properties of the current waveform: name,
filename, function, channels, marker bits, length, timestamp.

/dev..../sgchannels/n/awg/waveform/memoryusage

Properties: Read
Type: Double
Unit: %

Amount of the used waveform data relative to the device memory. The memory provides space for
96 kSa (98'304 Sa) of dual-channel waveform data.

/dev..../sgchannels/n/awg/waveform/playing

Properties: Read
Type: Integer (64 bit)
Unit: None

When 1, indicates if a waveform is being played currently.

/dev..../sgchannels/n/awg/waveform/waves/n

Properties: Read, Write, Pipelined
Type: ZIVectorData
Unit: None

The waveform data in the instrument's native format for the given playWave waveform index. This
node will not work with subscribe as it does not push updates. For short vectors get may be used.
For long vectors (causing get to time out) getAsEvent and poll can be used. The index of the
waveform to be replaced can be determined using the Waveform sub-tab in the AWG tab of the
LabOne User Interface.

/dev..../sgchannels/n/busy

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates that the channel is busy applying settings, e.g., center-frequency or analog output settings.

/dev..../sgchannels/n/centerfreq

Properties: Read
Type: Double
Unit: Hz

The Center Frequency of signal generation band. This value is read-only. Frequency is set through
synthesizer node.

7.2. Reference Node Documentation

183 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/digitalmixer/centerfreq

Properties: Read, Write, Setting
Type: Double
Unit: Hz

Set center frequency of digital mixer.

/dev..../sgchannels/n/internal

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates if an SG-channel is internal 1, otherwise 0. An internal channel is not equipped with an
upconverter and needs to be routed to a channel with an upconverter.

/dev..../sgchannels/n/marker/source

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Assign a signal to a marker.

0
"awg_trigger0": Trigger output is assigned to AWG Trigger 1, controlled by AWG
sequencer commands.

1
"awg_trigger1": Trigger output is assigned to AWG Trigger 2, controlled by AWG
sequencer commands.

2
"awg_trigger2": Trigger output is assigned to AWG Trigger 3, controlled by AWG
sequencer commands.

3
"awg_trigger3": Trigger output is assigned to AWG Trigger 4, controlled by AWG
sequencer commands.

4 "output0_marker0": Output is assigned to I component Marker 1.
5 "output0_marker1": Output is assigned to I component Marker 2.
6 "output1_marker0": Output is assigned to Q component Marker 1.
7 "output1_marker1": Output is assigned to Q component Marker 2.
8 "trigin0", "trigger_input0": Output is assigned to Trigger Input 1.
9 "trigin1", "trigger_input1": Output is assigned to Trigger Input 2.
10 "trigin2", "trigger_input2": Output is assigned to Trigger Input 3.
11 "trigin3", "trigger_input3": Output is assigned to Trigger Input 4.
12 "trigin4", "trigger_input4": Output is assigned to Trigger Input 5.
13 "trigin5", "trigger_input5": Output is assigned to Trigger Input 6.
14 "trigin6", "trigger_input6": Output is assigned to Trigger Input 7.
15 "trigin7", "trigger_input7": Output is assigned to Trigger Input 8.
16 "low": Output is set to low.
17 "high": Output is set to high.

/dev..../sgchannels/n/oscs/n/freq

Properties: Read, Write, Setting
Type: Double
Unit: Hz

Frequency control for each oscillator.

/dev..../sgchannels/n/output/delay

Properties: Read, Write, Setting
Type: Double
Unit: s

This value adds a delay to both the signal and trigger/marker outputs.

7.2. Reference Node Documentation

184 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/output/filter

Properties: Read
Type: Integer (enumerated)
Unit: None

Reads the selected analog filter before the Signal Output.

0 "lowpass_1500": Low-pass filter of 1.5 GHz.
1 "lowpass_3000": Low-pass filter of 3 GHz.
2 "bandpass_3000_6000": Band-pass filter between 3 GHz - 6 GHz
3 "bandpass_6000_10000": Band-pass filter between 6 GHz - 10 GHz

/dev..../sgchannels/n/output/on

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Enables the Signal Output.

/dev..../sgchannels/n/output/overrangecount

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates the number of times the Signal Output was in an overrange condition within the last 200
ms. It is checked for an overrange condition every 10 ms.

