
SHFQC
User Manual

8.5 GHz Quantum Controller

SHFQC User Manual

Zurich Instruments AG

Revision 24.01

Copyright © 2008-2024 Zurich Instruments AG

The contents of this document are provided by Zurich Instruments AG (ZI), "as is". ZI makes no
representations or warranties with respect to the accuracy or completeness of the contents of this
publication and reserves the right to make changes to specifications and product descriptions at any time
without notice.

LabVIEW is a registered trademark of National Instruments Inc. MATLAB is a registered trademark of The
MathWorks, Inc. All other trademarks are the property of their respective owners.

Zurich Instruments SHFQC User Manual

1

4

4

5

6

8

15

30

31

35

35

38

39

40

42

42

85

121

121

141

224

224

225

228

228

229

231

231

234

Declaration of Conformity

1. Change Log

2. Getting Started

2. 1. Quick Start Guide

2. 2. Inspect the Package Contents

2. 3. Handling and Safety Instructions

2. 4. Software Installation

2. 5. Connecting to the Instrument

2. 6. Software Update

2. 7. Troubleshooting

3. Functional Overview

3. 1. Features

3. 2. Front Panel Tour

3. 3. Back Panel Tour

3. 4. Ordering Guide

4. Tutorials

4. 1. Signal Generator Tutorials

4. 2. Quantum Analyzer Tutorials

5. Functional Description

5. 1. Setup Functionality

5. 2. Measurement Functionality

6. Specifications

6. 1. General Specifications

6. 2. Analog Interface Specifications

6. 3. Digital Waveform Generation of Signal Generator Channel

6. 4. Digital Signal Processing of Quantum Analyzer Channel

6. 5. Digital Interface Specifications

7. Device Node Tree

7. 1. Introduction

7. 2. Reference Node Documentation

Table of Contents

Zurich Instruments SHFQC User Manual

CE Declaration of Conformity

The manufacturer

Zurich Instruments
Technoparkstrasse 1
8005 Zurich
Switzerland

declares that the product

SHFQC, Super High Frequency Qubit Controller

is in conformity with the provisions of the relevant Directives and Regulations of the Council of the
European Union:

Directive / Regulation Conformity proven by compliance with the
standards

2014/30/EU
(Electromagnetic compatibility [EMC])

EN 61326-1:2013,
EN 55011:2016,
EN 55011:2016/A1:2017,
EN 55011:2016/A11:2020
(Group 1, Class A and B equipment)

2014/35/EU
(Low voltage equipment [LVD])

EN 61010-1:2010,
EN 61010-1:2010/A1:2019,
EN 61010-1:2010/A1:2019/AC:2019-04

2011/65/EU, as amended by 2015/863 and
2017/2102
(Restriction of the use of certain hazardous
substances [RoHS])

EN IEC 63000:2018

(EC) 1907/2006
(Registration, Evaluation, Authorisation, and
Restrictions of Chemicals [REACH])

-

Zurich, October 20th, 2022

Flavio Heer, CTO

Zurich Instruments SHFQC User Manual

UKCA Declaration of Conformity

The manufacturer

Zurich Instruments
Technoparkstrasse 1
8005 Zurich
Switzerland

declares that the product

SHFQC, Super High Frequency Qubit Controller

is in conformity with the provisions of the relevant UK Statutory Instruments:

Statutory Instruments Conformity proven by compliance with the standards

S.I. 2016/1091
(Electromagnetic
Compatibility Regulations)

EN 61326-1:2013,
EN 55011:2016,
EN 55011:2016/A1:2017,
EN 55011:2016/A11:2020
(Group 1, Class A and B equipment)

S.I. 2016/1101
(Electrical Equipment
(Safety) Regulations)

EN 61010-1:2010,
EN 61010-1:2010/A1:2019,
EN 61010-1:2010/A1:2019/AC:2019-04

S.I. 2012/3032
(Restriction of the Use of
Certain Hazardous
Substances Regulations)

EN IEC 63000:2018

Zurich, October 20th, 2022

Flavio Heer, CTO

Zurich Instruments SHFQC User Manual

1. Change Log

1.1. Release 24.01

Release date: 31-Jan-2024

 SG Channels: Extended the GUI for the Output Router and Adder to show how and where
different settings are applied in the signal chain for each SG channel.

 QA Channel: Added hold-off error count clear and job index nodes for readout and spectroscopy
respectively: /DEV.../QACHANNELS/0/READOUT/RESULT/ERROR/CLEAR, /DEV.../QACHANNELS/
0/SPECTROSCOPY/RESULT/ERROR/CLEAR, /DEV.../QACHANNELS/0/READOUT/RESULT/ERROR/
JOBIDX, and /DEV.../QACHANNELS/0/SPECTROSCOPY/RESULT/ERROR/JOBIDX.

 QA Channel: Renamed hold-off error count nodes to /DEV.../QACHANNELS/0/READOUT/RESULT/
ERROR/COUNT (from /DEV.../QACHANNELS/0/READOUT/RESULT/ERRORS) and /DEV.../
QACHANNELS/0/SPECTROSCOPY/RESULT/ERROR/COUNT (from /DEV.../QACHANNELS/0/
SPECTROSCOPY/RESULT/ERRORS).

 SeqC command setDIO now has constant latency, no matter its arguments.

1.2. Release 23.10

Release date: 31-Oct-2023

 SG Channels: Introduced the Output Router and Adder option to enable flexible routing of digital
signals between analog outputs.

 SG Channels: Added amplitude registers to the command table to allow independent sweeping
or changing of multiple sets of amplitudes.

 QA Channel: Added a second trigger output for the QA Sequencer.
 Added automatic fallback to a link-local IP address in case no DHCP server could be found.
 Added Ethernet-over-USB support on the USB (not maintenance) interface.
 Improved ZSync support for multi-state discrimination: ZSync bits assigned to constant values or

results of qudits not present in the integrator mask of the startQA command are no longer
forwarded via the PQSC. Furthermore, changed the default value of the node /DEV.../
QACHANNELS/n/READOUT/MULTISTATE/ZSYNC/PACKED to be true.

 The holdoff time of the Internal Trigger must now be a multiple of 100 ns, to improve consistency
with the PQSC and ensure phase reproducibility when using the LF path.

 SG Channels: The center frequency when using the LF path must now be a multiple of 100 MHz,
to ensure phase reproducibility when using the LF path.

 SG Channels: Fixed a minor floating point rounding artifact such that the default marker delay is
now correctly displayed as 0s.

 Introduced a new high-performance data-server kernel. It improves reliability and performances
of communication with the instrument.

1.3. Release 23.06

Release date: 30-Jun-2023

 General: Added ability to reset all node settings to preset values by writing to /DEV…/SYSTEM/
PRESET/LOAD node. The nodes /DEV…/SYSTEM/PRESET/BUSY and /DEV…/SYSTEM/PRESET/ERROR
allow for monitoring of the preset status.

 QA Channels: Added switchable signal paths: the RF (0.5 - 8.5 GHz) path and LF (DC - 800 MHz)
path. Added nodes for switching between RF and LF paths of the QA channel input and output,
respectively, as
/DEV…/QACHANNELS/n/INPUT/RFLFPATH and /DEV…/QACHANNELS/n/OUTPUT/RFLFPATH.
Furthermore, the node /DEV…/QACHANNELS/n/OUTPUT/RFLFINTERLOCK allows the interlock to be
enabled, such that the RF/LF path setting of the output is always configured to match that of the
input.

 QA Channels: Cleaned up marker source selection by removing non-functional source settings for
the node /DEV…/QACHANNELS/n/MARKERS/m/SOURCE, namely "Channel 2, Sequencer Trigger
Output" and "Channel 2, Readout done" selection options.

1. Change Log

1 Zurich Instruments SHFQC User Manual

QA Channels: Fixed a sequencer bug in which playZero commands were sometimes skipped
when multiple successive playZero commands were used with large sample counts (e.g. 131056).

 QA Channels: Added an optional synchronization check which ensures that all participants have
reported their readiness before a program or internal triggers are executed. The synchronization
check can be enabled by using the following node: /DEV…/QACHANNELS/n/SYNCHRONIZATION/
ENABLE.

 QA Channels: Fixed a bug in which the spectroscopy delay node /DEV…/QACHANNELS/n/
SPECTROSCOPY/DELAY didn’t accept 0 ns after it was set to 4 ns.

 SG Channels: Updated the default values of trigger input settings to better reflect typical usage.
New default values are as follows: Trigger level is now 1 V by default (calibration can lead to values
slightly different than 1.0 V), trigger slope detection is now the rising edge by default.

 SG Channels: Introduced the /DEV…/SGCHANNELS/n/SYNCHRONIZATION/ENABLE, /DEV…/SYSTEM/
SYNCHRONIZATION/SOURCE, and /DEV…/SYSTEM/INTERNALTRIGGER/SYNCHRONIZATION/ENABLE
nodes to make it possible to keep waveform playback synchronized across a full QCCS setup,
even in the presence of non-deterministic data transfer times.

 SG Channels: Deprecated the digital mixer reset functionality.
 Manual: Added a section on how to use the synchronization check in the AWG Tab.
 Manual: Added tips to the Basic Waveform Generation Tutorial on how to achieve phase

reproducibility in the LF path by using appropriate center frequency and trigger holdoff time
settings.

 LabOne: Improved labeling of Trigger settings in the SG AWG, QA Generator, and DIO tabs of the
LabOne UI to more clearly mark how a trigger input source corresponds to the front panel input
of an SG or QA channel.

1.4. Release 23.02

Release date: 28-Feb-2023

 SG Channels: Extended functionality of resetOscPhase to able to reset the phase of the digital
mixer (e.g. to enable reproducible phase setting when using the LF path).

 SG Channels: Added ability for internal feedback to use multi-state discrimination data to enable
reset of multi-level systems.

 QA Channels: Added power-spectral-density (PSD) measurement capability to the spectroscopy
mode. The PSD measurement gets controlled via the node tree branch /DEV…/QACHANNELS/n/
SPECTROSCOPY/PSD.

 QA Channels: Added node /DEV…/QACHANNELS/n/INPUT/ADCOVERRANGECOUNT, allowing users to
independently monitor ADC overrange conditions.

 Manual: Improved UI documentation. Added additional documentation on usage of internal
feedback, playZero, and playHold.

 SG Channels: Improved efficiency of playZero and playHold to use fewer assembly instructions.
 SG Channels: Improved timing jitter of Output when triggering an SG channel over ZSync.
 LabOne: Improved support for alternative hardware components.
 LabOne: Added ability for the device to prevent LabOne changes that are incompatible with the

device hardware.
 Outputs: Improved alignment between SG and QA channel outputs when triggered by the

Internal Trigger.
 Scope: Fixed a bug that caused a wrong effective scope delay at startup.
 Outputs: Fixed a bug that caused overrange conditions during the ADC calibration at startup.
 ZSYNC/DIO: Fixed a bug that caused the DIO interface to behave wrongly when switching

between LVCMOS and LVDS outputs in non-manual mode.
 LabOne: Fixed the value of legacy node /DEV…/CLOCKBASE for SHF devices. To have always the

correct value, use the device node /DEV…/SYSTEM/PROPERTIES/TIMEBASE instead.

1.5. Release 22.08

Release date: 31-Aug-2022

 LabOne: Added support for the SHFQC Qubit Controller, including full support in the LabOne UI.
 SG Channel: Added new SG-channel sequencer command getFeedback that can retrieve ZSync

data or qubit data from the QA channel.
 SG Channel: Added ability of executeTableEntry to use variable arguments corresponding to

qubit data received over ZSync or from the QA channel.
 SG Channel: Fixed a bug in which the command table always required a waveform to make

parameter changes.
 SG Channel: Added support for 16 sample waveforms with the command table.
 SG Channel: Added a new sequencer command playHold to allow the AWG to hold waveform

and marker data for a specified number of samples.

1.4. Release 23.02

2 Zurich Instruments SHFQC User Manual

 SG Channel: Improved the speed with which the SG channel AWGs can be enabled.
 QA Channel: Improved the maximal repetition rate, with which the QA readout can be started

without missing triggers to 1/(440 ns).
 QA Channel: Fixed a bug, where the error "The sigin ADC reported unexpected dataconverter

errors!" was issued during an over range condition at the QA channel inputs.
 ZSync/DIO: Added an internal trigger unit that allows the SG and QA channels to be synchronized

with each other.
 ZSync/DIO: /DEV…/DIOS/0/MODE node changed keyword arguments to enable control of DIO

values by the sequencer from chanNseq or channelN_sequencer to sgchanNseq or
sgchannelN_sequencer for the SG channels and qachanNseq or qachannelN_sequencer for the
QA channel.

 ZSync/DIO: /DEV…/SGCHANNELS/n/AWG/ELF/DATA node accepts raw data as 8-, 16-, and 64-bit
integer vectors in addition to 32-bit words.

 ZSync/DIO: /DEV…/QACHANNELS/0/GENERATOR/ELF/DATA node accepts raw data as 8-, 16-, and
64-bit integer vectors in addition to 32-bit words.

Release date: 01-Apr-2022

Highlights:

 Initial release of the SHFQC user manual.

1.5. Release 22.08

3 Zurich Instruments SHFQC User Manual

2. Getting Started
This first chapter guides you through the initial set-up of your SHFQC Instrument in order to make
your first measurements.

Please refer to:

 Quick Start Guide for a Quick Start Guide for the impatient.
 Inspect the Package Contents for inspecting the package content and accessories.
 Handling and Safety Instructions for a list of essential handling and safety instructions.
 Software Installation - Software Update for help connecting to the SHFQC Instrument with the

LabOne software.
 Troubleshooting for a handy list of troubleshooting guidelines.

This chapter is delivered as a hard copy with the instrument upon delivery. It is also the first chapter
of the SHFQC User Manual.

2.1. Quick Start Guide

This page addresses all the people who have been impatiently awaiting their new gem to arrive and
want to see it up and running quickly. Please proceed with the following steps:

Inspect the package contents. Besides the Instrument there should be a country-specific
power cable, a USB cable, an Ethernet cable, a ZSync cable, and a hard copy of the Getting
Started guide.
Check Handling and Safety Instructions for the Handling and Safety Instructions.
Download and install the latest LabOne software from the Zurich Instruments Download
Center.
Choose the download file that suits your computer (e.g. Windows with 64-bit addressing). For
more detailed information see Software Installation.
Connect the instrument to the power outlet. Turn it on and connect it to a switch in the LAN
using the Ethernet cable.
Start the LabOne User Interface from the Windows Start Menu. The default web browser will
open and display your instrument in a start screen as shown below. Use Chrome, Edge,
Firefox, or Opera for best user experience.

The LabOne User Interface start-up screen will appear. Click the Open button on the lower
right of the page. The default configuration will be loaded and the first signals can be
generated. If the user interface does not start up successfully, please refer to Connecting to
the Instrument.

If any problems occur while setting up the instrument and software, please see Troubleshooting at
the end of this chapter for troubleshooting.

When connecting cables to the instrument’s SMA ports, use a torque wrench specified for brass
core SMA (4 in-lbs, 0.5 Nm). Using a standard SMA torque wrench (8 in-lbs) or a wrench without
torque limit can damage the connectors.

After you have finished using the instrument, it is recommended to shut it down using the soft
power button on the front panel of the instrument instrument or by clicking on the button at the
bottom left of the user interface screen before turning off the power switch on the back panel of the
instrument.

1.

2.
3.

4.

5.

6.

7.

2. Getting Started

4 Zurich Instruments SHFQC User Manual

https://www.zhinst.com/ch/en/support/download-center
https://www.zhinst.com/ch/en/support/download-center

Once the Instrument is up and running we recommend going through some of the tutorials given in
Tutorials. The functional description of the SHFQC can be found in Functional Description and
provides a general introduction to the various tools and tables in each section describing every
setting. In the same section, Functional Description provides an overview of the different UI tabs.
For specific application know-how, the blog section of the Zurich Instruments website will serve as a
valuable resource that is constantly updated and expanded.

2.2. Inspect the Package Contents

If the shipping container appears to be damaged, keep the container until you have inspected the
contents of the shipment and have performed basic functional tests.

Please verify the following:

 You have received 1 Zurich Instruments SHFQC Instrument
 You have received 1 power cord with a power plug suited to your country
 You have received 1 USB 3.0 cable and/or 1 LAN cable (category 5/6 required)
 You have received 1 Zurich Instruments ZSync cable
 You have received a printed version of the "Getting Started" section
 The "Next Calibration" sticker on the rear panel of the instrument indicates a date approximately

2 years in the future → Zurich Instruments recommends calibration intervals of 2 years
 The MAC address of the instrument is displayed on a sticker on the back panel

Table 2.1: Package contents for the SHFQC

SHFQC instrument

the power cord (e.g. EU norm)

the USB 3.0 cable

the power inlet, with power switch

the LAN / Ethernet cable (category
5/6 required)

the ZSync cable

2.2. Inspect the Package Contents

5 Zurich Instruments SHFQC User Manual

https://www.zhinst.com/blogs/

the "Next Calibration" sticker on the
back panel of the instrument

the MAC address sticker on the back
panel of the instrument

The SHFQC Instrument is equipped with a multi-mains switched power supply, and therefore can be
connected to most power systems in the world. The fuse holder is integrated with the power inlet
and can be extracted by grabbing the holder with two small screwdrivers at the top and at the
bottom at the same time. A spare fuse is contained in the fuse holder. The fuse description is found
in the specifications chapter.

Carefully inspect your instrument. If there is mechanical damage or the instrument does not pass
the basic tests, then you should immediately notify the Zurich Instruments support team through
email.

2.3. Handling and Safety Instructions

The SHFQC Instrument is a sensitive piece of electronic equipment, and under no circumstances
should its casing be opened, as there are high-voltage parts inside which may be harmful to human
beings. There are no serviceable parts inside the instrument. Do not install substitute parts or
perform any unauthorized modification to the product. Opening the instrument immediately voids
the warranty provided by Zurich Instruments.

Do not use this product in any manner not specified by the manufacturer. The protective features of
this product may be affected if it is used in a way not specified in the operating instructions.

The following general safety instructions must be observed during all phases of operation, service,
and handling of the instrument. The disregard of these precautions and all specific warnings
elsewhere in this manual may negatively affect the operation of the equipment and its lifetime.

Zurich Instruments assumes no liability for the user’s failure to observe and comply with the
instructions in this user manual.

Caution

The SMA connectors on the front panel are made for transmitting radio frequencies and can be
damaged if handled inappropriately. Take care when attaching or detaching cables or when moving
the instrument.

Table 2.2: Safety Instructions

Ground the
instrument

The instrument chassis must be correctly connected to earth ground by
means of the supplied power cord. The ground pin of the power cord set plug
must be firmly connected to the electrical ground (safety ground) terminal at
the mains power outlet. Interruption of the protective earth conductor or
disconnection of the protective earth terminal will cause a potential shock
hazard that could result in personal injury and potential damage to the
instrument.

Ground loops The SMA connectors are not floating. For sensitive operations and in order to
avoid ground loops, consider adding dc-blocks at the Inputs of the device.

Electromagnetic
environment

This equipment has been certified to conform with industrial
electromagnetic environment as defined in EN 61326-1.
Emissions, that exceed the levels required by the document referenced
above, can occur when connected to a test object.

Measurement
category

This equipment is of measurement category I (CAT I). Do not use it for CAT II,
III, or IV. Do not connect the measurement terminals to mains sockets.

Maximum ratings The specified electrical ratings for the connectors of the instrument should
not be exceeded at any time during operation. Please refer to the
Specifications for a comprehensive list of ratings.

Do not service or
adjust anything
yourself

There are no serviceable parts inside the instrument.

2.3. Handling and Safety Instructions

6 Zurich Instruments SHFQC User Manual

mailto:support@zhinst.com

Software updates Frequent software updates provide the user with many important
improvements as well as new features. Only the last released software
version is supported by Zurich Instruments.

Warnings Instructions contained in any warning issued by the instrument, either by the
software, the graphical user interface, the notes on the instrument or
mentioned in this manual, must be followed.

Notes Instructions contained in the notes of this user manual are of essential
importance for correctly interpreting the acquired measurement data.

Location and
ventilation

This instrument or system is intended for indoor use in an installation
category II and pollution degree 2 environment as per IEC 61010-1. Do not
operate or store the instrument outside the ambient conditions specified in
the Specifications section. Do not block the ventilator opening on the back or
the air intake on the chassis side and front, and allow a reasonable space for
the air to flow.

Cleaning To prevent electrical shock, disconnect the instrument from AC mains power
and disconnect all test leads before cleaning. Clean the outside of the
instrument using a soft, lint-free cloth slightly dampened with water. Do not
use detergent or solvents. Do not attempt to clean internally.

AC power
connection and
mains line fuse

For continued protection against fire, replace the line fuse only with a fuse of
the specified type and rating. Use only the power cord specified for this
product and certified for the country of use. Always position the device so
that its power switch and the power cord are easily accessible during
operation.

Main power
disconnect

Unplug product from wall outlet and remove power cord before servicing.
Only qualified, service-trained personnel should remove the cover from the
instrument.

RJ45 sockets
labeled ZSync

The RJ45 sockets on the back panel labeled "ZSync 1/2" are not intended for
Ethernet LAN connection. Connecting an Ethernet device to these sockets
may damage the instrument and/or the Ethernet device.

Operation and
storage

Do not operate or store the instrument outside the ambient conditions
specified in the Specifications section.

Handling Handle with care. Do not drop the instrument. Do not store liquids on the
device, as there is a chance of spillage resulting in damage.

Safety critical
systems

Do not use this equipment in systems whose failure could result in loss of
life, significant property damage or damage to the environment.

If you notice any of the situations listed below, immediately stop the operation of the instrument,
disconnect the power cord, and contact the support team at Zurich Instruments, either through the
website form or through email.

Table 2.3: Unusual Conditions

Fan is not working
properly or not at all

Switch off the instrument immediately to prevent overheating of
sensitive electronic components.

Power cord or power
plug on instrument is
damaged

Switch off the instrument immediately to prevent overheating, electric
shock, or fire. Please exchange the power cord only with one for this
product and certified for the country of use.

Instrument emits
abnormal noise, smell, or
sparks

Switch off the instrument immediately to prevent further damage.

Instrument is damaged Switch off the instrument immediately and ensure it is not used again
until it has been repaired.

Table 2.4: Symbols

Earth ground

Chassis ground

Caution. Refer to accompanying documentation

DC (direct current)

2.3. Handling and Safety Instructions

7 Zurich Instruments SHFQC User Manual

mailto:support@zhinst.com

2.4. Software Installation

The SHFQC Instrument is operated from a host computer with the LabOne software. To install the
LabOne software on a computer, administrator rights may be required. In order to simply run the
software later, a regular user account is sufficient. Instructions for downloading the correct version
of the software packages from the Zurich Instruments website are described below in the platform-
dependent sections. It is recommended to regularly update to the latest software version provided
by Zurich Instruments. Thanks to the Automatic Update check feature, the update can be initiated
with a single click from within the user interface, as shown in Software Update.

2.4.1. Installing LabOne on Windows

The installation packages for the Zurich Instruments LabOne software are available as Windows
installer .msi packages. The software is available on the Zurich Instruments Download Center.
Please ensure that you have administrator rights for the PC on which the software is to be installed.
See LabOne compatibility for a comprehensive list of supported Windows systems.

2.4.2. Windows LabOne Installation

The SHFQC Instrument should not be connected to your computer during the LabOne
software installation process.
Start the LabOne installer program with a name of the form LabOne64-XX.XX.XXXXX.msi by
a double click and follow the instructions. Windows Administrator rights are required for
installation. The installation proceeds as follows:
 On the welcome screen click the Next button.

Figure 2.1: Installation welcome screen

 After reading through the Zurich Instruments license agreement, check the "I accept the
terms in the License Agreement" check box and click the Next button.

 Review the features you want to have installed. For the SHFQC Instrument the "SHFQC
Series Device", "LabOne User Interface" and "LabOne APIs" features are required. Please
install the features for other device classes as well, if required. To proceed click the Next
button.

1.

2.

2.4. Software Installation

8 Zurich Instruments SHFQC User Manual

https://www.zhinst.com/support/download-center
https://www.zhinst.com/instruments/labone/labone-compatibility

Figure 2.2: Custom setup screen

 Select whether the software should periodically check for updates. Note, the software will
still not update automatically. This setting can later be changed in the user interface. If you
would like to install shortcuts on your desktop area, select "Create a shortcut for this
program on the desktop". To proceed click the Next button.

Figure 2.3: Automatic update check

 Click the Install button to start the installation process.
 Windows may ask up to two times to reboot the computer if you are upgrading. Make sure

you have no unsaved work on your computer.

2.4. Software Installation

9 Zurich Instruments SHFQC User Manual

Figure 2.4: Installation reboot request

 During the first installation of LabOne, it is required to confirm the installation of some
drivers from the trusted publisher Zurich Instruments. Click on Install.

Figure 2.5: Installation driver acceptance

 Click OK on the following notification dialog.

Figure 2.6: Installation completion screen

Click Finish to close the Zurich Instruments LabOne installer.
You can now start the LabOne User Interface as described in LabOne Software Start-up and
choose an instrument to connect to via the Device Connection dialog shown in Device
Connection dialog.

Warning

Do not install drivers from another source other than Zurich Instruments.

2.4.3. Start LabOne Manually on the Command Line

After installing the LabOne software, the Web Server and Data Server can be started manually using
the command-line. The more common way to start LabOne under Windows is described in LabOne
Software Start-up. The advantage of using the command line is being able to observe and change
the behavior of the Web and Data Servers. To start the Servers manually, open a command-line

3.
4.

2.4. Software Installation

10 Zurich Instruments SHFQC User Manual

terminal (Command Prompt, PowerShell (Windows) or Bash (Linux)). For Windows, the current
working directory needs to be the installation directory of the Web Server and Data Server. They are
installed in the Program Files folder (usually: C:\Program Files) under \Zurich Instruments\LabOne in
the WebServer and DataServer folders, respectively. The Web Server and Data Server (
ziDataServer) are started by running the respective executable in each folder. Please be aware that
only one instance of the Web Server can run at a time per computer. The behavior of the Servers can
be changed by providing command line arguments. For a detailed list of all arguments see the
command line help text:

$ ziWebServer --help

For the Data Server:

$ ziDataServer --help

One useful application of running the Webserver manually from a terminal window is to change the
data directory from its default path in the user home directory. The data directory is a folder in which
the LabOne Webserver saves all the measured data in the format specified by the user. Before
running the Webserver from the terminal, the user needs to ensure there is no other instance of
Webserver running in the background. This can be checked using the Tray Icon as shown below.

Figure 2.7: LabOne Tray Icon in Windows 10

The corresponding command line argument to specify the data path is --data-path and the
command to start the LabOne Webserver with a non-default directory path, e.g., C:\data is

C:\Program Files\Zurich Instruments\LabOne\WebServer> ziWebServer --data-path "C:
\data"

Windows LabOne Uninstallation

To uninstall the LabOne software package from a Windows computer, one can open the "Apps &
features" page from the Windows start menu and search for LabOne. By selecting the LabOne item
in the list of apps, the user has the option to "Uninstall" or "Modify" the software package as shown
in Figure 2.8.

Figure 2.8: Uninstallation of LabOne on Windows computers

2.4. Software Installation

11 Zurich Instruments SHFQC User Manual

Warning

Although it is possible to install a new version of LabOne on a currently-installed version, it is highly
recommended to first uninstall the older version of LabOne from the computer and then, install the
new version. Otherwise, if the installation process fails, the current installation is damaged and
cannot be uninstalled directly. The user will need to first repair the installation and then, uninstall it.

In case a current installation of LabOne is corrupted, one can simply repair it by selecting the option
"Modify" in Figure 2.8. This will open the LabOne installation wizard with the option "Repair" as
shown in Figure 2.9.

Figure 2.9: Repair of LabOne on Windows computers

After finishing the repair process, the normal uninstallation process described above can be
triggered to uninstall LabOne.

2.4.4. Installing LabOne on macOS

LabOne supports both Intel and ARM (M-series) architectures within a single universal disk image
(DMG) file available in our Download Center.

 Download and double-click the DMG file to mount the image.

 The image contains a single LabOne application with all services needed.
 Once the application is started, a labone icon will appear in the menu bar. It allows the user to

easily open a new session and shows the status of all services.

2.4. Software Installation

12 Zurich Instruments SHFQC User Manual

2.4.5. Uninstalling LabOne on macOS

To uninstall LabOne on macOS, simply drag the LabOne application to the trash bin.

2.4.6. Application Content

The LabOne application contains all resources available for macOS. This includes:

 The binaries for the Web Server and Data Servers.
 The binaries for the C, MATLAB, and LabVIEW APIs.
 An offline version of the user manuals.
 The latest firmware images for all instruments.

To access this content, right-click on the LabOne application and select "Show Package Contents".
Then, go into Contents/Resources.

Note

Since the application name contains a space, one needs to escape it when using the command line
to access the contents: cd /Applications/LabOne\ 2X.XX.app/Contents/Resources

2.4.7. Start LabOne Manually on the Command Line

To start the LabOne services like the data server and web server manually, one can use the
command line.

The data server binary is called ziDataServer (ziServer for HF2 instruments) and is located at
Applications/LabOne\ 2X.XX.app/Contents/Resources/DataServer/.

The web server binary is called ziWebServer and is located at Applications/LabOne\
2X.XX.app/Contents/Resources/DataServer/.

Note

No special command line arguments are needed to start the LabOne services. Use the --help
argument to see all available options.

2.4. Software Installation

13 Zurich Instruments SHFQC User Manual

2.4.8. Installing LabOne on Linux

2.4.9. Requirements

Ensure that the following requirements are fulfilled before trying to install the LabOne software
package:

LabOne software supports typical modern GNU/Linux distributions (Ubuntu 14.04+, CentOS
7+, Debian 8+). The minimum requirements are glibc 2.17+ and kernel 3.10+.
You have administrator rights for the system.
The correct version of the LabOne installation package for your operating system and
platform have been downloaded from the Zurich Instruments Download Center:

LabOneLinux<arch>-<release>.<revision>.tar.gz,

Please ensure you download the correct architecture (x86-64 or arm64) of the LabOne installer. The
uname command can be used in order to determine which architecture you are using, by running:

uname -m

in a command line terminal. If the command outputs x86_64 the x86-64 version of the LabOne
package is required, if it displays aarch64 the ARM64 version is required.

2.4.10. Linux LabOne Installation

Proceed with the installation in a command line shell as follows:

Extract the LabOne tarball in a temporary directory:

tar xzvf LabOneLinux<arch>-<release>-<revision>.tar.gz

Navigate into the extracted directory.

cd LabOneLinux<arch>-<release>-<revision>

Run the install script with administrator rights and proceed through the guided installation,
using the default installation path if possible:

sudo bash install.sh

The install script lets you choose between the following three modes:
 Type "a" to install the Data Server program, the Web Server program, documentation and

APIs.
 Type "u" to install udev support (only necessary if HF2 Instruments will be used with this

LabOne installation and not relevant for other instrument classes).
 Type "ENTER" to install both options "a" and "u".
Test your installation by running the software as described in the next section.

2.4.11. Running the Software on Linux

The following steps describe how to start the LabOne software in order to access and use your
instrument in the User Interface.

Start the Web Server program at a command prompt:

$ ziWebServer

Start an up-to-date web browser and enter the 127.0.0.1:8006 in the browser’s address bar
to access the Web Server program and start the LabOne User Interface. The LabOne Web
Server installed on the PC listens by default on port number 8006 instead of 80 to minimize
the probability of conflicts.
You can now start the LabOne User Interface as described in LabOne Software Start-up and
choose an instrument to connect to via the Device Connection dialog shown in Device
Connection dialog.

1.

2.
3.

1.

2.

3.

4.

1.

2.

3.

2.4. Software Installation

14 Zurich Instruments SHFQC User Manual

https://www.zhinst.com/support/download-center

Important

Do not use two Data Server instances running in parallel; only one instance may run at a time.

2.4.12. Uninstalling LabOne on Linux

The LabOne software package copies an uninstall script to the base installation path (the default
installation directory is /opt/zi/). To uninstall the LabOne package please perform the following
steps in a command line shell:

Navigate to the path where LabOne is installed, for example, if LabOne is installed in the
default installation path:

$ cd /opt/zi/

Run the uninstall script with administrator rights and proceed through the guided steps:

$ sudo bash uninstall_LabOne<arch>-<release>-<revision>.sh

2.5. Connecting to the Instrument

The Zurich Instruments SHFQC is operated using the LabOne software. After installation of LabOne,
the instrument can be connected to a PC by using either the Universal Serial Bus (USB) cable or the
1 Gbit/s Ethernet (1GbE) LAN cable supplied with the instrument. The LabOne software is controlled
via a web browser after suitable physical and logical connections to the instrument have been
made.

Note

The following web browsers are supported (latest versions).

 When using 1GbE, integrate the instrument physically into an existing local area network (LAN) by
connecting the instrument to a switch in the LAN using an Ethernet cable. The instrument can
then be accessed from a web browser running on any computer in the same LAN with LabOne
installed. The Ethernet connection can also be point-to-point. This requires some adjustment of
the network card settings of the host computer. Depending on the network configuration and the
installed network card, one or the other connection scheme is better suited.

 Using the USB connection to physically connect to the instrument requires the installation of a
USB driver on Windows computers. This driver is included in the LabOne software installer and
will be installed on the host computer as part of the LabOne installation wizard.

2.5.1. LabOne Software Architecture

The Zurich Instruments LabOne software gives quick and easy access to the instrument from a host
PC. LabOne also supports advanced configurations with simultaneous access by multiple software
clients (i.e., LabOne User Interface clients and/or API clients), and even simultaneous access by
several users working on different computers. Here we give a brief overview of the architecture of
the LabOne software. This will help to better understand the following chapters.

The software of Zurich Instruments equipment is server-based. The servers and other software
components are organized in layers as shown in Figure 2.10.

 The lowest layer running on the PC is the LabOne Data Server, which is the interface to the
connected instrument.

1.

2.

2.5. Connecting to the Instrument

15 Zurich Instruments SHFQC User Manual

The middle layer contains the LabOne Web Server, which is the server for the browser-based
LabOne User Interface.

 The graphical user interface, together with the programming user interfaces, are contained in the
top layer.

The architecture with one central Data Server allows multiple clients to access a device with
synchronized settings. The following sections explain the different layers and their functionality in
more detail.

Figure 2.10: LabOne Software architecture

2.5.2. LabOne Data Server

The LabOne Data Server program is a dedicated server that is in charge of all communication to
and from the device. The Data Server can control a single or also multiple instruments. It will
distribute the measurement data from the instrument to all the clients that subscribe to it. It also
ensures that settings changed by one client are communicated to other clients. The device settings
are therefore synchronized on all clients. On a PC, only a single instance of a LabOne Data Server
should be running.

2.5.3. LabOne Web Server

The LabOne Web Server is an application dedicated to serving up the web pages that constitute the
LabOne user interface. The user interface can be opened with any device with a web browser. Since
it is touch enabled, it is possible to work with the LabOne User Interface on a mobile device - like a
tablet. The LabOne Web Server supports multiple clients simultaneously. This means that more than
one session can be used to view data and to manipulate the instrument. A session could be running
in a browser on the PC on which the LabOne software is installed. It could equally well be running in
a browser on a remote machine.

With a LabOne Web Server running and accessing an instrument, a new session can be opened by
typing in a network address and port number in a browser address bar. In case the Web Server runs
on the same computer, the address is the localhost address (both are equivalent):

 127.0.0.1:8006
 localhost:8006

In case the Web Server runs on a remote computer, the address is the IP address or network name
of the remote computer:

 192.168.x.y:8006
 myPC.company.com:8006

The most recent versions of the most popular browsers are supported: Chrome, Firefox, Edge, Safari
and Opera.

2.5. Connecting to the Instrument

16 Zurich Instruments SHFQC User Manual

2.5.4. LabOne API Layer

The instrument can also be controlled via the application program interfaces (APIs) provided by
Zurich Instruments. APIs are provided in the form of DLLs for the following programming
environments:

 MATLAB
 Python
 LabVIEW
 .NET
 C

APIs are provided in the form of DLLs for the following programming environments:

 MATLAB
 Python

An extensive Python API and python-based drivers are provided for the following frameworks:

 https://github.com/zhinst/zhinst-toolkit[Zurich Instruments Toolkit]
 https://github.com/zhinst/zhinst-qcodes[QCoDeS]
 https://github.com/zhinst/zhinst-labber[Labber]

The instrument can therefore be controlled by an external program, and the resulting data can be
processed there. The device can be concurrently accessed via one or more of the APIs and via the
user interface. This enables easy integration into larger laboratory setups. See the LabOne
Programming Manual for further information. Using the APIs, the user has access to the same
functionality that is available in the LabOne User Interface.

2.5.5. LabOne Software Start-up

This section describes the start-up of the LabOne User Interface which is used to control the SHFQC
Instrument. If the LabOne software is not yet installed on the PC please follow the instructions in
Software Installation. If the device is not yet connected please find more information in Visibility and
Connection.

The LabOne User Interface start-up link can be found under the Windows 10 Start Menu (Under
Windows 7 and 8, the LabOne User Interface start-up link can be found in Start Menu → all
programs / all apps → Zurich Instruments LabOne). As shown in Figure 2.11, click on Start
Menu → Zurich Instruments LabOne. This will open the User Interface in a new tab in your default
web browser and start the LabOne Data Server and LabOne Web Server programs in the
background. A detailed description of the software architecture is found in LabOne Software
Architecture.

Figure 2.11: Link to the LabOne User Interface in the Windows 10 Start Menu

LabOne is an HTML5 browser-based program. This simply means that the user interface runs in a
web browser and that a connection using a mobile device is also possible; simply specify the IP
address (and port 8006) of the PC running the user interface.

Note

By creating a shortcut to Google Chrome on your desktop with the Target path\to\chrome.exe -
app=http://127.0.0.1:8006 set in Properties you can run the LabOne User Interface in Chrome in
application mode, which improves the user experience by removing the unnecessary browser
controls.

2.5. Connecting to the Instrument

17 Zurich Instruments SHFQC User Manual

After starting LabOne, the Device Connection dialog Figure 2.12 is shown to select the device for the
session. The term "session" is used for an active connection between the user interface and the
device. Such a session is defined by device settings and user interface settings. Several sessions
can be started in parallel. The sessions run on a shared LabOne Web Server. A detailed description
of the software architecture can be found in the LabOne Software Architecture.

Figure 2.12: Device Connection dialog

The Device Connection dialog opens in the Basic view by default. In this view, all devices that are
available for connection are represented by an icon with serial number and status information. If
required, a button appears on the icon to perform a firmware upgrade. Otherwise, the device can be
connected by a double click on the icon, or a click on the button at the bottom right of the
dialog.

In some cases it’s useful to switch to the Advanced view of the Device Connection dialog by clicking
on the "Advanced" button. The Advanced view offers the possibility to select custom device and UI
settings for the new session and gives further connectivity options that are particularly useful for
multi-instrument setups.

Figure 2.13: Device Connection dialog (Advanced view)

The Advanced view consists of three parts:

 Data Server Connectivity
 Available Devices
 Saved Settings

The Available Devices table has a display filter, usually set to Default Data Server, that is
accessible by a drop-down menu in the header row of the table. When changing this to Local Data
Servers, the Available Devices table will show only connections via the Data Server on the host PC
and will contain all instruments directly connected to the host PC via USB or to the local network via

2.5. Connecting to the Instrument

18 Zurich Instruments SHFQC User Manual

1GbE. When using the All Data Servers filter, connections via Data Servers running on other PCs in
the network also become accessible. Once your instrument appears in the Available Devices table,
perform the following steps to start a new session:

Select an instrument in the Available Devices table.
Select a setting file in the Saved Settings list unless you would like to use the Default
Settings.
Start the session by clicking on

Note

By default, opening a new session will only load the UI settings (such as plot ranges), but not the
device settings (such as signal amplitude) from the saved settings file. In order to include the device
settings, enable the Include Device Settings checkbox. Note that this can affect existing sessions
since the device settings are shared between them.

Note

In case devices from other Zurich Instruments series (UHF, HF2, MF, HDAWG, PQSC, GHF, or SHF) are
used in parallel, the list in Available Devices section can contain those as well.

The following sections describe the functionality of the Device Connection dialog in detail.

2.5.6. Data Server Connectivity

The Device Connection dialog represents a Web Server. However, on start-up the Web Server is not
yet connected to a LabOne Data Server. With the Connect/Disconnect button the connection to a
Data Server can be opened and closed.

This functionality can usually be ignored when working with a single SHFQC Instrument and a single
host computer. Data Server Connectivity is important for users operating their instruments from a
remote PC, i.e., from a PC different to the PC on which the Data Server is running or for users working
with multiple instruments. The Data Server Connectivity function then gives the freedom to connect
the Web Server to one of several accessible Data Servers. This includes Data Servers running on
remote computers, and also Data Servers running on an MF Series instrument.

In order to work with a UHF, HF2, HDAWG, PQSC, GHF, or SHF instrument remotely, proceed as
follows. On the computer directly connected to the instrument (Computer 1) open a User Interface
session and change the Connectivity setting in the Config tab to "From Everywhere". On the remote
computer (Computer 2), open the Device Connection dialog by starting up the LabOne User Interface
and then go to the Advanced view by clicking on on the top left of the dialog. Change the
display filter from Default Data Server to All Data Servers by opening the drop-down menu in the
header row of the Available Devices table. This will make the Instrument connected to Computer 1
visible in the list. Select the device and connect to the remote Data Server by clicking on .
Then start the User Interface as described above.

Note

When using the filter "All Data Servers", take great care to connect to the right instrument, especially
in larger local networks. Always identify your instrument based on its serial number in the form
DEV0000, which can be found on the instrument back panel.

2.5.7. Available Devices

The Available Devices table gives an overview of the visible devices. A device is ready for use if either
marked free or connected. The first column of the list holds the Enable button controlling the
connection between the device and a Data Server. This button is greyed out until a Data Server is
connected to the LabOne Web Server using the button. If a device is connected to a Data
Server, no other Data Server running on another PC can access this device.

The second column indicates the serial number and the third column shows the instrument type.
The fourth column shows the host name of the LabOne Data Server controlling the device. The next
column shows the interface type. For SHFQC Instruments the interfaces USB or 1GbE are available

1.
2.

3.

2.5. Connecting to the Instrument

19 Zurich Instruments SHFQC User Manual

and are listed if physically connected. The LabOne Data Server will scan for the available devices
and interfaces every second. If a device has just been switched on or physically connected it may
take up to 20 s before it becomes visible to the LabOne Data Server.

Table 2.5: Device Status Information

Connected The device is connected to a LabOne Data Server, either on the same PC
(indicated as local) or on a remote PC (indicated by its IP address). The user
can start a session to work with that device.

Free The device is not in use by any LabOne Data Server and can be connected by
clicking the Open button.

In Use The device is in use by a LabOne Data Server. As a consequence the device
cannot be accessed by the specified interface. To access the device, a
disconnect is needed.

Device FW upgrade
required/available

The firmware of the device is out of date. Please first upgrade the firmware
as described in Software Update.

Device not yet ready The device is visible and starting up.

2.5.8. Saved Settings

Settings files can contain both UI and device settings. UI settings control the structure of the
LabOne User Interface, e.g. the position and ordering of opened tabs. Device settings specify the
set-up of a device. The device settings persist on the device until the next power cycle or until
overwritten by loading another settings file.

The columns are described in Table 2.6. The table rows can be sorted by clicking on the column
header that should be sorted. The default sorting is by time. Therefore, the most recent settings are
found on top. Sorting by the favorite marker or setting file name may be useful as well.

Table 2.6: Column Descriptions

Allows favorite settings files to be grouped together. By activating the stars adjacent to
a settings file and clicking on the column heading, the chosen files will be grouped
together at the top or bottom of the list accordingly. The favorite marker is saved to the
settings file. When the LabOne user interface is started next time, the row will be
marked as favorite again.

Name The name of the settings file. In the file system, the file name has the extension .md.

Date The date and time the settings file was last written.

Comment Allows a comment to be stored in the settings file. By clicking on the comment field a
text can be typed in which is subsequently stored in the settings file. This comment is
useful to describe the specific conditions of a measurement.

Device
Type

The instrument type with which this settings file was saved.

Special Settings Files

Certain file names have the prefix "last_session_". Such files are created automatically by the
LabOne Web Server when a session is terminated either explicitly by the user, or under critical error
conditions, and save the current UI and device settings. The prefix is prepended to the name of the
most recently used settings file. This allows any unsaved changes to be recovered upon starting a
new session.

If a user loads such a last session settings file the "last_session_" prefix will be cut away from the
file name. Otherwise, there is a risk that an auto-save will overwrite a setting which was saved
explicitly by the user.

The settings file with the name "Default Settings" contains the default UI settings. See button
description in Table 2.7.

Table 2.7: Button Descriptions

2.5. Connecting to the Instrument

20 Zurich Instruments SHFQC User Manual

Open The settings contained in the selected settings file will be loaded. The button
"Include Device Settings" controls whether only UI settings are loaded, or if
device settings are included.

Include
Device
Settings

Controls which part of the selected settings file is loaded upon clicking on Open.
If enabled, both the device and the UI settings are loaded.

Auto Start Skips the session dialog at start-up if selected device is available. The default UI
settings will be loaded with unchanged device settings.

Note

The user setting files are saved to an application-specific folder in the directory structure. The best
way to manage these files is using the File Manager tab.

Note

The factory default UI settings can be customized by saving a file with the name "default_ui" in the
Config tab once the LabOne session has been started and the desired UI setup has been
established. To use factory defaults again, the "default_ui" file must be removed from the user
setting directory using the File Manager tab.

Note

Double clicking on a device row in the Available Devices table is a quick way of starting the default
LabOne UI. This action is equivalent to selecting the desired device and clicking the Open button.

Double clicking on a row in the Saved Settings table is a quick way of loading the LabOne UI with
those UI settings and, depending on the "Include Device Settings" checkbox, device settings. This
action is equivalent to selecting the desired settings file and clicking the Open button.