/dev..../sgchannels/n/output/range

Properties: Read, Write, Setting
Type: Double
Unit: dBm

Sets the maximal Range of the Signal Output power. The instrument selects the closest available
Range with a resolution of 5 dBm.

/dev..../sgchannels/n/output/rflfpath

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Switch between RF and LF output path.

0 "lf": LF path is used.
1 "rf": RF path is used.

/dev..../sgchannels/n/outputrouter/enable

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Enable outputrouter module

0 "off": Output-router disabled
1 "on": Output-router enabled

7.2. Reference Node Documentation

185 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/outputrouter/overflowcount

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates the number of overflow events in the output-router of the corresponding channel within
intervals of 200 ms. An overflow condition results in clipping of the output signal.

/dev..../sgchannels/n/outputrouter/routes/n/amplitude

Properties: Read, Write, Setting
Type: Double
Unit: None

Configure amplitude of route. Selected signal (source) is multiplied with amplitude and phase, and
summed with other routes on SG-channel's output.

/dev..../sgchannels/n/outputrouter/routes/n/enable

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Enable/disable route.

0 "off": OFF: Route inactive
1 "on": ON: Route active

/dev..../sgchannels/n/outputrouter/routes/n/phase

Properties: Read, Write, Setting
Type: Double
Unit: deg

Configure phase of route. Selected signal (source) is multiplied with amplitude and phase, and
summed with other routes on SG-channel's output.

/dev..../sgchannels/n/outputrouter/routes/n/source

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Select AWG channel source as input to the outputrouter.

/dev..../sgchannels/n/pipeliner/availableslots

Properties: Read
Type: Integer (64 bit)
Unit: None

Number of free slots in the sequence pipeliner queue. Sequence upload is blocked if this node is 0.

/dev..../sgchannels/n/pipeliner/commit

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Commit node data in staging area to queue of sequence pipeliner.

7.2. Reference Node Documentation

186 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/pipeliner/enable

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Enable execution of sequences in pipeline.

/dev..../sgchannels/n/pipeliner/idcurrent

Properties: Read
Type: Integer (64 bit)
Unit: None

ID of sequence in staging area.

/dev..../sgchannels/n/pipeliner/idrunning

Properties: Read
Type: Integer (64 bit)
Unit: None

ID of executed sequence.

/dev..../sgchannels/n/pipeliner/maxslots

Properties: Read
Type: Integer (64 bit)
Unit: None

Maximum number of available slots in the sequence pipeliner queue.

/dev..../sgchannels/n/pipeliner/mode

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Selects the sequence pipeliner mode: off (default), batch, or queue mode. Changing the mode will
reset both the sequence pipeliner and the normal AWG.

0 "off": Off: The sequence pipeliner is turned off.

1
"batch": Batch: The sequence pipeliner operates in batch mode. All sequences
must be committed before the pipeliner is enabled. A batch can be executed
once or multiple times.

2
"queue": Queue: The sequence pipeliner operates in queue mode. Sequences
can be committed while the pipeliner is enabled. Every sequence is executed
only once and the slot in the queue is then available for a new sequence.

/dev..../sgchannels/n/pipeliner/ready

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates whether a sequence can be committed to the pipeliner.

/dev..../sgchannels/n/pipeliner/repetitions/remaining

Properties: Read
Type: Integer (64 bit)
Unit: None

Number of remaining batch repetitions. This node is fixed to 1 if the sequence pipeliner is not in
batch mode.

7.2. Reference Node Documentation

187 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/pipeliner/repetitions/value

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Number of batch repetitions (1 to 4e6). This node is fixed to 1 if the sequence pipeliner is not in batch
mode.

/dev..../sgchannels/n/pipeliner/reset

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Clears all sequences previously added to the sequence pipeliner and disables the pipeliner if it has
been running before.

/dev..../sgchannels/n/pipeliner/status

Properties: Read
Type: Integer (enumerated)
Unit: None

Status of the sequence pipeliner (0: idle, 1: executing sequence, 2: waiting for next sequence to be
committed (queue mode only)

0 "idle": Idle: The sequence pipeliner is idle.
1 "exec": Executing sequence: The sequence pipeliner is executing a sequence.

2
"waiting": Waiting: The sequence pipeliner is waiting for the next sequence to be
committed (queue mode only).