2.5.9. Tray Icon

When LabOne is started, a tray icon appears by default in the bottom right corner of the screen, as
shown in the figure below. By right-clicking on the icon, a new web server session can be opened
quickly, or the LabOne Web and Data Servers can be stopped by clicking on Exit. Double-clicking the
icon also opens a new web server session, which is useful when setting up a connection to multiple
instruments, for example.

Figure 2.14: LabOne Tray Icon in Windows 10

2.5.10. Messages

The LabOne Web Server will show additional messages in case of a missing component or a failure
condition. These messages display information about the failure condition. The following paragraphs
list these messages and give more information on the user actions needed to resolve the problem.

Lost Connection to the LabOne Web Server

In this case the browser is no longer able to connect to the LabOne Web Server. This can happen if
the Web Server and Data Server run on different PCs and a network connection is interrupted. As
long as the Web Server is running and the session did not yet time out, it is possible to just attach to
the existing session and continue. Thus, within about 15 seconds it is possible with Retry to recover

2.5. Connecting to the Instrument

21 Zurich Instruments SHFQC User Manual

the old session connection. The Reload button opens the Device Connection dialog shown in Figure
2.12. The figure below shows an example of the Connection Lost dialog.

Figure 2.15: Dialog: Connection Lost

Reloading...

If a session error cannot be handled, the LabOne Web Server will restart to show a new Device
Connection dialog as shown in Figure 2.12. During the restart a window is displayed indicating that
the LabOne User Interface will reload. If reloading does not happen the same effect can be triggered
by pressing F5 on the keyboard. The figure below shows an example of this dialog.

Figure 2.16: Dialog: Reloading

No Device Discovered

An empty "Available Devices" table means that no devices were discovered. This can mean that no
LabOne Data Server is running, or that it is running but failed to detect any devices. The device may
be switched off or the interface connection fails. For more information on the interface between
device and PC see Visibility and Connection. The figure below shows an example of this dialog.

Figure 2.17: No Device Discovered

No Device Available

If all the devices in the "Available Devices" table are shown grayed, this indicates that they are either
in use by another Data Server, or need a firmware upgrade. For firmware upgrade see Software
Update. If all the devices are in use, access is not possible until a connection is relinquished by
another Data Server.

2.5. Connecting to the Instrument

22 Zurich Instruments SHFQC User Manual

2.5.11. Visibility and Connection

There are several ways to connect the instrument to a host computer. The device can either be
connected by Universal Serial Bus (USB) or by 1 Gbit/s Ethernet (1GbE). The USB connection is a
point-to-point connection between the device and the PC on which the Data Server runs. The 1GbE
connection can be a point-to-point connection or an integration of the device into the local network
(LAN). Depending on the network configuration and the installed network card, one or the other
connectivity is better suited.

If an instrument is connected to a network, it can be accessed from multiple host computers. To
manage the access to the instrument, there are two different connectivity states: visible and
connected. It is important to distinguish if an instrument is just physically connected over 1GbE or
actively controlled by the LabOne Data Server. In the first case the instrument is visible to the
LabOne Data Server. In the second case the instrument is logically connected.

Connectivity Example shows some examples of possible configurations of computer-to-instrument
connectivity.

 Data Server on PC 1 is connected to device 1 (USB) and device 2 (USB).
 Data Server on PC 2 is connected to device 4 (TCP/IP).
 Data Server on PC 3 is connected to device 5.
 The device 3 is free and visible to PC 1 and PC 2 over TCP/IP.
 Devices 2 and 4 are physically connected by TCP/IP and USB interface. Only one interface is

logically connected to the Data Server.

Figure 2.18: Connectivity Example

Visible Instruments

An instrument is visible if the Data Server can identify it. On a TCP/IP network, several PCs running a
Data Server will detect the same instrument as visible, i.e., discover it. If a device is discovered, the
LabOne Data Server can initiate a connection to access the instrument. Only a single Data Server
can be connected to an instrument at a time.

Connected Instrument

Once connected to an instrument, the Data Server has exclusive access to that instrument. If
another Data Server from another PC already has an active connection to the instrument, the
instrument is still visible but cannot be connected.

2.5. Connecting to the Instrument

23 Zurich Instruments SHFQC User Manual

Although a Data Server has exclusive access to a connected instrument, the Data Server can have
multiple clients. Because of this, multiple browser and API sessions can access the instrument
simultaneously.

2.5.12. USB Connectivity

To control the device over USB, connect the instrument with the supplied USB cable to the PC on
which the LabOne Software is installed. The USB driver needed for controlling the instrument is
included in the LabOne Installer package. Ensure that the instrument uses the latest firmware. The
software will automatically use the USB interface for controlling the device if available. If the USB
connection is not available, the 1GbE connection may be selected. It is possible to enforce or
exclude a specific interface connection.

Note

To use the device exclusively over the USB interface, modify the shortcut of the LabOne User
Interface and LabOne Data Server in the Windows Start menu. Right-click and go to Properties, then
add the following command line argument to the Target LabOne User Interface:

 --interface-usb true --interface-ip false

An instrument connected over USB can be automatically connected to the Data Server because
there is only a single host PC to which the device interface is physically connected. Table 2.8
provides an overview of the two settings.

Table 2.8: Settings auto-connect

Setting Description

auto-connect
= on

If a device is attached via a USB cable, a connection will be established
automatically by the Data Server. This is the default behavior.

auto-connect
= off

To disable automatic connection via USB, add the following command line
argument when starting the Data Server:`--auto-connect=off`.

On Windows, both behaviors can be forced by right clicking the LabOne Data Server shortcut in the
Start menu, selecting "Properties" and adding the text --auto-connect=off or --auto-
connect=on to the Target field, see Figure 2.19.

2.5. Connecting to the Instrument

24 Zurich Instruments SHFQC User Manual

Figure 2.19: Setting auto-connect in Windows

2.5.13. 1GbE Connectivity

There are three methods for connecting to the device via 1GbE:

 Multicast DHCP
 Multicast point-to-point (P2P)
 Static Device IP

Multicast DHCP is the simplest and preferred connection method. Other connection methods can
become necessary when using network configurations that conflict with local policies.

Multicast DHCP

The most straightforward TCP/IP connection method is to rely on a network configuration to
recognize the instrument. When connecting the instrument to a local area network (LAN), the DHCP
server will assign an IP address to the instrument like to any PC in the network. In case of restricted
networks, the network administrator may be required to register the device on the network by
means of the MAC address. The MAC address is indicated on the back panel of the instrument. The
LabOne Data Server will detect the device in the network by means of a multicast.

If the network configuration does not support multicast, or if the host computer has other network
cards installed, it is necessary to use a static IP setup as described below. The instrument is
configured to accept the IP address from the DHCP server, or to fall back to the IP address
192.168.1.10 if it does not get the address from the DHCP server.

Requirements:

2.5. Connecting to the Instrument

25 Zurich Instruments SHFQC User Manual

Network supports multicast

Multicast Point-to-Point

Setting up a point-to-point (P2P) network consisting only of the host computer and the instrument
avoids problems related to special network policies. Since it is nonetheless necessary to stay
connected to the internet, it is recommended to install two network cards in the computer, one of
which is used for internet connectivity, the other can be used for connecting to the instrument.
Alternatively, internet connectivity can be established via wireless LAN.

In such a P2P network the IP address of the host computer needs to be set to a static value, whereas
the IP address of the device can be left dynamic.

Connect the 1GbE port of the network card that is dedicated for instrument connectivity
directly to the 1GbE port of the instrument
Set this network card to static IP in TCP/IPv4 using the address 192.168.1.n, where n=[2..9]
and the mask 255.255.255.0. (On Windows go to Control Panel → Internet Options →
Network and Internet → Network and Sharing Center → Local Area Connection →
Properties).

Figure 2.20: Static IP configuration for the host computer

Start up the LabOne User Interface normally. If your instrument does not show in the list of
Available Devices, the reason may be that your network card does not support multicast. In
that case, see Static Device IP.

Requirements:

 Two network cards needed for additional connection to internet
 Network card of PC supports multicast
 Network card connected to the device must be in static IP4 configuration

1.

2.

3.

2.5. Connecting to the Instrument

26 Zurich Instruments SHFQC User Manual

Note

A power cycle of the instrument is required if it was previously connected to a network that provided
an IP address to the instrument.

Note

Only IP v4 is currently supported. There is no support for IP v6.

Note

If the instrument is detected by LabOne but the connection can not be established, the reason can
be the firewall blocking the connection. It is then recommended to change the P2P connection from
Public to Private. On Windows this is achieved by turning on network discovery in the Private tab of
the network’s advanced sharing settings as shown in the figure below.

Figure 2.21: Turn on network discovery for Private P2P connection

2.5. Connecting to the Instrument

27 Zurich Instruments SHFQC User Manual

Warning

Changing the IP settings of your network adapters manually can interfere with its later use, as it
cannot be used anymore for network connectivity until it is configured again for dynamic IP.

Figure 2.22: Dynamic IP configuration for the host computer

Static Device IP

Although it is highly recommended to use dynamic IP assignment method in the host network of the
instrument, there may be cases where the user wants to assign a static IP to the instrument. For
instance, when the host network only contains Ethernet switches and hubs but no Ethernet routers
are included, there is no DHCP server to dynamically assign an IP to the instrument. It is still advised
to add an Ethernet router to the network and benefit from dynamic IP assignment; however, if a
router is not available, the instrument can be configured to work with a static IP.

Note that the static IP assigned to the instrument must be within the same range of the IP assigned
to the host computer. Whether the host computer’s IP is assigned statically or by a fallback
mechanism, one can find this IP by running the command ipconfig or ipconfig/all in the
operating system’s terminal. As an example, Figure 2.23 shows the outcome of running ipconfig in
the terminal.

Figure 2.23: IP and subnet mask of host computer

2.5. Connecting to the Instrument

28 Zurich Instruments SHFQC User Manual

It shows the network adapter of the host computer can be reached via the IP 169.254.16.57 and it
uses a subnet mask of 255.255.0.0. To make sure that the instrument is visible to this computer,
one needs to assign a static IP of the form 169.254.x.x and the same subnet mask to the
instrument. To do so, the user should follow the instructions below.

Attach the instrument using an Ethernet cable to the network where the user’s computer is
hosted.
Attach the instrument via a USB cable to the host computer and switch it on.
Open the LabOne user interface (UI) and connect to the instrument via USB.
Open the "Device" tab of the LabOne UI and locate the "Communication" section as shown in
Configuration of static IP in LabOne UI.
Write down the desired static IP, e.g. 169.254.16.20, into the numeric field "IPv4 Address".
Add the same subnet mask as the host computer, e.g. 255.255.0.0 to the numeric field "IPv4
Mask".
You can leave the field "Gateway" as 0.0.0.0 or change to be similar to the IP address but
ending with 1, e.g. 169.254.16.1.
Enable the radio button for "Static IP".
Press the button "Program" to save the new settings to the instruments.
Power cycle the instrument and remove the USB cable. The instrument should be visible to
LabOne via Ethernet connection.

Figure 2.24: Configuration of static IP in LabOne UI

To make sure the IP assignment is done properly, one can use the command ping to check if the
instrument can be reached through the network using its IP address. Figure 2.25 shows the outcome
of ping when the instrument is visible via the IP 169.254.16.20.

Figure 2.25: Instrument visible through pinging

If set properly according to the instructions above, the instrument will use the same static IP
configurations after each power cycle.

1.

2.
3.
4.

5.
6.

7.

8.
9.
10.

2.5. Connecting to the Instrument

29 Zurich Instruments SHFQC User Manual

Fallback Device IP

When configured to a dynamic address, but no DHCP server is present in the network, e.g., device
connected directly to a PC, the instrument falls back on an IP address in the local link IP range that
is 169.254.x.x. If the host computer has also an IP address within the same range, the instrument
becomes visible to the LabOne data server running on the host computer. This way, there is no need
to go through the process described above to assign a static IP to the instrument.

2.6. Software Update

2.6.1. Overview

It is recommended to regularly update the LabOne software on the SHFQC Instrument to the latest
version. In case the Instrument has access to the internet, this is a very simple task and can be done
with a single click in the software itself, as shown in Updating LabOne using Automatic Update
Check. If you use one of the LabOne APIs with a separate installer, don't forget to update this part of
the software, too.

2.6.2. Updating LabOne using Automatic Update Check

Updating the software is done in two steps. First, LabOne is updated on the PC by downloading and
installing the LabOne software from the Zurich Instruments downloads page, as shown in Software
Installation. Second, the instrument firmware needs to be updated from the Device Connection
dialog after starting up LabOne. This is shown in Updating the Instrument Firmware . In case
"Periodically check for updates" has been enabled during the LabOne installation and LabOne has
access to the internet, a notification will appear on the Device Connection dialog whenever a new
version of the software is available for download. This setting can later be changed in the Config tab
of the LabOne user interface. In case automatic update check is disabled, the user can manually
check for updates at any time by clicking on the button in the Device Connection
dialog. In case an update is found, clicking on the button "Update Available" shown in Figure 2.26 will
start a download the latest LabOne installer for Windows or Linux, see Figure 2.27. After download,
proceed as explained in Software Installation to update LabOne.

Figure 2.26: Device Connection dialog: LabOne update available

Figure 2.27: Download LabOne MSI using Automatic Update Check feature

2.6.3. Updating the Instrument Firmware

The LabOne software consists of both software that runs on your PC and software that runs on the
instrument. In order to distinguish between the two, the latter will be called firmware for the rest of
this document. When upgrading to a new software release, it's also necessary to update the
instrument firmware.

2.6. Software Update

30 Zurich Instruments SHFQC User Manual

If the firmware needs an update, this is indicated in the Device Connection dialog of the LabOne
user interface under Windows.

In the Basic view of the dialog, there will be a button "Upgrade FW" appearing together with the
instrument icon as shown in Figure 2.28. In the Advanced view, there will be a link "Upgrade FW" in
the Update column of the Available Devices table. Click on Upgrade FW to open the firmware
update start-up dialog shown in Figure 2.29. The firmware upgrade takes approximately 2 minutes.

Figure 2.28: Device Connection dialog with available firmware update

Figure 2.29: Device Firmware Update start-up dialog

Important

Do not disconnect the USB or 1GbE cable to the Instrument or power-cycle the Instrument during a
firmware update.

If you encounter any issues while upgrading the instrument firmware, please contact Zurich
Instruments at support@zhinst.com.

2.7. Troubleshooting

This section aims to help the user solve and avoid problems while using the software and operating
the instrument.

2.7.1. Common Problems

Your SHFQC Instrument is an advanced piece of laboratory equipment which has many more
features and capabilities than a traditional signal generator. In order to benefit from these, the user
needs access to a large number of settings in the API or the LabOne User Interface. The complexity
of the settings might overwhelm a first-time user, and even expert users can get surprised by certain
combinations of settings. This section provides an easy-to-follow checklist to solve the most
common mishaps.

Table 2.9: Common Problems

Problem Check item

The software cannot
be installed or
uninstalled

Please verify you have administrator/root rights.

2.7. Troubleshooting

31 Zurich Instruments SHFQC User Manual

mailto:support@zhinst.com

Problem Check item

The software cannot
be updated

Please use the Modify option in Windows Apps & Features functionality. In
the software installer select Repair, then uninstall the old software
version, and install the new version.

The Instrument does
not turn on

Please verify the power supply connection and inspect the fuse. The fuse
holder is integrated in the power connector on the back panel of the
instrument.

The Instrument can’t
be connected over
USB

Please verify that the USB port labeled "Maintenance" is connected. The
port labeled "USB" is not currently supported and will be enabled with a
future LabOne release.

The Instrument
performs close to
specification, but
higher performance is
expected

After 2 years since the last calibration, a few analog parameters are
subject to drift. This may cause inaccurate measurements. Zurich
Instruments recommends re-calibration of the Instrument every 2 years.

The Instrument
measurements are
unpredictable

Please check the Status Tab to see if there is any active warning (red flag),
or if one has occurred in the past (yellow flag).

The Instrument does
not generate any
output signal

Verify that the signal output switch of the right signal output channel has
been activated in the Output tab.

The LabOne User
Interface does not
start

Verify that the LabOne Data Server (ziDataServer.exe) and the LabOne
Web Server (ziWebServer.exe) are running via the Windows Task
Manager. The Data Server should be started automatically by
ziService.exe and the Web Server should be started upon clicking
"Zurich Instruments LabOne" in the Windows Start Menu.
If both are running, but clicking the Start Menu does not open a new User
Interface session in a new tab of your default browser then try to create a
new session manually by entering 127.0.0.1:8006 in the address bar of
your browser.

The user interface
does not start or
starts but remains idle

Verify that the Data Server has been started and is running on your host
computer.

The user interface is
slow and the web
browser process
consumes a lot of CPU
power

Make sure that the hardware acceleration is enabled for the web browser
that is used for LabOne. For the Windows operating system, the hardware
acceleration can be enabled in Control Panel → Display → Screen
Resolution. Go to Advanced Settings and then Trouble Shoot. In case you
use a NVIDIA graphics card, you have to use the NVIDIA control panel. Go
to Manage 3D Settings, then Program Settings and select the program
that you want to customize.

2.7.2. Location of the Log Files

The most recent log files of the LabOne Web and Data Server programs are most easily accessed by
clicking on in the LabOne Device Connection dialog of the user interface. The Device
Connection dialog opens on software start-up or upon clicking on in the Config tab of
the user interface.

The location of the Web and Data Server log files on disk are given in the sections below.

Windows

The Web and Data Server log files on Windows can be found in the following directories.

 LabOne Data Server (ziDataServer.exe):
C:\Windows\ServiceProfiles\LocalService\AppData\Local\Temp\Zurich
Instruments\LabOne\ziDataServerLog

 LabOne Web Server (ziWebServer.exe):
C:\Users[USER]\AppData\Local\Temp\Zurich Instruments\LabOne\ziWebServerLog

2.7. Troubleshooting

32 Zurich Instruments SHFQC User Manual

Note

The C:\Users\[USER]\AppData folder is hidden by default under Windows. A quick way of
accessing it is to enter %AppData%\.. in the address bar of the Windows File Explorer.

Figure 2.30: Using the

Linux and macOS

The Web and Data Server log files on Linux or macOS can be found in the following directories.

 LabOne Data Server (ziDataServer):
/tmp/ziDataServerLog_[USER]

 LabOne Web Server (ziWebServer):
/tmp/ziWebServerLog_[USER]

2.7.3. Prevent web browsers from sleep mode

It often occurs that an experiment requires a long-time signal acquisition; therefore, the setup
including the measurement instrument and LabOne software are left unattended. By default, many
web browsers go to a sleep mode after a certain idle time which results in the loss of acquired data
when using the web-based user interface of LabOne for measurement. Although it is recommended
to take advantage of LabOne APIs in these situations to automate the measurement process and
avoid using web browsers for data recording, it is still possible to adjust the browser settings to
prevent it from entering the sleep mode. Below, you will find how to modify the settings of your
preferred browser to ensure a long-run data acquisition can be implemented properly.

Edge

Open Settings by typing edge://settings in the address bar
Select System from the icon bar.
Find the Never put these sites to sleep section of the Optimized Performance tab.
Add the IP address and the port of LabOne Webserver, e.g., 127.0.0.1:8006 or
192.168.73.98:80 to the list.

Chrome

While LabOne is running, open a tab in Chrome and type chrome://discards in the address
bar.
In the shown table listing all the open tabs, find LabOne and disable its Auto Discardable
feature.
This option avoids discarding and refreshing the LabOne tab as long as it is open. To disable
this feature permanently, you can use an extension from the Chrome Webstore.

Firefox

Open Advanced Preferences by typing about:config in the address bar.
Look for browser.tabs.unloadOnLowMemory in the search bar.
Change it to false if it is true.

1.
2.
3.
4.

1.

2.

3.

1.
2.
3.

2.7. Troubleshooting

33 Zurich Instruments SHFQC User Manual

Opera

Open Settings by typing opera://settings in the address bar.
Locate the User Interface section in the Advanced view.
Disable the Snooze inactive tabs to save memory option and restart Opera.

Safari

Open Debug menu.
Go to Miscellaneous Flags.
Disable Hidden Page Timer Throttling.

1.
2.
3.

1.
2.
3.

2.7. Troubleshooting

34 Zurich Instruments SHFQC User Manual

3. Functional Overview
This chapter provides the overview of the features provided by the SHFQC Instrument. The first
section contains the description of the functional diagram and the hardware and software feature
list. The next section details the front panel and the back panel of the measurement instrument. The
following section provides product selection and ordering support.

3.1. Features

The SHFQC Instrument consists of one Quantum Analyzer readout channel, and 6 Signal Generator
control channels. Both types of channels consists of several interface units processing analog
signals (dark blue color), and several internal units that process digital data (light blue color). On the
Signal Generator channels, the internal units that process digital data are called Digital Signal Units
(or DSUs). The interface units that connect to the front panel are depicted on the left-hand side and
the units at the back panel are depicted on the right-hand side of the Figure. Arrows between the
panels and the interface units indicate selected physical connections and data flow, whereas
double arrows indicate complex-valued information processing. Information indicated in orange is
linked to options that can be either ordered at purchase or upgraded later. The ordering guide
details the available upgrade options for the SHFQC Qubit Controller and whether the option can be
upgraded directly in the field.

Figure 3.1: SHFQC instrument functional diagram

3.1.1. Quantum Analyzer Channel

The Quantum Analyzer readout channel has signal generation (Readout Pulse Generator,
Oscillator) and signal analysis (Sweeper, Qubit Measurement Unit) functionality, as well as a
Monitor Scope. The digital, complex-valued signal from the signal generation is up-converted to
microwave frequencies in the analog domain using the Quantum Analyzer Signal Output
Module. After passing through the device under test, the analog signal is first down-converted and

3. Functional Overview

35 Zurich Instruments SHFQC User Manual

then digitized in the Quantum Analyzer Signal Input before the complex-valued signal is being
analyzed in the Qubit Measurement Unit.

The Quantum Analyzer channel can be configured in two modes:

Qubit Readout

In the Qubit Readout mode, the Readout Pulse Generator outputs the sum of up to 16 individual,
user-defined arbitrary waveforms that are stored in separate Waveform Memory blocks, controlled
by the Generator Sequencer. In the Qubit Measurement Unit, the signal is then first integrated
using up to 16 user-defined, complex-valued Integration Weight Memories. The results of the
integration are then discriminated between different qubit states, and the results are forwarded to
either the Signal Generator channels or other instruments in real time using either the 32-bit DIO
or the ZSync links.

Spectroscopy

In the Spectroscopy mode, the Sweeper controls an Oscillator, hence a single frequency
microwave signal is sent to the experiment. The Qubit Measurement Unit then correlates this
signal with the original oscillator signal and displays transmission data in the Sweeper module.

Super-high-frequency Signal Inputs

 Low-noise SHF Inputs, 0.5 - 8.5 GHz frequency range, 1 GHz bandwidth
 Broadband double super-heterodyne frequency down-conversion
 Calibrated (Input) Power Range, selectable from -50 dBm to 10 dBm

Super-high-frequency Signal Outputs

 Low-noise SHF Outputs, 0.5 - 8.5 GHz frequency range, 1 GHz bandwidth
 Broadband double super-heterodyne frequency up-conversion
 Calibrated (Output) Power Range, selectable from -30 dBm to 10 dBm

Readout Pulse Generator

 Arbitrary waveform capability
 Advanced sequencing

 looping, branching
 advanced trigger control (time-staggered readout capability)

 Up to 16 freely configurable waveform memory blocks of 4 kSa (total 64 kSa)

Qubit Measurement Unit

 Up to 16 complex integrators with programmable Integration Weight memory (this requires the
SHFQC-16W option.)