3
"done": Done: The sequence pipeliner is still enabled but all sequences have
been executed (batch mode only).

/dev..../sgchannels/n/pipeliner/timeout

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Maximal execution time per sequence in milliseconds. The execution of a sequence is aborted if the
maximal execution time is reached. A value of 0 means infinity.

/dev..../sgchannels/n/sines/n/freq

Properties: Read
Type: Double
Unit: Hz

Indicates the frequency of the sines generator.

/dev..../sgchannels/n/sines/n/harmonic

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Multiplies the sine signals's reference frequency with the integer factor defined by this field.

7.2. Reference Node Documentation

188 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/sines/n/i/cos/amplitude

Properties: Read, Write, Setting
Type: Double
Unit: None

Sets the peak amplitude of the cosine component on the I signal path.

/dev..../sgchannels/n/sines/n/i/enable

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Enables the sine signal to the I signal path.

/dev..../sgchannels/n/sines/n/i/sin/amplitude

Properties: Read, Write, Setting
Type: Double
Unit: None

Sets the peak amplitude of the sine component on the I signal path.

/dev..../sgchannels/n/sines/n/oscselect

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Select oscillator for generation of this sine signal.

/dev..../sgchannels/n/sines/n/phaseshift

Properties: Read, Write, Setting
Type: Double
Unit: None

Phase shift applied to sine signal.

/dev..../sgchannels/n/sines/n/q/cos/amplitude

Properties: Read, Write, Setting
Type: Double
Unit: None

Sets the peak amplitude of the cosine component on the Q signal path.

/dev..../sgchannels/n/sines/n/q/enable

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Enables the sine signal to the Q signal path.

/dev..../sgchannels/n/sines/n/q/sin/amplitude

Properties: Read, Write, Setting
Type: Double
Unit: None

Sets the peak amplitude of the sine component on the Q signal path.

7.2. Reference Node Documentation

189 Zurich Instruments SHFSG+ User Manual

/dev..../sgchannels/n/synchronization/enable

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Enable multi-channel synchronization for this channel. The program will only execute once all
channels with enabled synchronization are ready.

/dev..../sgchannels/n/synthesizer

Properties: Read
Type: Integer (64 bit)
Unit: None

Index of synthesizer mapped to this channel.

/dev..../sgchannels/n/trigger/delay

Properties: Read, Write, Setting
Type: Double
Unit: s

This delay adds an offset that acts only on the trigger/marker output. The total delay to the trigger/
marker output is the sum of this value and the value of the output delay node.

/dev..../sgchannels/n/trigger/imp50

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Trigger Input impedance: When on, the Trigger Input impedance is 50 Ohm; when off, 1 kOhm.

0 "1_kOhm": OFF: 1 k Ohm
1 "50_Ohm": ON: 50 Ohm

/dev..../sgchannels/n/trigger/level

Properties: Read, Write, Setting
Type: Double
Unit: V

Defines the analog Trigger level.

/dev..../sgchannels/n/trigger/value

Properties: Read
Type: Integer (64 bit)
Unit: None

Shows the value of the digital Trigger Input. The value is integrated over a period of 100 ms. Values
are: 1: low; 2: high; 3: was low and high in the period.

7.2.5. STATS

/dev..../stats/physical/currents/n

Properties: Read
Type: Double
Unit: mA

Provides internal current readings for monitoring.

7.2. Reference Node Documentation

190 Zurich Instruments SHFSG+ User Manual

/dev..../stats/physical/fanspeeds/n

Properties: Read
Type: Integer (64 bit)
Unit: RPM

Speed of the internal cooling fans for monitoring.

/dev..../stats/physical/fpga/aux

Properties: Read
Type: Double
Unit: V

Supply voltage of the FPGA.

/dev..../stats/physical/fpga/core

Properties: Read
Type: Double
Unit: V

Core voltage of the FPGA.

/dev..../stats/physical/fpga/pstemp

Properties: Read
Type: Double
Unit: °C

Internal temperature of the FPGA's processor system.

/dev..../stats/physical/fpga/temp

Properties: Read
Type: Double
Unit: °C

Internal temperature of the FPGA.

/dev..../stats/physical/overtemperature

Properties: Read
Type: Integer (64 bit)
Unit: None

This flag is set to a value greater than 0 when the internal temperatures are reaching critical limits.

/dev..../stats/physical/power/currents/n

Properties: Read
Type: Double
Unit: A

Currents of the main power supply.

/dev..../stats/physical/power/temperatures/n

Properties: Read
Type: Double
Unit: °C

Temperatures of the main power supply.

7.2. Reference Node Documentation

191 Zurich Instruments SHFSG+ User Manual

/dev..../stats/physical/power/voltages/n

Properties: Read
Type: Double
Unit: V

Voltages of the main power supply.

/dev..../stats/physical/sigouts/n/currents/n

Properties: Read
Type: Double
Unit: A

Provides internal current readings on the Signal Output board for monitoring.

/dev..../stats/physical/sigouts/n/temperatures/n

Properties: Read
Type: Double
Unit: °C

Provides internal temperature readings on the Signal Output board for monitoring.

/dev..../stats/physical/sigouts/n/voltages/n

Properties: Read
Type: Double
Unit: V

Provides internal voltage readings on the Signal Output board for monitoring.

/dev..../stats/physical/synthesizer/currents/n

Properties: Read
Type: Double
Unit: A

Provides internal current readings on the Synthesizer board for monitoring.

/dev..../stats/physical/synthesizer/temperatures/n

Properties: Read
Type: Double
Unit: °C

Provides internal temperature readings on the Synthesizer board for monitoring.

/dev..../stats/physical/synthesizer/voltages/n

Properties: Read
Type: Double
Unit: V

Provides internal voltage readings on the Synthesizer board for monitoring.

/dev..../stats/physical/temperatures/n

Properties: Read
Type: Double
Unit: °C

Provides internal temperature readings for monitoring.

7.2. Reference Node Documentation

192 Zurich Instruments SHFSG+ User Manual

/dev..../stats/physical/voltages/n

Properties: Read
Type: Double
Unit: V

Provides internal voltage readings for monitoring.

7.2.6. STATUS

/dev..../status/flags/binary

Properties: Read
Type: Integer (64 bit)
Unit: None

A set of binary flags giving an indication of the state of various parts of the device. Reserved for
future use.

/dev..../status/time

Properties: Read
Type: Integer (64 bit)
Unit: None

The current timestamp.

7.2.7. SYNTHESIZERS

/dev..../synthesizers/n/centerfreq

Properties: Read, Write, Setting
Type: Double
Unit: Hz

The Center Frequency of the synthesizer.

7.2.8. SYSTEM

/dev..../system/activeinterface

Properties: Read
Type: String
Unit: None

Currently active interface of the device.

/dev..../system/boardrevisions/n

Properties: Read
Type: String
Unit: None

Hardware revision of the motherboard containing the FPGA.

7.2. Reference Node Documentation

193 Zurich Instruments SHFSG+ User Manual

/dev..../system/clocks/referenceclock/in/freq

Properties: Read
Type: Double
Unit: Hz

Indicates the frequency of the reference clock.

/dev..../system/clocks/referenceclock/in/source

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

The intended reference clock source. When the source is changed, all the instruments connected
with ZSync links will be disconnected. The connection should be re-established manually.

0
"internal": The internal clock is intended to be used as the frequency and time
base reference.

1
"external": An external clock is intended to be used as the frequency and time
base reference. Provide a clean and stable 10 MHz or 100 MHz reference to the
appropriate back panel connector.

2
"zsync": The ZSync clock is intended to be used as the frequency and time base
reference.

/dev..../system/clocks/referenceclock/in/sourceactual

Properties: Read
Type: Integer (enumerated)
Unit: None

The actual reference clock source.

0 "internal": The internal clock is used as the frequency and time base reference.
1 "external": An external clock is used as the frequency and time base reference.
2 "zsync": The ZSync clock is used as the frequency and time base reference.

/dev..../system/clocks/referenceclock/in/status

Properties: Read
Type: Integer (enumerated)
Unit: None

Status of the reference clock.

0 "locked": Reference clock has been locked on.
1 "error": There was an error locking onto the reference clock signal.
2 "busy": The device is busy trying to lock onto the reference clock signal.

/dev..../system/clocks/referenceclock/out/enable

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Enable clock signal on the reference clock output. When the clock output is turned on or off, all the
instruments connected with ZSync links will be disconnected. The connection should be re-
established manually.