 Multistate Discrimination for up to 4 states per qubit
 Result Logger with real-time averaging and data logging.

Sweeper

 Controls the numerical Oscillator for fast frequency sweeps in Spectroscopy mode
 Displays the oscillator-correlated complex-valued data

Monitor Scope

 Real-time scope to view Input Signals
 Displays complex signals in time and frequency domain

3.1. Features

36 Zurich Instruments SHFQC User Manual

3.1.2. Signal Generator Channel

Each of the 6 control channels has an arbitrary waveform generator AWG and Modulation
functionality. The digital, complex-valued signal from the Digital Signal Unit is up-converted to
microwave frequencies in the analog domain using the Signal Generator Signal Output
Module.

Super-high-frequency Signal Outputs

 Low-noise SHF Outputs, DC - 8.5 GHz frequency range, 1 GHz modulation bandwidth
 Broadband double super-heterodyne frequency up-conversion
 Calibrated (Output) Power Range, selectable from -30 dBm to 10 dBm when using the RF path

and from -30 dBm to 5 dBm when using the LF path

Advanced Pulse Sequencer

 Arbitrary Waveform Generator capability
 Advanced sequencing

 looping, branching
 command table
 advanced trigger control

 Digital modulation

3.1.3. Shared Resources

The Quantum Analyzer and Signal Generator channels share several functionalities that are used for
communication (32-bit DIO, ZSync) and inter-channel synchronization (Hardware Trigger
Engine).

Hardware Trigger Engine

 shared between all channels and modes
 2 Marker Outputs and Trigger Inputs of the Quantum Analyzer channel
 1 Marker Output and Trigger Input for each Signal Generator channel

High-speed Connectivity

 SMA connectors on front and back panel for triggers, signals and external clock
 USB 3.0 high-speed host interface
 Maintenance USB connection
 LAN/Ethernet 1 Gbit/s controller interface
 DIO: 32-bit digital input-output port
 2 ZSync connectors for clock synchronization and fast data transfer
 Clock input/output connectors (10 MHz)

Software Features

 LabOne Graphic User Interface: Web-based with multi-instrument control
 Zurich Instruments LabOne Q software for high-level programming of quantum computing

experiments.
 Data server with multi-client support
 LabOne APIs, including Python, C, LabVIEW, MATLAB, .NET
 Turnkey software and firmware features for fast system tune-up

3.1. Features

37 Zurich Instruments SHFQC User Manual

3.2. Front Panel Tour

The front panel SMA connectors and control LEDs are arranged as shown in Figure 3.2 and listed in
Table 3.1.

Figure 3.2: SHFQC Qubit Controller 8.5 GHz front panel

Table 3.1: SHFQC Qubit Controller front panel description

Position Label /
Name

Description

A Aux In analog Auxiliary Input, max. 10 V

B Out single-ended waveform Quantum Analyzer Signal Output, 0.5-8.5 GHz,
max. 10 dBm

C Mark Quantum Analyzer TTL Marker Outputs A and B

D Trig Quantum Analyzer TTL Trigger Inputs A and B

E In single-ended waveform Quantum Analyzer Signal Input, 0.5-8.5 GHz,
max. 10 dBm

F Trig Signal Generator TTL Trigger Input

G Mark Signal Generator TTL Marker Output

H Out single-ended waveform Signal Generator Signal Output, DC-8.5 GHz,
max. 10 dBm

I Aux In analog Auxiliary Input, max. 10 V

J multicolor
LEDs off

Instrument off or uninitialized
blink

all LEDs blink for 5 seconds → indicator used by the Identify
Device functionality

Busy unused

Ext Ref
off

External Reference Signal not present/detected
blue

External Reference Signal is present and locked on to
yellow

External Reference Signal present, but not locked on to
red

External Reference Signal present, but lock failed

3.2. Front Panel Tour

38 Zurich Instruments SHFQC User Manual

Position Label /
Name

Description

ZSync
off

no connection
blue

 steady: ZSync fully connected AND synchronized
 blinking: ZSync synchronized but not yet fully connected

yellow
ZSync plugged in, but not connected

red
ZSync interface error

Status
off

Instrument off or uninitialized
blue

Instrument is initialized and has no warnings or errors
yellow

Instrument has warnings
red

Instrument has errors

K
Soft power
button

Power button with incorporated status LED

off
Instrument off and disconnected from mains power

blue
 flashing rapidly (>1/sec): Firmware is starting
 flashing slow (<1/sec): Firmware ready, waiting for

connection
 constant: Instrument ready and active connection over USB

or Ethernet
red

 breathing: Instrument off but connected to mains power →
safe to power off using the rear panel switch, or restart using
the soft power button

 flashing: Instrument booting up
 constant: Fatal error occurred

3.3. Back Panel Tour

The back panel is the main interface for power, control, service and connectivity to other ZI
instruments. Please refer to Figure 3.3 and Table 3.2 for the detailed description of the items.

Figure 3.3: SHFQC Instrument back panel

Table 3.2: SHFQC Instrument back panel description

3.3. Back Panel Tour

39 Zurich Instruments SHFQC User Manual

Position Label /
Name

Description

A
Earth ground

4 mm banana jack connector for earth ground, electrically connected
to the chassis and the earth pin of the power inlet

B AC 100 - 240 V Power inlet, fuse holder, and power switch

C MDS 1 SMA: bidirectional TTL ports for multi-device synchronization

D MDS 2 SMA: bidirectional TTL ports for multi-device synchronization

E Maintenance Universal Serial Bus (USB) 3.0 port for maintenance and instrument
control

F LAN 1GbE 1 Gbit LAN connector for instrument control

G DIO 32bit 32-bit digital input/output (DIO) connector

H USB Universal Serial Bus (USB) 3.0 port connector → do not use for
standard operation

I ZSync
Secondary

Secondary inter-instrument synchronization bus connector
Attention: This is not an Ethernet plug, connection to an Ethernet
network might damage the instrument.

J ZSync Primary Primary inter-instrument synchronization bus connector
Attention: This is not an Ethernet plug, connection to an Ethernet
network might damage the instrument.

K External Clk In External Reference Clock Input (10 MHz/100 MHz) for synchronization
with other instruments

L External Clk
Out

External Reference Clock Output (10 MHz/100 MHz) for
synchronization with other instruments

3.4. Ordering Guide

Table 3.3 provides an overview of the available SHFQC products and option. Upgradeable features
are options that can be purchased anytime without the need to send the Instrument back to Zurich
Instruments.

Table 3.3: SHFQC Instrument product codes for ordering

Product
code

Product name Description Field upgrade
possible

SHFQC2 SHFQC Qubit Controller 2-
Channel Configuration

Base instrument with 2 SG
channels enabled

-

SHFQC4 SHFQC Qubit Controller 4-
Channel Configuration

Base instrument with 4 SG
channels enabled

-

SHFQC6 SHFQC Qubit Controller 6-
Channel Configuration

Base instrument with 6 SG
channels enabled

-

SHFQC-2T4 SHFQC2 to SHFQC4 Upgrade
Option

Software Upgrades the
SHFQC2 to a SHFQC4

yes

SHFQC-2T6 SHFQC2 to SHFQC6 Upgrade
Option

Software Upgrades the
SHFQC2 to a SHFQC6

yes

SHFQC-4T6 SHFQC4 to SHFQC6 Upgrade
Option

Software Upgrades the
SHFQC4 to a SHFQC6

yes

SHFQC-16W SHFQC-16W Integration
Weights Extension Option

Option for all variants of the
SHFQC

yes

SHFQC-RTR SHFQC Output Router and
Adder Option

Option for all variants of the
SHFQC

yes

Table 3.4: Product selector SHFQC

3.4. Ordering Guide

40 Zurich Instruments SHFQC User Manual

Channel Feature SHFQC2 SHFQC4 SHFQC6 SHFQCX
+

SHFQC-16W

Quantum
Analyzer

Readout Channels 1

Number of independent RF
readout bands (>1 GHz)

1

Number of integration weights 8 8 8 16

Oscillators 2

Mixer-calibration-free analog
frequency conversion
(double super-heterodyne)

yes

Frequency range 0.5-8.5 GHz

Total number of Markers/
Triggers

2/2

Vertical resolution Input/
Output

14 bit

Sequencing yes

Signal
Generator

Control Channels 2 4 6 X

Number of independent RF
control bands (>1 GHz)

1 2 3 see left

Digital oscillators per channel 8

Mixer-calibration-free analog
frequency upconversion
(double super-heterodyne)

yes

Frequency range DC-8.5 GHz

Total number of Markers/
Triggers

2/2 4/4 6/6 X/X

Vertical resolution Output 14 bit

Digital IQ modulation yes

Pulse-level Sequencing yes

Shared
resources

ZSync capability yes

USB 3.0 yes

LAN 1 Gbit/s yes

3.4. Ordering Guide

41 Zurich Instruments SHFQC User Manual

4. Tutorials
The tutorials in this chapter have been created to allow users to become more familiar with the
operation of the SHFQC Qubit Controller. The first tutorials are useful at an early stage to learn how
to use the General User Interface to configure the Signal Generator control channels. Later tutorials
focus on controlling the instrument using our basic Python API and introducing the Quantum
Analyzer readout channel — including tips and tricks for optimally programming the instrument for
typical superconducting qubits applications.

In order to successfully carry out the tutorials it is assumed that users have certain laboratory
equipment and basic equipment handling knowledge.

Note

In the tutorials, we use both the General User Interface and the Python API to control the
instrument.

Note

For all tutorials, you must have LabOne installed as described in the chapter Getting Started.

Note

This chapter is constantly being upgraded and new documentation is added. For the latest version
of the documentation, please always refer to the online documentation.

4.1. Signal Generator Tutorials

The tutorials in this subchapter have been created to allow users to become more familiar with the
Signal Generator Control Channels of the SHFQC.

Note

In the tutorials, we use both the General User Interface and the Python API to control the
instrument.

Note

For all tutorials, you must have LabOne installed as described in the chapter Getting Started.

Note

This chapter is constantly being upgraded and new documentation is added. For the latest version
of the documentation, please always refer to the online documentation.

4.1.1. Basic Sine Generation

Note

This tutorial is applicable to all SHFQC Instruments.

4. Tutorials

42 Zurich Instruments SHFQC User Manual

Goals and Requirements

The goal of this tutorial is to demonstrate basic sine generation with the Signal Generator channels
of the SHFQC. We demonstrate how to configure the sine generator to produce a single frequency
component at the desired frequency in the range 0 GHz to 8.5 GHz. In order to visualize the multi-
channel signals, an oscilloscope with sufficient bandwidth and channel number is required. This can
be an external scope, or the scope of the SHFQC, for which a loopback configuration is needed with
the Quantum Analyzer channel.

Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

Figure 4.1: Connections for the basic sine generation tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. after pressing F5 in the browser).

Generating a Sinusoidal Signal

Note

This tutorial focuses on how to use the sine generator to produce a signal at a single, continuous
frequency without any AWG control. This mode of operation is distinct from the method of
modulating the output of the AWG output described in the Digital Modulation Tutorial, and the two
approaches generally do not need to be employed simultaneously.

In this tutorial we generate a continuous sinusoidal signal at a single frequency and visualize it with
a scope. In a first step, we use the In/Out Tab to enable the Output of the first Signal Generator
channel of

the SHFQC and set the Output Range. We also set its RF Center Frequency to 1 GHz. Depending on
the desired center frequency, either the RF or LF paths can be used. In this example, we will use the
RF path, but the LF path can also be used for center frequencies in the range 0 - 2 GHz. Additionally,
we configure the scope with a suitable time base (e.g. 500 ps per division) and range (e.g. 0.2 V per
division). The following table summarizes the necessary settings.

Table 4.1: Settings: enable the output

Tab Section Label Setting / Value / State

In/Out SG Channel 1 On ON

4.1. Signal Generator Tutorials

43 Zurich Instruments SHFQC User Manual

Tab Section Label Setting / Value / State

In/Out SG Channel 1 Range (dBm) 10

In/Out SG Channel 1 Center Freq (Hz) 1.0 G

In/Out SG Channel 1 Output path RF

In addition to turning on the output, we must also configure the sine generator. We set the
amplitudes of the I and Q components to yield a single sideband signal, and we set the oscillator
frequency to 100 MHz. We also enable the I and Q signals so that an output signal is actually
generated. With the RF center frequency set at 1.0 GHz and the oscillator set to 100 MHz, the final
output frequency is 1.1 GHz.

Note

To access the I and Q settings of the Sine Generator, it is necessary to expand the menu in the Sine
Generator section of the Digital Modulation Tab. The settings are collapsed by default.

Figure 4.2: LabOne UI: Digital Modulation tab

Table 4.2: Settings: configure the sine generator

Tab Section Sub-
section

Label # Setting / Value /
State

Digital
Modulation

Channel 1
Oscillators

Frequency 1 100 M

Digital
Modulation

Sine Generators Parameters Oscillator 1 1

Digital
Modulation

Sine Generators Parameters Harmonic 1 1

Digital
Modulation

Sine Generators I Sin(V) 1 0.0

Digital
Modulation

Sine Generators I Cos(V) 1 1.0

Digital
Modulation

Sine Generators I En 1 ON

Digital
Modulation

Sine Generators Q Sin(V) 1 1.0

Digital
Modulation

Sine Generators Q Cos(V) 1 0.0

Digital
Modulation

Sine Generators Q En 1 ON

With these settings, we observe a continuously playing 1.1 GHz signal on the scope.

4.1. Signal Generator Tutorials

44 Zurich Instruments SHFQC User Manual

Figure 4.3: Scope trace of a 1.1-GHz signal

Note

The oscillator used for the sine generation, its harmonic, and the phase of the sine generator can be
used to further customize the output signal of the sine generator.

4.1.2. Basic Waveform Playback

Note

This tutorial is applicable to all SHFQC Instruments.

Goals and Requirements

The goal of this tutorial is to demonstrate the basic use of the Signal Generator channels of the
SHFQC, by demonstrating simple waveform generation and playback. In order to visualize the multi-
channel signals, an oscilloscope with sufficient bandwidth and channel number is required. This can
be an external scope, or the scope of the SHFQC, for which a loopback configuration is needed with
the Quantum Analyzer channel.

Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

4.1. Signal Generator Tutorials

45 Zurich Instruments SHFQC User Manual

Figure 4.4: Connections for the arbitrary waveform generator basic playback tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. after pressing F5 in the browser).

Waveform Generation and Playback

In this tutorial we generate signals with the AWG and visualize them with the scope. In a first step we
enable the Output of the Signal Generator channel of the SHFQC and set the Output Range. We also
set the RF center frequency to 1 GHz. In this example, we will use the RF path, which supports center
frequencies in the range 0.6 - 8 GHz. When using the LF path, the center frequency can be set in the
range 0 - 2 GHz. Additionally, we configure the scope with a suitable time base (e.g. 500 ns per
division) and range (e.g. 0.2 V per division). The following table summarizes the necessary settings.

Table 4.3: Settings: enable the output

Tab Sub-tab Label Setting / Value / State

In/Out SG Channel 1 On ON

In/Out SG Channel 1 Range (dBm) 10

In/Out SG Channel 1 Center Freq (Hz) 1.0 G

In/Out SG Channel 1 Output Path RF

Table 4.4: Settings: configure the external scope

Scope Setting Value / State

Ch1 enable ON

Ch1 range 0.2 V/div

Timebase 500 ns/div

Trigger source Ch1

Trigger level 200 mV

Run / Stop ON

Figure 4.5: LabOne UI: Output tab

In the In/Out Tab, we configure the first Signal Generator output channel.

The final signal amplitude is determined by the dimensionless signal amplitude stored in the
waveform memory scaled to the set Range in dBm of the channel. The necessary settings are
summarized in the following table.

Table 4.5: Settings: configure the AWG output

4.1. Signal Generator Tutorials

46 Zurich Instruments SHFQC User Manual

Tab Sub-tab Section # Label Setting / Value / State

AWG Control Sampling Rate 2 GHz

Digital Modulation Modulation Control 1 Modulation OFF

Digital Modulation AWG Outputs Amplitude 1.0

To operate the AWG we need to specify a sequence program through a C-type language. This
program is then compiled and uploaded to the instrument where it is executed in real time. Writing
the sequence program can be done interactively by typing the program in the sequence window.
Let’s start by typing the following code into the sequence editor.

wave w_gauss = 1.0*gauss(8000, 4000, 1000);
playWave(1, w_gauss);

In the first line of the program, we generate a waveform with a Gaussian shape with a length of 8000
samples and store the waveform under the name w_gauss. The peak center position 4000 and the
standard deviation 1000 are both defined in units of samples. You can convert them into time by
dividing by the chosen Sampling Rate (2.0 GSa/s by default). The waveform generated by the gauss
function has a peak amplitude of 1. This amplitude is dimensionless and the output amplitude of the
physical signal is given by this number multiplied with the voltage determined by the selected
output range (here we chose 0 dBm). To calculate the maximum amplitude in Volts use:

 , where is the Range setting in dBm. corresponds to the
peak voltage of a signal of a given power when connected to a load. To calculate he RMS
amplitude , divide by , i.e. . Of course, the scaling factor of 1.0 in the waveform

definition can be replaced by any other value. Finally, the code line is terminated by a semicolon
according to C conventions.

With the second line of the program, the generated waveform w_gauss is played on the output of
the first Signal Generator channel.

We use the syntax playWave(1,w_gauss) to play a Gaussian signal in the real quadrature of the
complex output. For a more detailed discussion of how the playWave command routes the AWG
outputs to generate complex signals, see the Digital Modulation Tutorial. Note that the syntax of the
playWave command and the values of other parameters, such as the waveform amplitude, can yield
signals that are either below or above the maximum output power. If a signal happens to be above
the maximum output power, it will clip at the DAC and may be distorted. For more details on
playWave and how different amplitude settings influence the final signal, see the Modulation
Tutorial.

Note

For this tutorial, we will keep the description of the Sequencer instructions short. You can find the
full specification of the LabOne Sequencer language in LabOne Sequence Programming

Note

The AWG has a waveform granularity of 16 samples, and a minimum waveform length of 32 samples
when using playWave commands or 16 samples when using the command table (see the Pulse-level
Sequencing Tutorial). It’s recommended to use waveform lengths that are multiples of 16, to avoid
having ill-defined samples between successively played waveforms. Waveforms that are not multiple
of 16 samples are automatically padded with 0s and a compiler warning is issued.

By clicking on , the sequence program is compiled into sequence instructions that are then
uploaded to the device together with the waveform data. A successful upload is indicated by a green
Compiler Status LED. Any error that causes an upload failure of either the sequencer instruction or
waveform data is indicated by a red status light.

Note

The Advanced tab shows how the sequence instructions translate to assembly language for the
onboard FPGA.

VpV_pVp Vp=2∗10Pmax/
1
0∗10−3
W∗50
ΩV_p=\sqrt{2 * 10^{P_\mathrm{max}/10} * 10^{-3} \,\mathrm{W} * 50\,\Omega}

V =p

2 ∗ 10 ∗ 10 W ∗ 50 ΩP /10max −3 PmaxP_\mathrm{max}Pmax VpV_pVp
5
0
Ω50\,\Omega

50 Ω
VrmsV_{rms}Vrms 2\sqrt{2}2 Vrms=Vp2V_{rms}=\frac{V_p}{\sqrt{2}}V =rms 2

Vp

4.1. Signal Generator Tutorials

47 Zurich Instruments SHFQC User Manual

By clicking on the Waveform sub-tab, we see that our Gaussian waveform appeared in the list. The
Memory Usage field at the bottom of the Waveform sub-tab shows what fraction of the instrument
memory is filled by the waveform data. The Waveform Viewer sub-tab allows you to graphically
display the currently marked waveform in the list.

Clicking on executes the uploaded AWG program. Since we have armed the scope
previously with a suitable trigger level, it has captured our Gaussian pulse with a FWHM of about 1.5
μs and a carrier frequency of 1.0 GHz, as shown in Figure Figure 4.6.

Figure 4.6: Scope shot of a Gaussian pulse generated by the AWG

The LabOne Sequencer language offers various run-time control. An important functionality, e.g. for
real-time averaging of an experiment, is the repetition of a sequence. In the following example, all
the code within the curly brackets {...} is repeated 5 times. Upon clicking and , we
observe 5 short Gaussian pulses in a new scope shot, see Figure 4.7.

wave w_gauss = 1.0 * gauss(640, 320, 50);

repeat (5) {
 playWave(1, w_gauss);
}

Figure 4.7: Burst of Gaussian pulses generated by the AWG and captured by the scope

In order to generate more complex waveforms, the LabOne Sequencer programming language offers
a rich toolset for waveform manipulation. In addition to a selection of standard waveform generation
functions, waveforms can be added, multiplied, scaled, concatenated, and truncated. It’s also
possible to use compile-time evaluated loops to generate pulse series with systematic parameter
variations – see LabOne Sequence Programming for more information. In the following code
example, we make use of some of these tools to generate a pulse with a smooth rising edge, a flat
plateau, and a smooth falling edge. We use the cut function to cut a waveform at defined sample
indices, the ones function to generate a waveform with constant level 1.0 and length 320, and the
join function to concatenate three (or arbitrarily many) waveforms.

wave w_gauss = gauss(640, 320, 50);
wave w_rise = cut(w_gauss, 0, 319);
wave w_fall = cut(w_gauss, 320, 639);

4.1. Signal Generator Tutorials

48 Zurich Instruments SHFQC User Manual

wave w_flat = rect(320, 1.0);

wave w_pulse = join(w_rise, w_flat, w_fall);

while (true) {
 playWave(1, w_pulse);
}

Note that we replaced the finite repetition by an infinite repetition by using a while loop. Loops can
be nested in order to generate complex playback routines. The output generated by the program
above is shown in Scope shot of an infinite pulse series generated by the AWG.

Figure 4.8: Scope shot of an infinite pulse series generated by the AWG

As programs get longer, it becomes useful to store and recall them. Clicking on allows you
to store the present program under a new name. Clicking on then saves your program to the
file name displayed at the top of the editor. As you begin to work on sequence programs more
regularly, it’s worth using some of the editor keyboard shortcuts listed in Sequence Editor Keyboard
Shortcuts.

It’s also possible to iterate over the samples of a waveform array and calculate each one of them in a
loop over a compile-time variable cvar. This often allows sequences to go beyond the possibilities
of using the predefined waveform generation function, particularly when using nested formulas of
elementary functions like in the following example. The waveform array needs to be pre-allocated
e.g. using the instruction zeros.

const N = 1024;
const width = 100;
const position = N/2;
const f_start = 0.1;
const f_stop = 0.2;
cvar i;
wave w_array = zeros(N);
for (i = 0; i < N; i++) {
 w_array[i] = sin(10/(cosh((i-position)/width)));
}

playWave(w_array);

It is also possible to use waveforms stored as a list of values in a file. If the file is stored in the
location (C:\Users\<user name>\Documents\Zurich
Instruments\LabOne\WebServer\awg\waves\ under Windows or ~/Zurich Instruments/
LabOne/WebServer/awg/waves/ under Linux), you can then play back the wave by referring to the
file name without extension in the sequence program:

playWave("wave_file");

If you prefer, you can also store it in a wave data type first and give it a new name:

wave w = "wave_file";
playWave(w);

4.1. Signal Generator Tutorials

49 Zurich Instruments SHFQC User Manual

For more information about the file format, please refer to the AWG Module Section of the LabOne
Programming Manual.

Using the LF Path

The LF path bypasses the upconversion chain to allow center frequencies in the range DC to 2 GHz
to be generated. The AWG sequencer can be programmed in the same way as with the RF path. The
main differences is that the maximum output power of the LF path is +5 dBm (compared to +10 dBm
for the RF path) and that the latency of the LF path is shorter than that of the RF path, due to the
shorter analog path.

The center frequency of the LF path can be set in multiples of 100 MHz, just as with the RF path.
When combined with correct usage of waitDigTrigger and resetOscPhase commands, this
ensures that the initial phase of a played waveform will be reproducible within a given experimental
run, as in the following example:

const length = 128;
const amp = 1;
wave = gaussian(length, amp, length/2, length/8);

while (1) {
 waitDigTrigger(1);
 resetOscPhase();
 playWave(1, 2, wave);
}

4.1.3. Triggering and Synchronization

Note

This tutorial is applicable to all SHFQC Instruments.

Goals and Requirements

The goal of this tutorial is to show how to use the Signal Generator channels of the SHFQC as a
trigger source, as well as how to configure the SHFQC to respond to an external trigger. In order to
visualize the multi-channel signals, an oscilloscope with sufficient bandwidth and channel number
is required. This can be an external scope, or the scope of the SHFQC, for which a loopback
configuration is needed with the Quantum Analyzer channel.

Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

4.1. Signal Generator Tutorials

50 Zurich Instruments SHFQC User Manual

Figure 4.9: Connections for the arbitrary waveform generator triggering and
synchronization tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. after pressing F5 in the browser).

Generating and Responding to Triggers

In this tutorial you will learn about the most important use cases:

 Generating a TTL signal with the AWG to trigger another piece of equipment
 Triggering the Signal Generator channels of the AWG with an external TTL signal

Generating Markers with the AWG

To begin with, we generate a trigger output with the Signal Generator channel 1. As this tutorial is an
extension of the Basic Waveform Playback Tutorial, configure the SHFQC as follows:

Table 4.6: Settings: configure the output

Tab Sub-tab Label Setting / Value / State

In/Out SG Channel 1 On ON

In/Out SG Channel 1 Range (dBm) 10

In/Out SG Channel 1 Center Freq (Hz) 1.0 G

In/Out SG Channel 1 Output Path RF

In/Out SG Channel 2 On ON

In/Out SG Channel 2 Range (dBm) 10

In/Out SG Channel 2 Center Freq (Hz) 1.0 G

In/Out SG Channel 2 Output Path RF

Table 4.7: Settings: configure the external scope

Scope Setting Value / State

Ch1 enable ON

4.1. Signal Generator Tutorials

51 Zurich Instruments SHFQC User Manual

Scope Setting Value / State

Ch1 range 0.2 V/div

Ch2 enable ON

Ch2 range 0.5 V/div

Timebase 500 ns/div

Trigger source Ch2

Trigger level 200 mV

Run / Stop ON

After configuring the output using the table above, we use the SHFQC to generate a trigger output.
There are two ways of generating trigger output signals with the Signal Generators AWG: as markers
that are part of a waveform and played with sample precision, or by controlling trigger bits through
the sequencer.

The method using markers is recommended when precise timing is required, and/or complicated
serial bit patterns need to be played on the Marker outputs. Marker bits are part of every waveform,
and are set to zero by default. Each waveform is represented by an array of 16-bit words: 14 bits of
each word represent the analog waveform data, and the remaining 2 bits represent two digital
marker channels. Hence, upon playback, a digital signal with sample-precise alignment with the
analog output is generated.

Generating a TTL output signal using a sequencer instruction is simpler, but the timing resolution is
lower than when using markers. The sequencer instructions play at the sequencer clock cycle of 4
ns, whereas the markers are part of the waveform and therefore have a resolution of 0.5 ns. The
method using sequencer instructions is useful to generate a single trigger signal at the start of an
AWG program, for instance.

Table 4.8: Comparison: AWG markers and triggers

Marker Trigger

Implementation Part of waveform Sequencer instruction

Timing control High Low

Generation of serial bit patterns Yes No

Cross-device synchronization Yes Yes

Let us first demonstrate the use of markers. In the following code example we first generate a
Gaussian pulse. This is identical as in the Basic Waveform Playback Tutorial, where the generated
wave already included marker bits - they were simply set to zero by default. We use the marker
function to assign the desired non-zero marker bits to the wave. The marker function takes two
arguments: the first is the length of the wave in samples; the second is the marker configuration in
binary encoding, where the value 0 stands for both marker bits low, the values 1, 2, and 3 stand for
the first, the second, and both marker bits high, respectively. We use this to construct the wave
called w_marker.

const marker_pos = 3000;

wave w_gauss = gauss(8000, 4000, 1000);
wave w_left = marker(marker_pos, 0);
wave w_right = marker(8000-marker_pos, 1);
wave w_marker = join(w_left, w_right);
wave w_gauss_marker = w_gauss + w_marker;

playWave(1, w_gauss_marker);

The waveform addition with the '+' operator adds up analog waveform data but also combines
marker data. The wave w_gauss contains zero marker data, whereas the wave w_marker contains
zero analog data. Consequently the wave called w_gauss_marker contains the merged analog and
marker data. We use the integer constant marker_pos to determine the point where the first marker
bit flips from 0 to 1 somewhere in the middle of the Gaussian pulse.

4.1. Signal Generator Tutorials

52 Zurich Instruments SHFQC User Manual

Note

The add function and the '+' operator combine marker bits by a logical OR operation. This means
combining 0 and 1 yields 1, and combining 1 and 1 yields 1 as well.

There is a certain freedom to assign different marker bits to the Mark outputs. The following table
summarizes the settings to apply in order to output marker bit 1 on the Mark output of the Signal
Generator channel 1. (% else -$) Mark 1.

Table 4.9: Settings: configure the AWG marker output and scope trigger

Tab Sub-tab Section # Label Setting / Value / State

DIO Marker Out 1 Signal Output 1 Marker 1

Figure 4.10 shows the AWG signal captured by the scope as a yellow curve. The green curve shows
the second scope channel displaying the marker signal. Try changing the marker_pos constant and
re-running the sequence program to observe the effect on the temporal alignment of the Gaussian
pulse. After the waveform has finished playing, the marker bit returns to a value of zero
automatically, as no more waveform is being played.

Figure 4.10: Gaussian pulse and square marker signal generated by the AWG and
captured by the scope

Let us now demonstrate the use of sequencer instructions to generate a trigger signal. Copy and
paste the following code example into the Sequence Editor.

wave w_gauss = gauss(8000, 4000, 1000);

setTrigger(1);
playWave(1, w_gauss);
waitWave();
setTrigger(0);

Each AWG core has four trigger output states available to it. The setTrigger function takes a single
argument encoding the four trigger output states in binary manner – the integer number 1
corresponds to a configuration of 0/0/0/1 for the trigger outputs 4/3/2/1. The binary integer notation
of the form 0b0000 is useful for this purpose – e.g. setTrigger(0b0011) will set trigger outputs 1
and 2 to 1, and trigger outputs 3 and 4 to 0. We included a waitWave instruction after the playWave
instruction. It ensures that the subsequent setTrigger instruction is executed only after the
Gaussian wave has finished playing, and not during waveform playback.

Note

The waitWave instruction represents a means to control the timing of instructions in the Wait & Set
and the Playback queues. In the example above, the waitWave instruction puts the playback of the
next instruction in the Wait & Set queue, in this case setTrigger(0), on hold until the waveform is
finished. Without the waitWave instruction, the AWG trigger would return to zero at the beginning of
the waveform playback.

4.1. Signal Generator Tutorials

53 Zurich Instruments SHFQC User Manual

Note

The use of waitWave is explicitly not required between consecutive playWave and playZero
instructions. Sequential instructions in the Playback queue are played immediately after one
another, back to back.

We reconfigure the Mark 1 connector in the DIO tab such that it outputs AWG Trigger 1, instead of
Output 1 Marker 1. The rest of the settings can stay unchanged.

Table 4.10: Settings: configure the AWG trigger output

Tab Sub-tab Section # Label Setting / Value / State

DIO Marker Out 1 Signal AWG Trigger 1

Figure 4.11 shows the AWG signal captured by the scope. This looks very similar to Figure 4.10 in fact.
With this method, we’re less flexible in choosing the trigger time, as the rising trigger edge will always
be at the beginning of the waveform. But we don’t have to bother about assigning the marker bits to
the waveform.

Figure 4.11: Gaussian pulse and trigger signal generated by the AWG and captured by
the scope

Triggering the AWG

Note

This section shows how to use the SHFQC to generate and respond to external triggers. To
synchronize the outputs of different channels on the same SHFQC, it is recommended to use the
Internal Trigger Unit.

For this part of the tutorial, connect the cables as illustrated below.

4.1. Signal Generator Tutorials

54 Zurich Instruments SHFQC User Manual

Figure 4.12: Connections for the arbitrary waveform generator basic playback tutorial

In this section we show how to trigger the AWG with an external TTL signal. We start by using the
Signal Generator channel 1 of the SHFQC to generate a periodic TTL signal. As shown in Figure 4.12,
the Mark output of channel 1 is connected to the Trig input of channel 2. We monitor the marker and
signal outputs of channel 2 on a scope.

wave m_high = marker(8000,1); //marker high for 8000 samples
wave m_low = marker(8000,0); //marker low for 8000 samples
wave m = join(m_high, m_low);

while (1) {
 playWave(m);
}

Compile and run the above program on the AWG core of channel 1. Then configure the Mark 1 and
Mark 2 to use Output 1 Marker 1:

Table 4.11: Settings: configure the AWG marker output

Tab Sub-tab Section # Setting / Value / State

DIO Marker Source 1 Output 1 Marker 1

DIO Marker Source 2 Output 1 Marker 1

Next we configure channel 2 to respond to the trigger generated by channel 1. Internally, the AWG
core of each channel has 2 digital trigger input channels. These are not directly associated with
physical device inputs but can be freely configured to probe a variety of internal or external signals.
Here, we link the AWG Digital Trigger 1 of Channel 2 to the physical Trig 2 connector, and we configure
it to trigger on the rising edge.

Table 4.12: Settings: configure the AWG digital trigger input

Tab # Sub-tab Section Label Setting / Value / State

AWG 2 Trigger Digital Trigger 1 Signal Trigger In 2

AWG 2 Trigger Digital Trigger 1 Slope Rise

Finally, we modify the previous AWG program by adding a while loop so that the sequence can be
repeated infinitely and by including a waitDigTrigger instruction just before the playWave
instruction. The result is that upon every repetition inside the infinite while loop, the AWG will wait
for a rising edge on Trig 2.

4.1. Signal Generator Tutorials

55 Zurich Instruments SHFQC User Manual

const marker_pos = 3000;

wave w_gauss = gauss(8000, 4000, 1000);
wave w_left = marker(marker_pos, 0);
wave w_right = marker(8000-marker_pos, 1);
wave w_marker = join(w_left, w_right);
wave w_gauss_marker = w_gauss + w_marker;

while (1) {
 //wait for external trigger
 waitDigTrigger(1);
 playWave(1, w_gauss_marker);
}

Compile and run the above program on the AWG core of channel 2. Figure 4.13 shows the pulse
series as seen on the scope: the pulses are now spaced by the oscillator period of 8 μs, unlike
previously when the period was determined by the length of the waveform w_gauss. Try changing
the trigger signal frequency or unplugging the trigger cable to observe the immediate effect on the
signal.

Figure 4.13: Externally triggered pulse series generated by the AWG.

Synchronizing outputs of different channels

For this part of the tutorial, connect the cables as illustrated below.

4.1. Signal Generator Tutorials

56 Zurich Instruments SHFQC User Manual

Figure 4.14: Connections for the synchronizing outputs of multiple channels.

In this section we will show how to use the Internal Trigger Unit to synchronize the outputs of
multiple channels of the SHFQC.

Note

In this tutorial, we show how to synchronize two Signal Generator Channel outputs of the SHFQC,
but the Internal Trigger Unit can also be used to synchronize the Quantum Analyzer and Signal
Generator channel outputs with each other by using the waitDigTrigger command in the Quantum
Analyzer sequence and configuring the digital trigger of the Quantum Analyzer channel to use the
Internal Trigger Unit.

To configure the internal trigger, set the following settings in the tables below.

Table 4.13: Settings: configure the Internal Trigger Unit

Tab Sub-tab Section # Setting / Value / State

DIO Internal Trigger Repetitions 1e9

DIO Internal Trigger Holdoff 100 ns

Table 4.14: Settings: configure the AWGs to use the Internal Trigger Unit

Tab # Sub-tab Section Label Setting / Value / State

AWG 1 Trigger Digital Trigger 1 Signal Internal Trigger

AWG 2 Trigger Digital Trigger 1 Signal Internal Trigger

The number of repetitions (ranging from 1 to more than 1e9) determines how many triggers will be
sent out. The holdoff time (minimum 100 ns, resolution of 100 ns, maximum 4000 s) determines the
time in seconds between the individual trigger events, typically chosen to be longer than the longest
part of the sequence. For example, in a Ramsey experiment, the hold-off time might be slightly
longer than the length of two pi/2-pulses plus the length of the longest evolution time and the
length of the readout pulse. After entering the settings above, the Internal Trigger Unit is configured
but is not yet sending out triggers. We will enable the triggers after uploading our sequences.

Compile and run the sequencer code below (which is the same as in the section above) to SG
channels 1 and 2 of the SHFQC.

const MARKER_POS = 3000;

4.1. Signal Generator Tutorials

57 Zurich Instruments SHFQC User Manual

wave w_gauss = gauss(8000, 4000, 1000);
wave w_left = marker(MARKER_POS, 0);
wave w_right = marker(8000-MARKER_POS, 1);
wave w_marker = join(w_left, w_right);
wave w_gauss_marker = w_gauss + w_marker;

while (1) {
 //wait for internal trigger
 waitDigTrigger(1);
 playWave(1,2, w_gauss_marker);
}

The sequencers are now waiting until they receive a trigger. Enable the internal trigger by clicking
Run/Stop button in the Internal Trigger section of the DIO Tab. Figure 4.15 shows that the outputs of
channels 1 and 2 are synchronized in time.

Figure 4.15: Synchronized output signals of the SHFQC.

4.1.4. Digital Modulation

Note

This tutorial is applicable to all SHFQC Instruments.

Goals and Requirements

The goal of this tutorial is to demonstrate the use of the digital modulation feature of the AWG of the
Signal Generator channels. In order to visualize the generated signals, an oscilloscope with sufficient
bandwidth and channels is required. It can also be helpful to use a scope with FFT functionality to
visualize the spectrum of the output signal. This can be an external scope, or the scope of the
SHFQC, for which a loopback configuration is needed with the Quantum Analyzer channel.

Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

4.1. Signal Generator Tutorials

58 Zurich Instruments SHFQC User Manual

Figure 4.16: Connections for the arbitrary waveform generator digital modulation
tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. as is the case after pressing F5 in the browser).

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

Generating a Single Sideband Signal

Note

This tutorial focuses on how to use the sine generator to modulate the output of the AWG core so
that it can be used for generating a pulse sequence at a single sideband. This mode of operation is
distinct from the method of generating a single, continuous frequency described in the Basic Sine
Generation Tutorial, and the two approaches should generally not be employed simultaneously.

In digital modulation mode, the output of the AWG is multiplied with the signal of the internal sine
generator of the instrument. There are numerous advantages to using digital modulation in
comparison to simply generating the sinusoidal signal directly using the waveform memory, such as
the ability to change the frequency without uploading a new waveform, extremely high frequency
resolution independent of AWG waveform length, phase-coherent generation of signals (because
the oscillators keep running even when the AWG is off), and more. The goal of this section is to
demonstrate how to use the modulation mode.

The superheterodyne upconversion scheme of the SHFQC consists of a chain of several conversion
steps, which can be summarized in a simple model for the generated RF voltage:

where and are the baseband I and Q waveforms played by the AWG core, is a global
amplitude for scaling the AWG signal, is the oscillator frequency set in the Digital Modulation
tab, is a phase offset of the sine generator and is set in the Digital Modulation tab, is the RF
center frequency, and

VRF(t)=V0 Re[A(wI(t)+iwQ(t))e+iϕe+i2πfOscte+i2πfRFt],(1) \begin{equation}\tag{1} V_{\mathrm{RF}}(t) = V_0 \, \mathrm{Re}\left[A (w_I (t) + i w_Q (t)) e^{+i \phi} e^{+i 2 \pi f_{\mathrm{Osc}} t} e^{+i 2 \pi f_{\mathrm{RF}} t}\right], \end{equation} V (t) = V Re A(w (t) + iw (t))e e e ,RF 0 [I Q
+iϕ +i2πf tOsc +i2πf tRF] (1)

wIw_IwI wQw_QwQ AAA
fOscf_{\mathrm{Osc}}fOsc

ϕ\phiϕ fRFf_{\mathrm{RF}}fRF

4.1. Signal Generator Tutorials

59 Zurich Instruments SHFQC User Manual

is the maximum output voltage determined by the range setting with a load.

Note

This way of up-converting provides an intuitive way of understanding the Signal Generators' channel
output spectrum. If one defines a waveform in the AWG and performs the standard complex Fourier
transform on it, the channels output spectrum is directly given by shifting the spectrum by the
chosen center frequency, i.e. by replacing DC by the center frequency value.

This expression can be written using real-valued sines and cosines rather than complex
exponentials:

We now look at how the Signal Generator channel of the SHFQC actually generates modulated
signals. In the LabOne UI, there are four AWG output gains that can be used to set up single-
sideband modulation. These AWG output gains are multiplied by the AWG outputs. The AWG output
gains can be set individually to make it easier to calibrate DRAG pulses, for example.

Figure 4.17: Digital Modulation tab in the LabOne UI

When modulation is enabled, the AWG output gains control of the signs and amplitudes of the
sinusoids that are multiplied with the AWG outputs. To make use of the four AWG output gains
settings needed for a complex, dual-channel signal, the sequencer code must make use of the
playWave command in the form playWave(1,2, wI, 1,2, wQ). Figure 4.18 shows how the
different parts of the playWave command map to the different gain nodes in the digital modulation
process.

Figure 4.18: Diagram of digital modulation processing chain and settings. Bolded parts
of the text show how the different parts of the 'playWave' command map to the

different gain nodes.

We can summarize the signal generated by the FPGA using the following expression:

V0=2∗10Pmax/10∗10−3 W∗50 Ω V_0 = \sqrt{2 * 10^{\mathrm{P}_{\mathrm{max} }/10} * 10^{-3} \,\mathrm{W} * 50\,\Omega } V =0 2 ∗ 10 ∗ 10 W ∗ 50 ΩP /10max −3

PmaxP_{\mathrm{max} }Pmax 5
0
Ω50\,\Omega

50 Ω

VRF(t)=V0 A [wI(t)cos(2πfOsct+ϕ)−wQ(t)sin(2πfOsct+ϕ)]cos(2πfRFt) −[wI(t)sin(2πfOsct+ϕ)+wQ(t)cos(2πfOsct+ϕ)]sin(2πfRFt).(2) \begin{equation}\tag{2} \begin{aligned} V_{\mathrm{RF}}(t) = V_0 \, A \, \left[w_I (t) \cos (2 \pi f_{\mathrm{Osc}} t + \phi) - w_Q (t) \sin (2 \pi f_{\mathrm{Osc}} t + \phi)\right] \cos (2 \pi f_{\mathrm{RF}} t) \newline\ - \left[w_I (t) \sin (2 \pi f_{\mathrm{Osc}} t + \phi) + w_Q (t) \cos (2 \pi f_{\mathrm{Osc}} t + \phi)\right] \sin (2 \pi f_{\mathrm{RF}} t). \end{aligned} \end{equation} V (t) = V A w (t) cos(2πf t+ ϕ) −w (t) sin(2πf t+ ϕ) cos(2πf t)RF 0 [I Osc Q Osc] RF

− w (t) sin(2πf t+ ϕ) +w (t) cos(2πf t+ ϕ) sin(2πf t).[I Osc Q Osc] RF
(2)

4.1. Signal Generator Tutorials

60 Zurich Instruments SHFQC User Manual

where of Channel n corresponds to the node path <dev>/SGCHANNELS/<chan>/AWG/
OUTPUTS/<i>/GAINS/<j>. The choice of and
yields the same expression as in Equation 2 and therefore leads to single sideband modulation at
the upper sideband for positive oscillator frequencies. Note that in this simplified overview of the
digital modulation and upconversion chain, we have lumped together the digital upconversion to 2.0
GHz and the digital-to-analog conversion with the analog upconversion pathway into a single
upconversion step. See also In/Out Tab.

Note

Depending on the selected value of , the voltage measured on a scope may not correspond
exactly to the formula above due to the effect of the filters used in the analog upconversion.

Note

For HDAWG users: The SHFQC and HDAWG use different sign conventions for achieving upper
sideband modulation. Because the HDAWG is typically used in combination with physical IQ mixers
when generating an RF signal, the HDAWG assumes a negative time dependence in the exponential,
whereas the SHFQC assumes a positive time dependence. To achieve upper sideband modulation
on both instruments, there is therefore a relative sign swap needed on the gain settings and

 .

The following table summarizes the parameter names and their corresponding node paths. For more
information on setting node values via API, see the Using the Python API Tutorial. See also Node
Documentation.

Table 4.15: Summary of parameters used in AWG signal generation

Parameter name Symbol Node path

I waveform Defined in sequence

Q waveform Defined in sequence

AWG output gains <dev>/SGCHANNELS/<chan>/AWG/OUTPUTS/<i>/GAINS/<j>

Global amplitude <dev>/SGCHANNELS/<chan>/AWG/OUTPUTAMPLITUDE

Oscillator frequency <dev>/SGCHANNELS/<chan>/OSCS/<OSC>/FREQ

Sine generator phase <dev>/SGCHANNELS/<chan>/SINES/0/PHASESHIFT

RF center frequency <dev>/SYNTHESIZERS/<synth>/CENTERFREQ

Output range <dev>/SGCHANNELS/<chan>/OUTPUT/RANGE

We now show how to generate a modulated AWG signal. We monitor the AWG signal using one
channel of an external scope and use the second scope channel for triggering purposes. The
following tables summarize the settings to enable the SHFQC outputs and configure the sine
generator, as well as to configure the external scope.