7.2. Reference Node Documentation

194 Zurich Instruments SHFSG+ User Manual

/dev..../system/clocks/referenceclock/out/freq

Properties: Read, Write, Setting
Type: Double
Unit: Hz

Select the frequency of the output reference clock. Only 10 MHz and 100 MHz are allowed.

/dev..../system/digitalmixer/reset/all

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Writing to this node clears all digital mixer NCOs of the instrument.

/dev..../system/digitalmixer/reset/mode

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Configure the NCO reset mode.

0
"manual": In manual mode the instrument does not automatically reset NCOs
when switching a channel from LF to RF mode.

1
"auto": In automatic mode the instrument automatically resets the NCOs of all
channels whenever a channel is switched from LF to RF, in order to restore
alignment.

/dev..../system/digitalmixer/reset/select

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Writing a bit mask to this node triggers a digital mixer NCO reset of the selected (bit value: 1)
channels.

/dev..../system/fpgarevision

Properties: Read
Type: Integer (64 bit)
Unit: None

HDL firmware revision.

/dev..../system/fwlog

Properties: Read
Type: String
Unit: None

Returns log output of the firmware.

/dev..../system/fwlogenable

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Enables logging to the fwlog node.

7.2. Reference Node Documentation

195 Zurich Instruments SHFSG+ User Manual

/dev..../system/fwrevision

Properties: Read
Type: Integer (64 bit)
Unit: None

Revision of the device-internal controller software.

/dev..../system/fx3revision

Properties: Read
Type: String
Unit: None

USB firmware revision.

/dev..../system/identify

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Setting this node to 1 will cause all frontpanel LEDs to blink for 5 seconds, then return to their
previous state.

/dev..../system/internaltrigger/enable

Properties: Read, Write
Type: Integer (enumerated)
Unit: None

Enable internal trigger generator.

0 "off": Generator off
1 "on": Generator on

/dev..../system/internaltrigger/holdoff

Properties: Read, Write, Setting
Type: Double
Unit: s

Hold-off time between generated triggers.

/dev..../system/internaltrigger/progress

Properties: Read
Type: Double
Unit: None

The fraction of the triggers generated so far.

/dev..../system/internaltrigger/repetitions

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Number of triggers to be generated.

7.2. Reference Node Documentation

196 Zurich Instruments SHFSG+ User Manual

/dev..../system/internaltrigger/synchronization/enable

Properties: Read, Write, Setting
Type: Integer (64 bit)
Unit: None

Enable synchronization. Trigger generation will only start once all synchronization participants have
reported a ready status. Synchronization checks will be repeated with the same trigger generation
settings (holdoff and repetitions) until synchronization is disabled.

/dev..../system/kerneltype

Properties: Read
Type: String
Unit: None

Returns the type of the data server kernel (mdk or hpk).

/dev..../system/nics/n/defaultgateway

Properties: Read, Write
Type: String
Unit: None

Default gateway configuration for the network connection.

/dev..../system/nics/n/defaultip4

Properties: Read, Write
Type: String
Unit: None

IPv4 address of the device to use if static IP is enabled.

/dev..../system/nics/n/defaultmask

Properties: Read, Write
Type: String
Unit: None

IPv4 mask in case of static IP.

/dev..../system/nics/n/gateway

Properties: Read
Type: String
Unit: None

Current network gateway.

/dev..../system/nics/n/ip4

Properties: Read
Type: String
Unit: None

Current IPv4 of the device.

7.2. Reference Node Documentation

197 Zurich Instruments SHFSG+ User Manual

/dev..../system/nics/n/mac

Properties: Read
Type: String
Unit: None

Current MAC address of the device network interface.

/dev..../system/nics/n/mask

Properties: Read
Type: String
Unit: None

Current network mask.

/dev..../system/nics/n/saveip

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

If written, this action will program the defined static IP address to the device.

/dev..../system/nics/n/static

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Enable this flag if the device is used in a network with fixed IP assignment without a DHCP server.

/dev..../system/powerconfigdate

Properties: Read
Type: Integer (64 bit)
Unit: None

Contains the date of power configuration (format is: (year << 16) | (month << 8) | day)

/dev..../system/preset/busy

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates if presets are currently loaded.

/dev..../system/preset/error

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates if the last operation was illegal. Successful: 0, Error: 1.

/dev..../system/preset/load

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Load the selected preset.

7.2. Reference Node Documentation

198 Zurich Instruments SHFSG+ User Manual

/dev..../system/properties/freqresolution

Properties: Read
Type: Integer (64 bit)
Unit: None

The number of bits used to represent a frequency.

/dev..../system/properties/freqscaling

Properties: Read
Type: Double
Unit: None

The scale factor to use to convert a frequency represented as a freqresolution-bit integer to a
floating point value.

/dev..../system/properties/maxfreq

Properties: Read
Type: Double
Unit: None

The maximum oscillator frequency that can be set.

/dev..../system/properties/maxtimeconstant

Properties: Read
Type: Double
Unit: s

The maximum demodulator time constant that can be set. Only relevant for lock-in amplifiers.

/dev..../system/properties/minfreq

Properties: Read
Type: Double
Unit: None

The minimum oscillator frequency that can be set.

/dev..../system/properties/mintimeconstant

Properties: Read
Type: Double
Unit: s

The minimum demodulator time constant that can be set. Only relevant for lock-in amplifiers.

/dev..../system/properties/negativefreq

Properties: Read
Type: Integer (64 bit)
Unit: None

Indicates whether negative frequencies are supported.

/dev..../system/properties/timebase

Properties: Read
Type: Double
Unit: s

Minimal time difference between two timestamps. The value is equal to 1/(maximum sampling rate).

7.2. Reference Node Documentation

199 Zurich Instruments SHFSG+ User Manual

/dev..../system/shutdown

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Sending a '1' to this node initiates a shutdown of the operating system on the device. It is
recommended to trigger this shutdown before switching the device off with the hardware switch at
the back side of the device.

/dev..../system/stall

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Indicates if the network connection is stalled.

/dev..../system/swtriggers/n/single

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Issues a single software trigger event.

/dev..../system/synchronization/source

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Selects the source for synchronization of channels: internal (default) or external

0
"internal": Internal: Synchronization of all channels of a device that have the
corresponding synchronization setting enabled.

1
"external": External: Same as internal plus synchronization to other devices via
ZSync.

/dev..../system/triggerdelays/automatic

Properties: Read, Write, Setting
Type: Integer (enumerated)
Unit: None

Enables the instrument to automatically adjust trigger delays to maintain output alignment

0
"off": No trigger delays are tuned automatically. The user has to manually align
the channel outputs.

1 "on": The instrument will set the required trigger delay based on configuration

/dev..../system/update

Properties: Read, Write
Type: Integer (64 bit)
Unit: None

Requests update of the device firmware and bitstream from the dataserver.

7.2. Reference Node Documentation

200 Zurich Instruments SHFSG+ User Manual

	SHFSG+ User Manual
	8.5 GHz Signal Generator

	SHFSG+ User Manual
	Zurich Instruments AG
	Revision 25.04
	Copyright © 2008-2025 Zurich Instruments AG
	CE Declaration of Conformity
	UKCA Declaration of Conformity

	Change Log
	Release 25.04
	Release 25.01
	Release 24.10
	Release 24.07
	Release 24.04
	Release 24.01
	Release 23.10
	Release 23.06
	Release 23.02
	Release 22.08
	Release 22.02
	Release 21.08
	Release 24.07 Additional Information
	Flexible feedback processing
	Format of feedback messages
	Status until L1 24.04
	Example
	Active qubit reset

	New behavior since L1 24.07
	Example
	Active qubit reset
	Active qutrit reset

	Getting Started
	Quick Start Guide
	Inspect the Package Contents
	Handling and Safety Instructions
	Software Installation
	Installing LabOne on Windows
	Windows LabOne Installation
	Running LabOne manually from the Command Line
	Running the Web Server from the Command Line
	Running the Data Server from the Command Line

	Windows LabOne Uninstallation
	Installing LabOne on macOS
	Uninstalling LabOne on macOS
	Application Content
	Start LabOne Manually on the Command Line
	Installing LabOne on Linux
	Requirements
	Linux LabOne Installation
	Running the Software on Linux
	Uninstalling LabOne on Linux

	Connecting to the Instrument
	LabOne Software Architecture
	LabOne Data Server
	LabOne Web Server
	LabOne API Layer
	LabOne Software Start-up
	Data Server Connectivity
	Available Devices
	Saved Settings
	Special Settings Files