Table 4.16: Settings: enable the output

Tab Section Sub-Section Label Setting / Value / State

In/Out SG Channel 1 On ON

In/Out SG Channel 1 Range (dBm) 10

In/Out SG Channel 1 Center Freq (Hz) 1.0 G

In/Out SG Channel 1 Output Path RF

| Digital Modulation | Waveform Generators | Modulation | 1 | ON | | Digital Modulation | AWG Outputs |
Amplitude | | 0.5 | | Digital Modulation | AWG Output Gains | I | 1 | 1.0 | | Digital Modulation | AWG

VRF(t)=V0 A [Gain00×wI(t)cos(2πfOsct+ϕ)+Gain01×wQ(t)sin(2πfOsct+ϕ)]cos(2πfRFt) −[Gain10×wI(t)sin(2πfOsct+ϕ)+Gain11×wQ(t)cos(2πfOsct+ϕ)]sin(2πfRFt)(3) \begin{equation}\tag{3} \begin{aligned} V_{\mathrm{RF}}(t) = V_0 \, A \, \left[\mathrm{Gain00} \times w_I (t) \cos (2 \pi f_{\mathrm{Osc}} t + \phi) + \mathrm{Gain01} \times w_Q (t) \sin (2 \pi f_{\mathrm{Osc}} t + \phi) \right] \cos (2 \pi f_{\mathrm{RF}} t) \newline\ - \left[\mathrm{Gain10} \times w_I (t) \sin (2 \pi f_{\mathrm{Osc}} t + \phi) + \mathrm{Gain11} \times w_Q (t) \cos (2 \pi f_{\mathrm{Osc}} t + \phi) \right] \sin (2 \pi f_{\mathrm{RF}} t) \end{aligned} \end{equation} V (t) = V A Gain00 ×w (t) cos(2πf t+ ϕ) + Gain01 ×w (t) sin(2πf t+ ϕ) cos(2πf t)RF 0 [I Osc Q Osc] RF

− Gain10 ×w (t) sin(2πf t+ ϕ) + Gain11 ×w (t) cos(2πf t+ ϕ) sin(2πf t)[I Osc Q Osc] RF
(3)

Gainij\mathrm{Gain}ijGainij
Gain00=Gain10=Gain11=1.0\mathrm{Gain00} = \mathrm{Gain10} = \mathrm{Gain11} = 1.0Gain00 = Gain10 = Gain11 = 1.0 Gain01=−1.0\mathrm{Gain01} = -1.0Gain01 = −1.0

fOscf_{\mathrm{Osc}}fOsc

Gain01\mathrm{Gain01}Gain01
Gain10\mathrm{Gain10}Gain10

wI(t)w_I (t)w (t)I

wQ(t)w_Q (t)w (t)Q

Gainij\mathrm{Gain}ijGainij

AAA

fOSCf_{\mathrm{OSC}}fOSC

ϕ\phiϕ

fRFf_{\mathrm{RF}}fRF

PmaxP_{\mathrm{max}}Pmax

4.1. Signal Generator Tutorials

61 Zurich Instruments SHFQC User Manual

Output Gains | I | 2 | -1.0 | | Digital Modulation | AWG Output Gains | Q | 1 | 1.0 | | Digital Modulation |
AWG Output Gains | Q | 2 | 1.0 | | Digital Modulation | Channel 1 Oscillators | Frequency (Hz) | 1 | 10.0 M |
| Digital Modulation | Sine Generators | I | En | OFF | | Digital Modulation | Sine Generators | Q | En |
OFF | | DIO | Marker | Source | 1 | Output 1 Marker 1 |

Table 4.17: Settings: Configure the external scope

Scope Setting Value / State

Ch1 enable ON

Ch1 range 0.2 V/div

Ch2 enable ON

Ch2 range 0.5 V/div

Timebase 1 us/div

Trigger source Ch2

Trigger level 200 mV

Run / Stop ON

Note

For HDAWG users: Enabling digital modulation on the SHFQC is analogous to enabling Sine12
modulation on Wave 1 and Sine21 modulation on Wave 2.

A sine generator is a direct digital synthesis (DDS) unit that converts a digital oscillator signal
(essentially just an incrementing phase) to a sinusoid with a certain phase offset and harmonic
multiplier using a look-up table containing one period of the sinusoid signal. The digital oscillator in
turn is a phase accumulator with a very precise frequency derived from the instrument’s main clock.
The digital oscillators on the instrument are represented in the Oscillators section of the Digital
Modulation tab. Each Signal Generator output channel of the SHFQC has 8 oscillators associated
with it, although only one can be used by the sine generator at a time. For details on how to switch
between oscillators during a sequence, see the Command Table Tutorial.

In this example, we use a Gaussian pulse for the I waveform and a derivative of a Gaussian for the Q
waveform. When combined, this generates a DRAG pulse.

wave w_gauss = gauss(1024, 512, 128);
wave w_drag = drag(1024, 512, 128);
wave m_high = marker(512, 1);
wave m_low = marker(512, 0);
wave m = join(m_high, m_low);
wave w_gauss_marker = w_gauss + m;

resetOscPhase();

playWave(1,2, w_gauss_marker, 1,2, w_drag);

We also configure the FFT settings on the scope.

Table 4.18: Settings: Configure the external scope

Scope Setting Value / State

Acquisition Time 10 us

FFT Center 1 GHz

FFT Span 100 MHz

Resolution BW 200 kHz

Save and play the Sequencer program with the above settings. The upper plot in Figure 4.19 shows
the AWG signals captured by the scope. We see that the resulting DRAG pulse is a combination of a
Gaussian waveform with a derivative of a Gaussian waveform generated by the drag() function in
SeqC. The FFT of the scope trace shows that there is a dip in the spectrum, a key characteristic of
the DRAG pulse combination.

4.1. Signal Generator Tutorials

62 Zurich Instruments SHFQC User Manual

Figure 4.19: Dual-channel signal generated by the AWG and captured by the scope. The
top half of the figure shows a pulse that is a combination of a Gaussian pulse and a
derivative of a Gaussian pulse, modulated at 10 MHz and upconverted with an RF

center frequency of 1.0 GHz. The bottom part of the figure shows the FFT of the scope
trace, demonstrating the characteristic spectral dip of the DRAG pulse.

Note

There are two ways of generating AWG signals with a single frequency component at the front panel
output when digital modulation is enabled. For completely real signals that require only a single
AWG output, playWave(1,2, wI) suffices to generate a single sideband signal. For complex signals
requiring dual-channel waveforms, playWave(1,2, wI, 1,2, wQ) is needed.

Note

To avoid saturating the output when using playWave(1,2, wI, 1,2, wQ) syntax, it is necessary to
either set the value of the global amplitude to 0.5 or to scale the waveform in the sequencer code
similarly. A value of up to 1.0 can safely be used when playWave(1,2, wI) is used for generating
single sideband real signals.

So far in this tutorial, we have shown how to achieve single sideband modulation with the playWave
command, but to efficiently use the instruction memory of the SHFQC and ensure smooth, back-to-
back waveform playback, it is recommended to use the command table, which requires assigning
the waveform an index and using the executeTableEntry command instead of playWave. To assign
an index of 0 to a waveform, the command assignWaveIndex(1,2, wI, 0) should be used for
single-AWG-channel signals and assignWaveIndex(1,2, wI, 1,2, wQ, 0) for dual-channel
signals. For more details, see the Command Table Tutorial.

Rapid Phase Changes

The SHFQC supports rapid, real-time changes of the carrier phase in modulation mode through the
sequencer instructions setSinePhase and incrementSinePhase, as well as through the command
table. This capability is particularly valuable when generating long patterns of pulses with varying
phases, e.g. to account for AC Stark shift in qubit control sequences, or to realize phase cycling
protocols.

In addition, there is the possibility to reset the starting phase of one or multiple oscillators at the
beginning of a pulse sequence using the resetOscPhase instruction. Thus it can be ensured that
the carrier-envelope offset, and thus the final output signal, is identical from one repetition to the
next.

In the following AWG sequencer program, we generate a series of 4 dual-channel square pulses that
are played back-to-back. We initialize the oscillator phase by a resetOscPhase instruction. In this
form without an argument, the instruction will reset the phases of all oscillators accessible by this
core (here oscillators 1 through 8 of Channel 1). Alternatively, an argument in binary representation,
e.g. 0b0101, allows us to reset only a subset of these oscillators. We then set the phase of the sine
generator to 45 degrees using the setSinePhase instruction. Subsequently, we play back the dual-
channel waveform 4 times, and after each playback instruction, we increase the phase of the sine

4.1. Signal Generator Tutorials

63 Zurich Instruments SHFQC User Manual

generator by 90 degrees. The corresponding instruction incrementSinePhase takes effect at the
end of the previous waveform playback, which allows us to change the phase precisely in between
waveforms. Upload the following sequence program to the AWG and run the sequence.

const LENGTH = 48;

wave w = ones(LENGTH);
wave m_high = marker(LENGTH/2, 1); //marker high
wave m_low = marker(LENGTH/2, 0); //marker low
wave m = join(m_high, m_low); //join marker waveforms
wave wm = w + m; //combine marker and ones waveform data

while (true) {
 resetOscPhase();

 setSinePhase(45);
 playWave(1,2, wm);

 incrementSinePhase(90);
 playWave(1,2, w);

 incrementSinePhase(90);
 playWave(1,2, w);

 incrementSinePhase(90);
 playWave(1,2, w);
}

Configure the scope according to the following settings.

Table 4.19: Settings: Configure the external scope

Scope Setting Value / State

Ch1 enable ON

Ch1 range 0.2 V/div

Ch2 enable ON

Ch2 range 0.5 V/div

Timebase 10 ns/div

Trigger source Ch2

Trigger level 200 mV

Run / Stop ON

We also change the oscillator frequency to make it easier to visual the phase changes.

Table 4.20: Settings: enable the output

Tab Section Sub-Section Label Setting / Value / State

Digital Modulation Channel 1 Oscillators Frequency (Hz) 1 -500.0 M

Figure 4.20 shows the resulting signal. Three of the instantaneous phase increments of 90 degrees
are visible as transient features. In a real use case, the phase changes usually occur in between
pulses when the envelope signal is zero-valued, and these transients are then absent.

4.1. Signal Generator Tutorials

64 Zurich Instruments SHFQC User Manual

Figure 4.20: Amplitude-modulated dual-channel signal with rapid real-time phase
increments generated by the SHFQC.

Note

The phase increment due to the incrementSinePhase instruction takes effect at the end of the
previous waveform playback. In case the instruction is placed in the sequencer code before the first
playWave instruction, the phase increment will only happen after the playWave instruction.

Performing Frequency Sweeps

By using the sequencer commands setOscFreq, configFreqSweep, and setSweepStep, it is
possible to set the oscillator frequency as part of a sequence and even perform frequency sweeps
quickly while using a minimum number of sequencer instructions. Using these instructions, the
oscillator frequency can be changed on a timescale of approximately 100 ns. The timing of the
frequency update is deterministic. The waveforms that follow the frequency update will wait until
the update has finished. A waitWave command after the waveform playback instructions is required
to ensure that any subsequent frequency update does not happen during the waveform playback.

Note

The setOscFreq, configFreqSweep, and setSweepStep commands are intended to change the
oscillator frequency between pulses. To sweep the frequency during a pulse, it’s best to encode the
frequency change in the waveform, e.g. using the chirp waveform generation function.

const START_FREQ = -100e6; //start frequency in Hz
const FREQ_INC = 200; //increment in Hz
const N_STEPS = 1e6; //number of frequency steps
const OSC = 0; //oscillator to sweep

const MEAS = 2048; //measurement window in samples

const LENGTH = 160; //length of pulse in samples

wave w = gauss(LENGTH, 1, LENGTH/2, LENGTH/8);
wave m_high = marker(LENGTH/2, 1); //marker high
wave m_low = marker(LENGTH/2, 0); //marker low
wave m = join(m_high, m_low); //join marker waveforms
wave wm = w + m; //combine marker and ones waveform data

//set up frequency sweep
configFreqSweep(OSC,START_FREQ,FREQ_INC);

var i;
for (i = 0; i < N_STEPS; i++) {

4.1. Signal Generator Tutorials

65 Zurich Instruments SHFQC User Manual

 setSweepStep(OSC,i);

 resetOscPhase();

 playWave(1,2, wm);
 playZero(MEAS);
 waitWave(); //to ensure setSweepStep does not execute during the play
instructions
}

Upload and run the above sequencer code on the AWG core of the Signal Generator channel 1. To
make it easier to observe the frequency sweep on a scope, the length of the MEAS constant can be
increased (e.g. with a measurement length of 2e8 samples, the frequency will update every 10 ms).

Note

Multiple frequency sweeps can be configured in parallel, such that each oscillator of a given channel
can be swept independently of the others.

4.1.5. Using the Python API

Note

This tutorial is applicable to all SHFQC Instruments.

Goals and Requirements

The previous tutorials showed how to use the SHFQC with the LabOne user interface. However, APIs
provide an important alternative method to controlling the SHFQC. In this tutorial, we focus on the
Zurich Instruments Toolkit, showing how to use it to connect to the SHFQC, as well as how to upload
and play a sequence of the Signal Generator channel that uses user-defined waveforms. The Toolkit
is based on the core Python API, zhinst-core. In this tutorial you will learn how to:

 connect to the instrument using Python
 control the Output, Modulation, and DIO settings of the instrument using nodes
 compile and upload a sequence using Python
 include user-defined waveforms in a sequence with Python

Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) where the host computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

4.1. Signal Generator Tutorials

66 Zurich Instruments SHFQC User Manual

Figure 4.21: Connections for the arbitrary waveform generator Python tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. as is after pressing F5 in the browser).

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

Connecting to to the instrument

Note

This tutorial makes use of the Zurich Instruments Toolkit. Setting a node in the Toolkit uses the
format "device.path.to.node(value)." For the base Python API core, the equivalent node setting would
be daq.set(f'/{device_id}/path/to/node', value).

First we connect to the SHFQC using Python. For this we first create a session with the Zurich
Instruments Toolkit and then connect to the instrument using the following code and by replacing
DEVXXXXX with the id of our SHFQC instrument, e.g. DEV12001:

Load the LabOne API and other necessary packages
from zhinst.toolkit import Session

DEVICE_ID = 'DEVXXXXX'
SERVER_HOST = 'localhost'

connect to data server
session = Session(SERVER_HOST)

connect to device
device = session.connect_device(DEVICE_ID)

Defining the data server allows users to connect to the instrument in the local network when using
localhost or to specify a specific address, for example when a remote connection needs to be

4.1. Signal Generator Tutorials

67 Zurich Instruments SHFQC User Manual

established to the instrument. Remember that for a remote connection, Connectivity needs to be
set From Everywhere.

After successfully running the above code snippet, we check whether the Data Server, instrument
firmware, and zhinst versions are compatible with each other:

device.check_compatibility()

If it does not throw an error, we are now in the position to access the device. If it returns an error,
resolve the mismatched components identified in the error message.

Often the first parameters that need to be set for every experiment are the Center Frequency and
Range of the Input or Output Channel. To see the parameter updates that will be performed by the
Python script, open the In/Out Tab

of the GUI and select the All-subtab. In our Python script, we use the following code snippet to set
the nodes for the Center Frequency of the Signal Generators Channel 1 to 6 GHz and the Output
Range to 10 dBm.

SG_CHAN_INDEX=0
synth = device.sgchannels[SG_CHAN_INDEX].synthesizer()

rf_frequency = 6.0 # GHz
device.synthesizers[synth].centerfreq(rf_frequency*1e9)
output_range = 10.0
device.sgchannels[SG_CHAN_INDEX].output.range(output_range)

Note

When using the LF path, the corresponding node for setting the center frequency is
device.sgchannels[sg_chan_index].digitalmixer.centerfreq(value). This value can be set
independently for each Signal Generator Channel.

Observe how the corresponding GUI values in the first panel of the Output tab change their values
correspondingly. Note that in the SHFQC, there are 4 synthesizers. Synthesizer 0 drives the Quantum
Analyzer channel, whereas synthesizers 1 to 3 drive each drive two subsequent Signal Generator
channels, i.e. 1&2, 3&4, or 5&6. Therefore it often makes sense to set the synthesizers using the

device.synthesizers[synth].centerfreq node and not within the
device.sgchannels[SG_CHAN_INDEX] branch. To check which synthesizer is being used by a
particular Signal Generator channel, you can query the node:

device.sgchannels[SG_CHAN_INDEX].synthesizer()

Note

Note that in the GUI and on the front panel of the instrument, lists (e.g. Channel numbers) always
start at 1, but all representations in the APIs start counting at 0. Hence, Channel 1 on the front panel
corresponds to SG_CHAN_INDEX=0 in the API.

Note

To find out which node is linked to a specific setting in the GUI, either check out the command log at
the bottom of the user interface or the node tree documentation.

If we set an invalid value, e.g. a value of 6.05 GHz for the Center Frequency (note that this value can
only be set in multiples of 100 MHz) through

device.synthesizers[synth].centerfreq(6.05*1e9)

then the instrument rounds the value automatically to the nearest possible value (here: 6.1 GHz). This
is immediately indicated in the GUI or by querying the node:

device.synthesizers[synth].centerfreq()

4.1. Signal Generator Tutorials

68 Zurich Instruments SHFQC User Manual

In preparation for running a sequence in the next section, we will set several node values together
using the API:

Determine which synthesizer is used by the desired channel
synth = device.sgchannels[SG_CHAN_INDEX].synthesizer()

with device.set_transaction():
RF output settings
device.sgchannels[SG_CHAN_INDEX].output.range(10) # output range

in dBm
device.sgchannels[SG_CHAN_INDEX].output.rflfpath(1) # use RF path,

not LF path
device.synthesizers[synth].centerfreq(6.0e9) # synthesizer

frequency in Hz
device.sgchannels[SG_CHAN_INDEX].output.on(1) # enable output

Digital modulation settings
device.sgchannels[SG_CHAN_INDEX].awg.outputamplitude(0.5) # amplitude for

the AWG outputs
device.sgchannels[SG_CHAN_INDEX].oscs[0].freq(10.0e6) # frequency of

oscillator 1 in Hz
device.sgchannels[SG_CHAN_INDEX].oscs[1].freq(-500e6) # frequency of

oscillator 2 in Hz
device.sgchannels[SG_CHAN_INDEX].awg.modulation.enable(1) # enable

digital modulation

Trigger and marker settings
device.sgchannels[SG_CHAN_INDEX].marker.source(4) # use first

marker bit of waveform as marker source

Using these settings, we set the RF center frequency and output power, turn on the output, set up
digital modulation settings for generating complex signals, and select the marker source for
triggering the scope. We also use a transactional set, which is useful for setting many nodes at the
same time. This method is faster than using a daq.setInt or daq.setDouble command for each
node setting, because with a transactional set the communication latency has to be paid only once.

Uploading and running sequences

We now show how to upload a sequence via API. Very often, user-defined waveforms will be needed.
We therefore also cover how to use custom waveforms in a sequence, as it is possible to load a
waveform directly from the API. In the sequence the waveform should be declared using the
placeholder function to define size and type of the waveform.

const LENGTH = 1024;
wave w = placeholder(LENGTH, true, false); // Create a waveform of size LENGTH,
with one marker
assignWaveIndex(1,2, w, 10); // Create a wave table entry with
placeholder waveform, index 10

resetOscPhase(); // Reset oscillator phase
playWave(1,2, w); // Play wave

We upload this sequence to the SHFQC using the following Python code:

Define string that contains sequence from above
seqc_program = """\
const LENGTH = 1024;
wave w = placeholder(LENGTH, true, false); // Create a waveform of size LENGTH,
with one marker
assignWaveIndex(1,2, w, 10); // Create a wave table entry with
placeholder waveform, index 10

resetOscPhase(); // Reset oscillator phase
playWave(1,2, w); // Play wave

4.1. Signal Generator Tutorials

69 Zurich Instruments SHFQC User Manual

"""

Upload the sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

In addition to being able to set nodes, the Toolkit offers built-in functions for commonly performed
actions, such as configuring the output and digital modulation settings as well as compiling and
uploading sequences. The uploaded sequence will not run until a valid waveform has been loaded.
This can be done for example in Python.

import numpy as np
from zhinst.toolkit import Waveforms

##Generate a waveform and marker
LENGTH = 1024
wave = np.exp(np.linspace(0, -5, LENGTH)) #exponentially decaying waveform
marker = np.concatenate([np.ones(32), np.zeros(LENGTH-32)]).astype(int) #marker
waveform with 32 samples high

Upload waveforms
waveforms = Waveforms()
waveforms[10] = (wave,None,marker) # I-component wave, Q-component None, marker
device.sgchannels[SG_CHAN_INDEX].awg.write_to_waveform_memory(waveforms)

Now that we’ve uploaded both the sequence and the waveforms, we can run the sequence:

Enable sequencer with single mode true
single = 1
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = single)

After running the sequence, we observe the signal shown in Figure 4.22 on the scope.

Figure 4.22: Waveform loaded by the API

The custom waveform data can be arbitrary, but consider that the final signal will pass through the
analog output stage of the instrument where the signals get interpolated from 2 GSa/s to 6 GSa/s.
This means that the signal may not correspond exactly to the programmed waveform. In particular,
this concerns sharp transitions from one sample to the next.

Depending on the output channel assignment (the optional first arguments of assignWaveIndex
and playWave instructions), the AWG compiler may create implicit waveform table entries.
Therefore, we recommend a usage of the instructions placeholder, assignWaveIndex, and
playWave that is as explicit as possible. The following code, for example, is valid but not
recommended because it is not easy to read:

const LENGTH = 1024;
wave w = placeholder(LENGTH);
assignWaveIndex(1, w, 10);
assignWaveIndex(w, w, 11);

4.1. Signal Generator Tutorials

70 Zurich Instruments SHFQC User Manual

playWave(1, w);
playWave(w, w);

Instead, it’s recommended to use a unique waveform variable name for each intended single-
channel memory entry, and to use this variable name with consistent output channel assignment in
placeholder, assignWaveIndex, and playWave as is done in the following example:

const LENGTH = 1024;
wave w_a = placeholder(LENGTH, true, false); // Allocate a waveform with one
marker
wave w_b = placeholder(LENGTH, true, false); // Allocate a waveform with one
marker
wave w_c = placeholder(LENGTH, false, false); // Allocate a waveform without
markers
assignWaveIndex(1, 2, w_a, 10); // Declare a single-channel
waveform w_a, slot 10
assignWaveIndex(1, 2, w_b, 1, 2, w_c, 11); // Declare a dual-channel
waveform with w_b and w_c respectively as real and imaginary part, slot 11

playWave(1, 2, w_a); // Play a single channel
waveform (only amplitude modulation)
playWave(1, 2, w_b, 1, 2, w_c); // Play a dual channel waveform
(full IQ modulation)

In the latter case, a possible Python code to update the wave table is shown below. Note that we use
the full amount of markers available in the instrument, one per physical channel. The marker integer
array encodes the available markers in its least significant bit.

##Generate a waveform and marker
LENGTH = 1024
wave_a = np.exp(np.linspace(0, -5, LENGTH))
wave_b = np.exp(np.linspace(0, -15, LENGTH))
wave_c = np.exp(np.linspace(0, -2.5, LENGTH))

marker_a = np.concatenate([np.ones(32), np.zeros(LENGTH-32)]).astype(int)
marker_bc = np.concatenate([np.ones(32), np.zeros(LENGTH-32)]).astype(int)

##Convert and send them to the instrument
waveforms = Waveforms()
waveforms[10] = (wave_a,None,marker_a)
waveforms[11] = (wave_b,wave_c,marker_bc)
device.sgchannels[SG_CHAN_INDEX].awg.write_to_waveform_memory(waveforms)

4.1.6. Pulse-level Sequencing with the Command Table

Note

This tutorial is applicable to all SHFQC Instruments.

Goals and Requirements

Pulse-level sequencing is an efficient way to encode pulses in a sequence by uploading a minimal
amount of information to the device, allowing measurements to be performed more quickly and
programmed more intuitively. The goal of this tutorial is to demonstrate pulse-level sequencing
using the command table feature of the Signal Generator channels of theSHFQC.

Preparation

Connect the cables as illustrated below. Make sure that the instrument is powered on and
connected by Ethernet to your local area network (LAN) in which the control computer resides. After
starting LabOne, the default web browser opens with the LabOne graphical user interface.

4.1. Signal Generator Tutorials

71 Zurich Instruments SHFQC User Manual

Figure 4.23: Connections for the arbitrary waveform generator command table tutorial

The tutorial can be started with the default instrument configuration (e.g. after a power cycle) and
the default user interface settings (e.g. after pressing F5 in the browser). Additionally, this tutorial
requires the use of one of our APIs, in order to be able to define and upload the command table
itself. The examples shown here use the Python API - for an introduction see also the Python tutorial.
Similar functionality is also available for other APIs.

Note

The instrument can also be connected via the USB interface, which can be simpler for a first test. As
a final configuration for measurements, it is recommended to use the 1GbE interface, as it offers a
larger data transfer bandwidth.

Configure the Output

Note

This tutorial makes use of the Zurich Instruments Toolkit. Setting a node in the Toolkit uses the
format "device.path.to.node(value)." For the base Python API core, the equivalent node setting would
be daq.set(f'/{DEVICE_ID}/path/to/node', value).

Note

The minimum waveform length when using the command table is 16 samples.

To begin with, we configure the output and digital modulation settings of the SHFQC, to be able to
observe our signal on a scope. We use the Zurich Instruments Toolkit, available in Python, to set the
corresponding nodes after connecting to the instrument. The code below establishes a connection
to the device before setting the node values (see also the Using the Python API Tutorial).

Load the LabOne API and other necessary packages
from zhinst.toolkit import Session, CommandTable

DEVICE_ID = 'DEVXXXXX'
SERVER_HOST = 'localhost'

4.1. Signal Generator Tutorials

72 Zurich Instruments SHFQC User Manual

connect to data server
session = Session(SERVER_HOST)

connect to device
device = session.connect_device(DEVICE_ID)

SG_CHAN_INDEX = 0 # which channel to be used, here: first channel

##determine which synthesizer is used by the desired channel
synth = device.sgchannels[SG_CHAN_INDEX].synthesizer()

with device.set_transaction():
RF output settings
device.sgchannels[SG_CHAN_INDEX].output.range(10) #output range in dBm
device.sgchannels[SG_CHAN_INDEX].output.rflfpath(1) #use RF path, not LF path
device.synthesizers[synth].centerfreq(1.0e9) #set the corresponding

synthesizer frequency in Hz
device.sgchannels[SG_CHAN_INDEX].output.on(1) #enable output
Digital modulation settings
device.sgchannels[SG_CHAN_INDEX].awg.outputamplitude(0.5) #set the amplitude

for the AWG outputs
device.sgchannels[SG_CHAN_INDEX].oscs[0].freq(10.0e6) #frequency of

oscillator 1 in Hz
device.sgchannels[SG_CHAN_INDEX].oscs[1].freq(-150.0e6) #frequency of

oscillator 2 in Hz
device.sgchannels[SG_CHAN_INDEX].awg.modulation.enable(1) #enable digital

modulation
Triggering settings
device.sgchannels[SG_CHAN_INDEX].marker.source(0) #AWG trigger 1

In this case, we will use Signal Generator output channel 1 with a maximum output power of 10 dBm
and an RF center frequency of 1.0 GHz. We will also enable digital modulation using an oscillator
frequency of 10 MHz. This will yield a final output frequency of 1.01 GHz after configuring upper
sideband modulation with the command table later. The amplitude of the AWG outputs is set to 0.5
to avoid saturating the outputs.

Introduction to the Command Table

The command table allows the sequencer to group waveform playback instructions with other
timing-critical phase and amplitude setting commands into a single instruction that executes within
one sequencer clock cycle of 4 ns. The command table is a unit separate from the sequencer and
waveform memory and can thus be exchanged separately. Both the phase and the amplitude can be
set in absolute and in incremental modes. Additionally, the active oscillator can be set with the
command table, enabling fast, phase-coherent frequency switching on a given output channel. Even
when not using digital modulation or amplitude settings, working with the command table has the
advantage of being more efficient in sequencer instruction memory compared to standard
sequencing. Starting a waveform playback with the command table always requires just a single
sequencer clock cycle, as opposed to 2 or 3 when using a playWave instruction.

When using the command table, three components play together during runtime to generate the
waveform output and apply the phase and amplitude setting instructions:

 Sequencer: the unit executing the runtime instructions, namely in this context the
executeTableEntry instruction. This instruction executes one entry of the command table, and
its input argument is a command table index. In its compiled form, which can be seen in the AWG
Advanced sub-tab, the sequence program can contain up to 32768 instructions.

 Wave table: a list of up to 16000 indexed waveforms. This list is defined by the sequence program
using the index assignment instruction assignWaveIndex combined with a waveform or
waveform placeholder. The wave table index referring to a waveform can be used in two ways: it is
referred to from the command table, and it is used to directly write waveform data to the
instrument memory using the node <DEVICE_ID>/SGCHANNELS/<SG_CHAN_INDEX>/AWG/
WAVEFORM/WAVES/<WAVE_INDEX> Node Documentation

 Command table: a list of up to 4096 indexed entries (command table index), each containing the
index of a waveform to be played (wave table index), a sine generator phase setting, a set of four
AWG amplitude settings for complex modulation, and an oscillator index selection. The command

4.1. Signal Generator Tutorials

73 Zurich Instruments SHFQC User Manual

table is specified by a JSON formatted string written to the node <DEVICE_ID>/SGCHANNELS/
<SG_CHAN_INDEX>/AWG/COMMANDTABLE/DATA

Basic command table use

We start by defining a sequencer program that uses the command table.

seqc_program = """\
// Define waveform
wave w_a = gauss(2048, 1, 1024, 256);

// Assign a single channel waveform to wave table entry 0
assignWaveIndex(1,2, w_a, 0);

// Reset the oscillator phase
resetOscPhase();

// Trigger the scope
setTrigger(1);
setTrigger(0);

// execute the first command table entry
executeTableEntry(0);
// execute the second command table entry
executeTableEntry(1);
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

The sequence can be compiled and uploaded via API using the methods shown in the Python API
Tutorial. The sequence defines a Gaussian pulse of unit amplitude and length of 2048 samples. This
waveform is then assigned as a dual-channel waveform with explicit output assignment to the wave
table entry with index 0, and the final lines execute the two first command table entries. This
program cannot be run yet, as the command table is not yet defined.

Note

If a sequence program contains a reference to a command table entry that has not been defined, or
if a command table entry refers to a waveform that has not been defined, the sequence program
can’t be run.

In general the command table is defined as a JSON formatted string. Below, we show an example of
how to define a command table with two table entries using Python. For ease of programming, here
we define the command table as a CommandTable object, which is converted into a JSON string
automatically at upload. Such object also validate the fields of the command table.

Load CommandTable class
from zhinst.toolkit import CommandTable

Initialize command table
ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Index of wave table and command table entries
TABLE_INDEX = 0
WAVE_INDEX = 0
gain = 1.0

Waveform with amplitude and phase settings
ct.table[TABLE_INDEX].waveform.index = WAVE_INDEX

4.1. Signal Generator Tutorials

74 Zurich Instruments SHFQC User Manual

ct.table[TABLE_INDEX].amplitude00.value = gain
ct.table[TABLE_INDEX].amplitude01.value = -gain
ct.table[TABLE_INDEX].amplitude10.value = gain
ct.table[TABLE_INDEX].amplitude11.value = gain
ct.table[TABLE_INDEX].phase.value = 0

Same waveform with different amplitude and phase settings
ct.table[TABLE_INDEX+1].waveform.index = WAVE_INDEX
ct.table[TABLE_INDEX+1].amplitude00.value = gain/2
ct.table[TABLE_INDEX+1].amplitude01.value = -gain/2
ct.table[TABLE_INDEX+1].amplitude10.value = gain/2
ct.table[TABLE_INDEX+1].amplitude11.value = gain/2
ct.table[TABLE_INDEX+1].phase.value = 180

In this example, we generate a first command table entry with index "TABLE_INDEX", which plays the
waveform referenced in the wave table at index "WAVE_INDEX", with amplitude and phase settings
specified. The four amplitude settings of the command table have the same effect as the four gain
settings of the Digital Modulation Tutorial, with analogous naming convention, i.e. amplitude01
maps to Gain01. The signs of the amplitudes are chosen to yield upper sideband modulation when
using a positive oscillator frequency.

Note

Here we use a single-channel waveform, since we modulate only the amplitude of our pulses.
Therefore, coefficients amplitude01 and amplitude11 are not strictly needed. We left them here
and in the following examples to show how to use it even with dual-channel waveforms.

To upload the command table to the Signal Generator channel of the SHFQC, we need to connect to
the device and then write the command table to the correct node. In Python, this is achieved as
follows:

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)

Note

During compilation of a sequencer program, any previously uploaded command table is reset, and
will need to be uploaded again before it can be used.

Now that we’ve uploaded both the sequence and the command table, we can run the sequence:

device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = True)

The expected output is shown in Figure 4.24. Note how the amplitude of the second waveform is half
the magnitude of the first waveform, and that there is a phase shift of 180 degrees between them.
This is due to the amplitude and phase settings in the command table. Also note that these
amplitude settings are persistent. If a value is not explicitly specified in the command table, it
uses either the default value or the value set by a previous usage of the 'executeTableEntry'
instruction.

4.1. Signal Generator Tutorials

75 Zurich Instruments SHFQC User Manual

Figure 4.24: Output of the first channel from the basic command table example

Note

When a command table entry is called, the amplitude and phase are set persistently. Subsequent
waveform playbacks on the same channel will need to take this into account, unless the amplitude
and phase settings are explicitly included for them in their corresponding command table entries.
Additionally, the values of the command table amplitude and phase settings take precedence over
the corresponding gain and phase node settings set via API or in the LabOne UI, e.g. the value of
Gain01 will have no effect if amplitude01 is specified in the command table entry.

Efficient pulse incrementation

One illustrative use case of the command table feature is the efficient incrementation of the
amplitude or phase of a waveform.

We again start by writing a sequencer program that plays two entries of the command table.

seqc_program = """\
// Define a single waveform
wave w_a = ones(1024);

// Assign a single channel waveform to wave table entry
assignWaveIndex(1,2, w_a, 0);

// Reset the oscillator phase
resetOscPhase();

// Trigger the scope
setTrigger(1);
setTrigger(0);

// execute the first command table entry
executeTableEntry(0);
repeat(20) {
 executeTableEntry(1);
}
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

Here we have defined a single wave table entry, where both channels contain the same constant
waveform.

In Python we then define a command table with just two entries, in this case both referencing the
same waveform index. In the second command table entry, we set the increment field to true, such

4.1. Signal Generator Tutorials

76 Zurich Instruments SHFQC User Manual

that the amplitude is incremented each time that the second command table entry is called in the
sequence.

Initialize command table
ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Waveform with initial amplitude
ct.table[0].waveform.index = 0
ct.table[0].amplitude00.value = 0
ct.table[0].amplitude01.value = 0
ct.table[0].amplitude10.value = 0
ct.table[0].amplitude11.value = 0

Waveform with incremented amplitude
ct.table[1].waveform.index = 0
ct.table[1].amplitude00.value = 0.05
ct.table[1].amplitude01.value = -0.05
ct.table[1].amplitude10.value = 0.05
ct.table[1].amplitude11.value = 0.05
ct.table[1].amplitude00.increment = True
ct.table[1].amplitude01.increment = True
ct.table[1].amplitude10.increment = True
ct.table[1].amplitude11.increment = True

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)
Enable sequencer
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

After uploading the command table to the instrument and executing the sequencer program, the
channel then produces the output shown in Figure 4.25. Here, the first call to the first command
table entry plays the waveform with all amplitude settings set to 0. The subsequent calls to the
second command table entry increment these amplitudes each time by 0.05, with a negative
increment on amplitude01, and a positive increment on the others. Although in this example we
increment all amplitudes together, it is possible to increment only a subselection of the amplitude
settings as well, by changing the appropriate increment settings to False. Incrementing amplitudes
this way enables waveform memory-efficient amplitude sweeps.

Figure 4.25: Incrementing waveform amplitudes using the command table increment
functionality

Note

The amplitude of the waveform generated at the output can be influenced in several different ways:
through the amplitude of the waveform itself, through the amplitude settings in the command table,
through the output amplitude setting in the Modulation Tab, and finally through the Range setting of
the SHFQC Signal Generator output channel.

4.1. Signal Generator Tutorials

77 Zurich Instruments SHFQC User Manual

It is possible to perform multi-dimensional amplitude sweeps by making use of the amplitude
registers of the command table. Each channel has four independent amplitude registers (indexed
[0...3]), with each register storing the amplitude last played on that register. By default, amplitude
register with index zero is used. It is therefore possible to keep the amplitude of one register
constant while sweeping the amplitude of another register. This can be useful for probing dynamics
in a multi-level system.

As an example, we will use the following sequence:

seqc_program = """\
//Constant definitions
const readout = 512; //length of readout in samples

//Waveform definition
wave wI1 = gauss(128, 1, 64, 16);
wave wI2 = gauss(256, 1, 128, 32);

//Assign index and outputs
assignWaveIndex(1,2,wI1,0);
assignWaveIndex(1,2,wI2,1);

var i = 10;
executeTableEntry(0);
do {
 executeTableEntry(2);
 executeTableEntry(1);
 playZero(readout);
 i-=1;
} while(i);
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

The first executeTableEntry command initializes the amplitude that will be swept without playing
a pulse. The second executeTableEntry plays a constant-amplitude Gaussian pulse (128 samples
long). The third executeTableEntry plays a different Gaussian pulse (256 samples long), the
amplitude of which will be swept. The loop will play 10 different amplitudes. We also need to define
and upload a command table to go with the sequence:

Initialize command table
ct_schema = device.sgchannels[0].awg.commandtable.load_validation_schema()
ct = CommandTable(ct_schema)

Initialize amplitude register 1
ct.table[0].amplitude00.value = 0.0
ct.table[0].amplitude00.increment = False
ct.table[0].amplitude10.value = 0.0
ct.table[0].amplitude10.increment = False
ct.table[0].amplitudeRegister = 1

Swept Gaussian pulse
ct.table[1].waveform.index = 1
ct.table[1].amplitude00.value = 0.05
ct.table[1].amplitude00.increment = True
ct.table[1].amplitude10.value = 0.05
ct.table[1].amplitude10.increment = True
ct.table[1].amplitudeRegister = 1

Constant Gaussian pulse
ct.table[2].waveform.index = 0
ct.table[2].amplitude00.value = 0.9
ct.table[2].amplitude10.value = 0.9
ct.table[2].amplitudeRegister = 0

4.1. Signal Generator Tutorials

78 Zurich Instruments SHFQC User Manual

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)

The first command table entry (index 0) sets the initial amplitude (in this case, 0.0) of amplitude
register 1. The second table entry (index 1) increments the amplitude of amplitude register 1 and
plays the Gaussian pulse with waveform index 1. The third table entry (index 2) plays the constant-
amplitude Gaussian pulse (waveform index 0) using amplitude register 0.

We now run the sequence:

device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

We observe the signal shown in the figure below, which shows a constant-amplitude Gaussian pulse
interleaved with a Gaussian pulse who amplitude is swept. In total, there are 10 different amplitudes
of the swept pulse.

Figure 4.26: Using the amplitude registers to sweep the amplitude of one pulse while
keeping the amplitude of another constant.

Phase sweeps can be achieved in a similar way by using the command table below.

Define command table
Initialize command table
ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Waveform with initial phase
ct.table[0].waveform.index = 0
ct.table[0].phase.value = 90

Waveform with incremented phase
ct.table[1].waveform.index = 0
ct.table[1].phase.value = 0.1
ct.table[1].phase.increment = True

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)
Enable sequencer
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

In this case, executing the first table entry will set the phase to 90 degrees, and the second table
entry will increment this value each time it is called in steps of 0.1 degrees.

Pulse-level sequencing with the command table

All previous examples have used the pulse library in the AWG sequencer to define waveforms. In
more advanced scenarios, waveforms are uploaded through the API, as we will demonstrate next.

4.1. Signal Generator Tutorials

79 Zurich Instruments SHFQC User Manual

We start with the following sequence program, where we assign wave table entries using the
placeholder command with a waveform length as argument.

seqc_program = """\
// Define two wave table entries through placeholders
assignWaveIndex(1,2, placeholder(32), 0);
assignWaveIndex(1,2, placeholder(64), 1);

// Reset the oscillator phase
resetOscPhase();

// Trigger the scope
setTrigger(1);
setTrigger(0);

// execute command table
executeTableEntry(0);
executeTableEntry(1);
executeTableEntry(2);
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

In this form, the sequence program cannot be run, first because the command table is not yet
uploaded, and second because the waveform memory in the wave table has not been defined. We
can use the numpy package to define complex-valued Gaussian waveforms directly in Python, and
upload them to the instrument using the appropriate node.

import numpy as np
from zhinst.toolkit import Waveforms

parameters for waveform generation
amp_1 = 1
length_1 = 32
width_1 = 1/4
amp_2 = 1
length_2 = 64
width_2 = 1/4
x_1 = np.linspace(-1, 1, length_1)
x_2 = np.linspace(-1, 1, length_2)

define waveforms as list of real-values arrays - here: Gaussian functions
waves = [

[amp_1*np.exp(-x_1**2/width_1**2)],
[amp_2*np.exp(-x_2**2/width_2**2)]]

upload waveforms to instrument
waveforms = Waveforms()
for i, wave in enumerate(waves):

waveforms[i] = (wave[0])

device.sgchannels[SG_CHAN_INDEX].awg.write_to_waveform_memory(waveforms)

Finally, we also generate and upload a command table to the instrument.

Define command table
Initialize command table
ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Waveform 0 with oscillator 1
ct.table[0].waveform.index = 0
ct.table[0].amplitude00.value = 1.0

4.1. Signal Generator Tutorials

80 Zurich Instruments SHFQC User Manual

ct.table[0].amplitude01.value = -1.0
ct.table[0].amplitude10.value = 1.0
ct.table[0].amplitude11.value = 1.0
ct.table[0].phase.value = 0.0
ct.table[0].oscillatorSelect.value = 0

Waveform 1 with oscillator 2
ct.table[1].waveform.index = 0
ct.table[1].amplitude00.value = 1.0
ct.table[1].amplitude01.value = -1.0
ct.table[1].amplitude10.value = 1.0
ct.table[1].amplitude11.value = 1.0
ct.table[1].phase.value = 0.0
ct.table[1].oscillatorSelect.value = 1

Waveform 1 with oscillator 1 and different phase
ct.table[2].waveform.index = 0
ct.table[2].amplitude00.value = 1.0
ct.table[2].amplitude01.value = -1.0
ct.table[2].amplitude10.value = 1.0
ct.table[2].amplitude11.value = 1.0
ct.table[2].phase.value = 90.0
ct.table[2].oscillatorSelect.value = 0

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)
Enable sequencer
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

Running the sequencer program will produce output as shown in Figure 4.27.

Figure 4.27: Advanced command table example output, including oscillator selection

The first command table entry plays a Gaussian pulse with amplitude settings for upper sideband
modulation, a phase of 0 degrees, and using oscillator 1 (at 10 MHz). The second command table
entry plays a different Gaussian pulse envelope with similar amplitude and phase settings, but now
using oscillator 2 (at -500 MHz, leading to an output frequency of 500 MHz). The third and final
command table entry plays the first Gaussian pulse envelope with different amplitude and phase
settings, but again using oscillator 1. Such a set of pulses could correspond to playing an X-gate on
qubit 1, then an X-gate on qubit 2, then a Y/2-gate on qubit 1 again. Using the oscillatorSelect
field thereby allows users to interleave pulses for different qubits while maintaining phase
coherence between oscillator switches. Because each channel has 8 oscillators, this allows gates
for up to 8 different qubits or transitions to be interleaved on the same RF line.

It is also possible to define a command table entry that changes parameters without playing a
waveform. This can be particularly useful for efficient nested loops, e.g. Rabi amplitude sweeps with
cyclic or sequential averaging. Furthermore, it is possible to define a playZero (and other waveforms)
from within the command table as well. To see this functionality, upload the following sequence:

seqc_program = """\
// Define waveform

4.1. Signal Generator Tutorials

81 Zurich Instruments SHFQC User Manual

const len = 1024;
const amp = 1;
wave w = gauss(len,amp,len/2,len/8);

// Assign waveform index
assignWaveIndex(1,2, w, 0);

// Reset the oscillator phase
resetOscPhase();

// Trigger the scope
setTrigger(1);
setTrigger(0);

executeTableEntry(0); //set initial parameters
repeat (5) {
 executeTableEntry(1); //play waveform
 executeTableEntry(2); //playZero
 executeTableEntry(3); //set different parameters
}
"""

Upload sequence
device.sgchannels[SG_CHAN_INDEX].awg.load_sequencer_program(seqc_program)

After uploading the sequence, we upload the following command table as well:

Initialize command table
ct_schema = device.sgchannels[SG_CHAN_INDEX].awg.commandtable.load_validation_sch
ema()
ct = CommandTable(ct_schema)

Initial amplitude and phase settings
ct.table[0].amplitude00.value = 0.1
ct.table[0].amplitude01.value = -0.1
ct.table[0].amplitude10.value = 0.1
ct.table[0].amplitude11.value = 0.1
ct.table[0].phase.value = 0.0

Play waveform
ct.table[1].waveform.index = 0

Play playZero
ct.table[2].waveform.playZero = True
ct.table[2].waveform.length = 32

Set new parameters
ct.table[3].amplitude00.value = 0.05
ct.table[3].amplitude00.increment = True
ct.table[3].amplitude01.value = -0.05
ct.table[3].amplitude01.increment = True
ct.table[3].amplitude10.value = 0.05
ct.table[3].amplitude10.increment = True
ct.table[3].amplitude11.value = 0.05
ct.table[3].amplitude11.increment = True

Upload command table
device.sgchannels[SG_CHAN_INDEX].awg.commandtable.upload_to_device(ct)
Enable sequencer
device.sgchannels[SG_CHAN_INDEX].awg.enable_sequencer(single = 1)

The above combination of sequence and command table will use the first executeTableEntry
command (table index 0) to set initial amplitude and phase parameters without playing a waveform.
The second executeTableEntry command (table index 1) plays a waveform using the parameters

4.1. Signal Generator Tutorials

82 Zurich Instruments SHFQC User Manual

set by the previous command. The third executeTableEntry plays a playZero of length 32
samples. The fourth executeTableEntry (table index 3) sets new parameters without playing a
waveform. Because of the repeat loop, the sequence will play the pulse 5 times, each time with a
different set of parameters. In total, we play a waveform with 5 different sets of parameters, but we
need only two command table entries (table indices 0 and 3) to set the parameters and one entry to
play the waveform (table index 1). We would still need only these three table entries (four including
the playZero) even if we want to do a parameter sweep of 100 or 1000 different values (e.g. with
repeat (100)).