	Tray Icon
	Messages
	Lost Connection to the LabOne Web Server
	Reloading...​
	No Device Discovered
	No Device Available

	Visibility and Connection
	Visible Instruments
	Connected Instrument

	USB Connectivity
	1GbE Connectivity
	Multicast DHCP
	Multicast Point-to-Point
	Static Device IP
	Fallback Device IP

	Software Update
	Overview
	Updating LabOne using Automatic Update Check
	Updating the Instrument Firmware

	Troubleshooting
	Common Problems
	Location of the Log Files
	Windows
	Linux and macOS

	Prevent web browsers from sleep mode
	Edge
	Chrome
	Firefox
	Opera
	Safari

	Functional Overview
	Features
	Super-high-frequency Signal Outputs
	Advanced Pulse Sequencer
	Hardware Trigger Engine
	High-speed Connectivity
	Software Features

	Front Panel Tour
	Back Panel Tour
	Ordering Guide

	Tutorials
	Basic Sine Generation
	Goals and Requirements
	Preparation
	Generating a Sinusoidal Signal

	Basic Waveform Playback
	Goals and Requirements
	Preparation
	Waveform Generation and Playback
	Using the LF Path

	Triggering and Synchronization
	Goals and Requirements
	Preparation
	Generating and Responding to Triggers
	Generating Markers with the AWG
	Triggering the AWG
	Synchronizing outputs of different channels

	Digital Modulation
	Goals and Requirements
	Preparation
	Generating a Single Sideband Signal
	Rapid Phase Changes
	Performing Frequency Sweeps

	Using the Python API
	Goals and Requirements
	Preparation
	Connecting to to the instrument
	Uploading and running sequences

	Pulse-level Sequencing with the Command Table
	Goals and Requirements
	Preparation
	Configure the Output
	Introduction to the Command Table
	Basic command table use
	Efficient pulse incrementation
	Pulse-level sequencing with the command table
	Command table entries fields

	Characterizing a Two-Qubit System
	Goals and Requirements
	Preparation
	Qubit characterization set up
	General Instruments configuration
	Qubit spectroscopy
	Rabi Oscillation Measurement
	Ramsey Fringe Measurement
	Qubit Lifetime Measurement
	Pulse-length Sweeps

	Functional Description
	Setup Functionality
	User Interface Overview
	UI Nomenclature
	Unique Set of Analysis Tools
	Plot Functionality
	Plot Area Elements
	Cursors and Math
	Tree Selector
	Vertical Axis Groups
	Trends

	Config Tab
	Features
	Description
	Functional Elements

	Device Tab
	Features
	Description
	Functional Elements

	File Manager Tab
	Features
	Description
	Functional Elements

	Upgrade Tab
	ZI Labs Tab

	Measurement Functionality
	Output Tab
	Features Overview
	Description
	Output Tab in the LabOne GUI
	Functional Elements

	Digital Modulation Tab
	Features
	Description
	Functional Elements

	AWG Tab
	Features
	Description
	Sequence Editor Keyboard Shortcuts

	LabOne Sequence Programming
	A Simple Example
	Keywords and Comments
	Constants and Variables
	Waveform Generation and Editing
	Waveform Playback and Predefined Functions
	Expressions
	Control Structures

	Usage of playZero and playHold commands
	Using Qubit Feedback Data in a Sequence
	Synchronizing Multiple AWG Cores

	Functional Elements

	DIO Tab
	Features
	Description
	Digital I/O
	ZSync Interface
	Feedback through the PQSC

	Functional Elements

	Output Router and Adder
	Features
	Description
	How-To: Route signals between Channels 1, 2, 4, and 6

	Specifications
	General Specifications
	Analog Interface Specifications
	Digital Waveform Generation Specifications
	Digital Interface Specifications
	DIO Port

	Device Node Tree
	Introduction
	Node Properties and Data Types
	Exploring the Node Tree
	In the LabOne User Interface
	In a LabOne Programming Interface

	Data Server Nodes

	Reference Node Documentation
	CLOCKBASE
	DIOS
	FEATURES
	SGCHANNELS
	STATS
	STATUS
	SYNTHESIZERS
	SYSTEM