Note

The benefit of using playZero and playHold from within the command table is that they will map to
a single assembly instruction. Alternatively, the instructions playZero and playHold can be used
directly in the sequencer without the command table and still map to a single instruction, if the
following condition are fulfilled: - Length argument less than 1 MSa - Sample rate argument is left
empty or set to AWG_RATE_2000MHZ (the default value)

It is better to use the command table in the case the criteria above are not fulfilled, or for minimal
play length of 16 samples, or if the command table is randomly accessed in real-time with a variable.

Command table entries fields

The documentation of all possible parameters in the command table JSON file can be found by
pulling the schema from the device itself using the node /<dev>/SGCHANNELS/<n>/AWG/
COMMANDTABLE/SCHEMA. The Python CommandTable object automatically uses the schema from the
device when initialized like this:

Initialize command table
ct_schema = awg.commandtable.load_validation_schema()
ct = CommandTable(ct_schema)

Table 4.21 contains all elements that can be programmed as part of a command table entry as well
as the default value which is applied if this element is not specified by the user. Table 4.22 contains
all parameters of a waveform element, as well as each parameter’s default value. Analogously, Table
4.24 contains the parameters of a phase type element (phase), Table 4.25 those of an amplitude
type entry (amplitude00, amplitude01, amplitude10 or amplitude11) and Table 4.23 contains the
oscillator selector (oscillatorSelect).

If a phase element is specified in any entry of the command table, the absolute phase will be set to
zero at the start of the execution.

Table 4.21: Elements of a command table entry

Field Description Type Range/
Value

Mandatory Default

index Index of the entry Integer [0—4095] yes mandatory

waveform Waveform command
and its properties

Waveform no No waveform
played

oscillatorSelect Oscillator used for the
modulation

Oscillator
Select

no No change of
oscillator

phase Phase command of
the modulation

Phase no No change to
phase setting

amplitude00 Amplitude command
for AWG output
gain00

Amplitude no No change to
amplitude
setting

amplitude01 Amplitude command
for AWG output gain01

Amplitude no No change to
amplitude
setting

amplitude10 Amplitude command
for AWG output gain10

Amplitude no No change to
amplitude
setting

4.1. Signal Generator Tutorials

83 Zurich Instruments SHFQC User Manual

Field Description Type Range/
Value

Mandatory Default

amplitude11 Amplitude command
for AWG output gain11

Amplitude no No change to
amplitude
setting

Table 4.22: Parameters of the Waveform element of a command table entry

Field Description Type Range/
Value

Mandatory Default

index Index of the waveform to
play as defined with the
assignWaveIndex
sequencer instruction

integer [0—15999] if playZero or
playHold is
False

No
waveform
played

length The length of the
waveform in samples

integer [16—
WFM_LEN]

if playZero or
playHold is
True

the
waveform
length as
declared in
the
sequence

samplingRateDivider Integer exponent n of the
sampling rate divider:

SampleRate / 2n

integer [0—13] no 0

playZero Play a zero-valued
waveform for specified
length of waveform

bool [True,False] no False

playHold Hold the value of the last
waveform and marker
sample played for
specified length

bool [True,False] no False

Table 4.23: Parameters of a Oscillator Select element of a command table entry

Field Description Type Range/
Value

Mandatory Default

value Index of oscillator that is selected for
sine/cosine generation

integer [0—7] Yes mandatory

Table 4.24: Parameters of a Phase element of a command table entry

Field Description Type Range/Value Mandatory Default

value Phase value of the given
sine generator in degree

float [-180.0—180.0) values
outside of this range
will be clamped

Yes mandatory

increment Set to true for incremental
phase value, or to false for
absolute

bool [True,False] No False

Table 4.25: Parameters of an Amplitude element of a command table entry

Field Description Type Range/
Value

Mandatory Default

value Amplitude scaling factor of the given
AWG channel

float [-1.0—1.0] Yes mandatory

increment Set to true for incremental amplitude
value, or to false for absolute

bool [True,False] No False

4.1. Signal Generator Tutorials

84 Zurich Instruments SHFQC User Manual

4.2. Quantum Analyzer Tutorials

The tutorials in this subchapter have been created to allow users to become more familiar with the
Quantum Analyzer Readout Channel of the SHFQC.

Note

In the tutorials, we use both the General User Interface and the Python API to control the
instrument.

Note

For all tutorials, you must have LabOne installed as described in the chapter Getting Started.

Note

This chapter is constantly being upgraded and new documentation is added. For the latest version
of the documentation, please always refer to the online documentation.

4.2.1. Continuous Resonator Spectroscopy

Note

This tutorial is applicable to all SHFQC Instruments.

Goals and Requirements

The goal of this tutorial is to demonstrate how to use the SHFQC to perform resonator spectroscopy
measurement using the Quantum Analyzer readout channel with the LabOne User Interface (UI) and
Zurich Instruments Toolkit API.

Note

For zhinst-toolkit users, please find the example in https://github.com/zhinst/zhinst-toolkit/blob/
main/examples/shfqc_resonator_spectroscopy_cw.md , and the zhinst-toolkit documentation.

For LabOne Q users, please find the example in https://github.com/zhinst/laboneq/blob/main/
examples/01_qubit_characterization/01_cw_resonator_spec_shfsg_shfqa_shfqc.ipynb and https://
github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/
02_pulsed_resonator_spec_shfsg_shfqa_shfqc.ipynb, and the LabOne Q User Manual.

Preparation

Please follow the preparation steps in Connecting to the Instrument and connect the instrument in
a loopback configuration as shown in Figure 4.28 or to a device under test.

4.2. Quantum Analyzer Tutorials

85 Zurich Instruments SHFQC User Manual

https://github.com/zhinst/zhinst-toolkit/blob/main/examples/shfqc_resonator_spectroscopy_cw.md
https://github.com/zhinst/zhinst-toolkit/blob/main/examples/shfqc_resonator_spectroscopy_cw.md
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/01_cw_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/01_cw_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/02_pulsed_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/02_pulsed_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/02_pulsed_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://docs.zhinst.com/labone_q_user_manual/

Figure 4.28: SHFQC connection.

Tutorial

In this tutorial, we sweep frequency of output signal and measure the frequency response of the
cable or the device under test.

LabOne UI
This section shows how to use the LabOne UI to configure the instrument, run the measurement
and monitor the measurement results.

Configure the instrument
Set center frequency and power range of input and output signals
Configure these parameters on the Input and Output Tab as in Figure 4.29 and in Table
4.26.

Figure 4.29: Configurations on In/Out Tab.

Table 4.26: Settings of QA Channel 1 on In/Out Tab

Parameter Setting Description

QA Channel
Selection

All Select All to display all QA Channels.

Cent Freq (Hz) 5 GHz Set center frequency of the frequency sweep.

Signal Input 1 On Enable Enable the Signal Input 1.

Signal Input 1
Range (dBm)

0 dBm Set power range of Signal Input 1 to 0 dBm. This setting
allows the instrument to acquire a input signal with a
power up to 0 dBm.

Signal Input 1
Input Path

RF Set input path of Signal Input 1 to RF path.

Signal Output 1
On

Enable Enable the Signal Output 1.

1.
1.

4.2. Quantum Analyzer Tutorials

86 Zurich Instruments SHFQC User Manual

Parameter Setting Description

Signal Output 1
Range

0 dBm Set power range of Signal Output 1 to 0 dBm. This
setting allows the instrument to output a signal with a
power up to 0 dBm.

Signal Output 1
Output Path

RF Set output path of the Signal Output 1 to RF path.

Upload and compile measurement sequence
The measurement sequence is defined on the Sequence sub-tab of the Readout Pulse
Generator tab, see Figure 4.30 and Table 4.27.

Figure 4.30: Configurations on Readout Pulse Generator Tab.

Table 4.27: Settings of QA Channel 1 on Readout Pulse Generator Tab.

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Sub-Tab
Display

Sequence Select Sequence sub-tab and paste the sequence
program below or load
ziGenerator_functional_spectroscopy.seqc from the
"Examples" library and modify it. The Waveform Viewer
sub-tab displays readout envelope if it is uploaded.

Compile Click "To
Device"

Compile the sequence program by clicking "To Device".

Return Disable Disable return function.

Run/Stop Disable Disable Run/Stop.

Below is the the sequence program for the measurement. In the inner loop, the
setSweepStep(OSC0, i) command sets frequency of digital oscillator 0 to i-th
frequency in an array configured by configFreqSweep(OSC0, -500000000.0,
1000000.0) command, the setTrigger(value) command sets Sequencer Trigger 1
Output to high and then low to start integration, and waveform generation if pulsed
waveform is desired, the playZero(samples) command define time to the next
playZero(samples). The measurement is repeated 100 times by the outer loop.

// define which oscillator to use
const OSC0 = 0;

// set sequencer trigger output to 0
setTrigger(0);

// configure frequency sweep with a starting f of -500 MHz and a step
of 1 MHz
configFreqSweep(OSC0, -500000000.0, 1000000.0);

// sweep oscillator frequency and repeat 100 times
for(var j = 0; j < 100; j++) {

for(var i = 0; i < 1001; i++) {
// self-triggering mode

2.

4.2. Quantum Analyzer Tutorials

87 Zurich Instruments SHFQC User Manual

// define time from setting the oscillator frequency to
sending

// the spectroscopy trigger
playZero(160);

// set the oscillator frequency depending on the loop
variable i

setSweepStep(OSC0, i);
resetOscPhase();

// define time to the next iteration
playZero(22448);

// trigger the integration unit and pulsed playback in pulsed
mode

// set Sequencer Trigger Output 1 to high and then to low
// make sure the trigger singnal in spectroscopy mode is set

to sequencer trigger output 1
setTrigger(1);
setTrigger(0);

}
}

Configure signal generation and data acquisition
Signal generation and data acquisition are defined on QA Setup Tab and QA Result
logger Tab. The baseband readout signal is generated by a digital oscillator directly
("Continuous"), or by mixing the signal from the digital oscillator and a waveform
envelop saved in the waveform memory ("Pulse"). The input signal after frequency
down-conversion is integrated for 512 ns started 224 ns later after receiving a trigger
from Sequencer 1 Trigger Output 1.

Figure 4.31: Configurations on QA Setup Tab.

Table 4.28: Settings of QA Channel 1 on QA Setup Tab, see details on

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Application
Mode

Spectroscopy Use spectroscopy mode for resonator spectroscopy
measurement. In spectroscopy mode, frequency
sweep is done by sweeping the frequency of the
digital oscillator.

Trigger Signal Sequencer 1
Trigger Output
1

Select Sequencer 1 Trigger Output 1 as the trigger
source to trigger both output pulse generation and
integration. This selection matches the trigger
setting written in the sequence program.

Integration
Length (pts)

1048 Set the integration length in number of samples.

3.

4.2. Quantum Analyzer Tutorials

88 Zurich Instruments SHFQC User Manual

Parameter Setting Description

Integration
Delay (s)

224n Set the delay time after receiving a trigger before
starting integration. This setting ensures only
expected input signal is integrated. The internal
delay from signal generation to integration is about
224 ns. Therefore integration delay is > 224 ns if the
propagation delay from front panel signal output
port to signal input port is not negligible.

Power
Spectral
Density

Disable Disable the Power Spectral Density measurement
function.

Digital
Oscillator
Amplitude

0.5 Set the amplitude factor of the digital oscillator to
0.5. The range of amplitude factor is from 0 to 1.

Waveform
Mode

Continuous Set the Waveform Mode to continuous, so the
output waveform is continuous. Select "Pulse" and
upload a .csv file with complex data for waveform
envelope if pulsed output waveform is desired.

On the QA Result Logger Tab, it defines the source of the result, and how the result is
averaged and displayed, see Figure 4.32 and Table 4.29. After configuration of all
parameters, the QA Result Logger should be enabled to be ready to receive
measurement results.

Figure 4.32: Configurations on QA Result Logger Tab.

Table 4.29: Settings of QA Channel 1 on QA Result Logger Tab.

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Sub-Tab Spectroscopy Select Spectroscopy sub-tab to monitor
measurement result when using the
Spectroscopy mode.

Plot Type Components Select Components to display I, Q, amplitude or
phase versus sample points. Select Dot Plot to
display I versus Q with scattered dots.

Result Length
(Sample)

1001 Set result length in number of samples. The
number must match what is set in the sequence
program.

Averages 100 Set number of averages. The number must
match what is set in the sequence program.

Average Mode Cyclic Set the average mode to cyclic. This setting must
match how the loop is configured in the
sequence program.

Vertical Axis
Groups

Add amplitude
and phase

Select amplitude and phase to be displayed on
the plot.

Run/Stop Enable Enable the result logger to receive and display
measurement results.

Run the measurement2.

4.2. Quantum Analyzer Tutorials

89 Zurich Instruments SHFQC User Manual

By clicking "Run/Stop" icon on the Readout Pulse Generation Tab, the measurement is
started and finished in seconds.
Monitor the measurement result
The measurement result (complex data) is normalized by the integration length and displayed
on the QA Result Tab, as shown in Figure 4.33. Select "Dot Plot" to display result in IQ
(complex) plane.

Figure 4.33: Measurement results on the QA Result Logger Tab.

zhinst-toolkit
In specific, we demonstrate how to run a frequency sweep, obtain the transmission data and plot it.
For this, the Sweeper is configured to enable a continuous output signal that first probes the device
under test and is then correlated with the generated signal. As a result, we obtain the amplitude and
phase response in transmission of our device under test.

Connect the Instrument
Create a toolkit session to the data server and connect the Instrument with the device ID, e.g.
'DEV12001', see Connecting to the Instrument.

Load the LabOne API and other necessary packages
from zhinst.toolkit import Session

DEVICE_ID = 'DEVXXXXX'
SERVER_HOST = 'localhost'

session = Session(SERVER_HOST) ## connect to data server
device = session.connect_device(DEVICE_ID) ## connect to device

Create a Sweeper and configure it
Python API SHFSweeper class is the core of the spectroscopy measurements. It defines all
relevant parameters for frequency sweeping and sequencing. Toolkit wraps around the
SHFSweeper and exposes an interface that is similar to the LabOne modules, meaning the
parameters are exposed in a node tree like structure.

sweeper = session.modules.shfqa_sweeper
sweeper.device(device)
CHANNEL_INDEX = 0 # physical Channel 1

sweeper.sweep.start_freq(-500e6) # in units of Hz
sweeper.sweep.stop_freq(500e6) # in units of Hz
sweeper.sweep.num_points(1001)
sweeper.sweep.oscillator_gain(0.8) # amplitude scaling factor, 0 to 1
sweeper.sweep.use_sequencer = True # True (recommended): sequencer-based
sweep; False: host-driven sweep

sweeper.average.integration_delay(224e-9) # internal delay is about 224 ns
sweeper.average.integration_time(10e-6) # in units of second
sweeper.sweep.wait_after_integration(1e-6) # waiting 1 us after integration
before starting a new measurement
sweeper.average.num_averages(200)
sweeper.average.mode("sequential") # "sequential" or "cyclic" averaging

sweeper.rf.channel(CHANNEL_INDEX)
sweeper.rf.center_freq(5e9) # in units of Hz

3.

1.

2.

4.2. Quantum Analyzer Tutorials

90 Zurich Instruments SHFQC User Manual

sweeper.rf.input_range(0) # in units of dBm
sweeper.rf.output_range(0) # in units of dBm

with device.set_transaction():
device.qachannels[CHANNEL_INDEX].input.on(1)
device.qachannels[CHANNEL_INDEX].output.on(1)

All available settings of the Sweeper can be find using this command.

list(sweeper)

The data class RfConfig includes the channel-specific settings, such as the center frequency
in units of Hz, and the power ranges of the Input and Output channel.
The data class SweepConfig allows to configure the sweeps start and stop frequency as the
in-band offset frequency. In addition, it contains the number of measured points in the sweep
'num_points', and the mapping of the points ('linear' or 'logarithmic'). The gain of the oscillator
'oscillator_gain' changes the output amplitude of the probe signal relative to the channels
power ranges. Hence, the output power of the probe signal hence changes quadratically with
this number.
Please note that in this example, the configuration option use_sequencer is not explicitly set
to its default value True. In this mode, a SeqC program is automatically generated, uploaded
and compiled in the SHFQC Sequencer, and the frequency of the digital oscillator is
controlled by the Sequencer. This mode allows a fast resonator spectroscopy with predicted
cycle time of , see Table
4.30. If set_sequencer is False, the sweeper is controlled by the host computer, and the
frequency sweep is slower.
The data class AvgConfig contains all settings related to averaging and integration. The
'integration_time' defines how long the signal is integrated in the qubit_measurement_unit,
which can be up to \~16.7 ms. The mode 'sequential' or 'cyclic' define, whether each point is
first averaged 'num_averages' times before the frequency is changed, or whether every
sweep is averaged 'num_averages' times.
Please note that default values of Sweeper parameters listed in Table 4.30 depend on the
zhinst version.
Table 4.30: Default values of Sweeper parameters.

Parameter Description Default
Value for
zhinst <
22.08

Default Value
for zhinst >=
23.02

settling time Waiting time after having set the new
frequency until issuing the setTrigger
command, which triggers the
spectroscopy unit.

200 ns 80 ns

integration
delay

Delay after the internal trigger arrives at
the spectroscopy unit until the
integration of the input signal starts.

0 ns 224 ns
(zhinst-utils version
≥ 0.1.5)

envelope
delay

Delay After the internal trigger arrives at
the spectroscopy unit until the playback
of the envelope waveform starts.

0 ns 0 ns

integration
time

Time to integrate the input data. 1 ms 1 ms

wait after
integration

Wait time after the end of the integration
until the start of the next cycle.

72 ns 0 ns

predicted
cycle time

Calculated duration of each cycle of the
spectroscopy loop. Note that this
property only applies in self-triggered
mode, which is active when the trigger
source is set to None and use_sequencer
is True.

- "settling time" +
"integration delay"
+ "integration time"
+ "wait after
integration"
(read-only)

Run the measurement with continuous output waveform and plot the data

result = sweeper.run()
num_points_result = len(result["vector"])
print(f"Measured at {num_points_result} frequency points.")
sweeper.plot()

tsettling time+tintegration delay+tintegration time+twait after integrationt_{\mathrm{settling\ time}} + t_{\mathrm{integration\ delay}} + t_{\mathrm{integration\ time}} + t_{\mathrm{wait\ after\ integration}}t +settling time t +integration delay t +integration time twait after integration

3.

4.2. Quantum Analyzer Tutorials

91 Zurich Instruments SHFQC User Manual

After executing sweeper.run(), all above parameters are updated, and a SeqC program is
automatically generated, uploaded and compiled based on the sweep parameters, see in
Figure 4.34. In the program, ConfigFreqSweep sets the start frequency and the frequency
increment in units of Hz for a chosen oscillator, and setSweepStep sets the oscillator
frequency. The oscillator phase is reset by resetOscPhase before each measurement. The
trigger generated in the sequencer is used to start the integration, and the playZero sets the
cycle duration. The measurement is repeated using the nested for loop according to the
averaging mode. The measurement starts after enabling the sequencer.

Figure 4.34: Seqc program in the Readout Pulse Generator Tab.

The result returned from sweeper.run() is complex data in units of Vrms. It is
averaged and normalized by the integration length. The power and phase can be
calculated as,

where is 50 , 1000 is the conversion factor from W to mW. With sweeper.plot(), the
power and phase are calculated and plotted, see Figure 4.35.

Figure 4.35: Measurement result with continuous waveform output.

Run the measurement with pulsed output waveform and plot the data
In contrast to continuous readout waveform generation, pulsed readout waveform generation
requires an envelope data. Create a complex flat-top Gaussian envelope with 10 μs duration
and 50 ns rise and fall time. Enable the pulsed mode by sweeper.envelope.enable(True)
and upload the envelope to the waveform memory. This envelope can be displayed on the
Waveform Viewer of the Readout Pulse Generator.

EsweeperE_{\mathrm{sweeper}}Esweeper

PPP ϕ\phiϕ

P=10lg(∣Esweeper∣2R1000),ϕ=arctanℑ(Esweeper)ℜ(Esweeper),(4) \begin{equation}\tag{1} \begin{aligned} P & = 10\lg(\frac{|E_{\mathrm{sweeper}}|^2}{R}1000), \newline \phi & = \arctan\frac{\Im(E_{\mathrm{sweeper}})}{\Re(E_{\mathrm{sweeper}})}, \end{aligned} \end{equation} P

ϕ

= 10 lg(1000),
R

∣E ∣sweeper
2

= arctan ,
ℜ(E)sweeper

ℑ(E)sweeper
(1)

RRR Ω\OmegaΩ

4.

4.2. Quantum Analyzer Tutorials

92 Zurich Instruments SHFQC User Manual

from scipy.signal import gaussian
import numpy as np

SAMPLING_FREQUENCY = 2e9 # in units of Hz
ENVELOPE_DURATION = 10.0e-6 # in units of second
ENVELOPE_RISE_FALL_TIME = 0.05e-6 # in units of second

rise_fall_len = int(ENVELOPE_RISE_FALL_TIME * SAMPLING_FREQUENCY)
std_dev = rise_fall_len // 10
gauss = gaussian(2 * rise_fall_len, std_dev)
complex_amplitude = (1 - 1j)/np.sqrt(2)
flat_top_gaussian = np.ones(int(ENVELOPE_DURATION * SAMPLING_FREQUENCY)) * c
omplex_amplitude
flat_top_gaussian[0:rise_fall_len] = gauss[0:rise_fall_len] * complex_amplit
ude
flat_top_gaussian[-rise_fall_len:] = gauss[-rise_fall_len:] * complex_amplit
ude
sweeper.average.integration_delay(224e-9) # in units of second
sweeper.envelope.enable(True) # True: Pulsed mode; False: Continuous mode
sweeper.envelope.waveform(flat_top_gaussian) # upload envelope waveform

result = sweeper.run()
num_points_result = len(result["vector"])
print(f"Measured at {num_points_result} frequency points.")
sweeper.plot()

After executing sweeper.run(), all above parameters are updated, a SeqC program is
automatically generated, uploaded and compiled based on the sweep parameters, see Figure
4.34, and the result is downloaded after the measurement is done. The power and phase are
calculated, see in Figure 4.36. The result is consistent with measurement with continuous
waveform output.

Figure 4.36: Measurement results with pulsed waveform output.

4.2.2. Pulsed Resonator Spectroscopy

Note

This tutorial is applicable to all SHFQC Instruments.

4.2. Quantum Analyzer Tutorials

93 Zurich Instruments SHFQC User Manual

Goals and Requirements

The goal of this tutorial is to demonstrate how to use the SHFQC to perform resonator spectroscopy
measurement using the Quantum Analyzer readout channel with the LabOne User Interface (UI) and
Zurich Instruments Toolkit API.

Note

For zhinst-toolkit users, please find the example in https://github.com/zhinst/zhinst-toolkit/blob/
main/examples/shfqc_resonator_spectroscopy_cw.md , and the zhinst-toolkit documentation.

For LabOne Q users, please find the example in https://github.com/zhinst/laboneq/blob/main/
examples/01_qubit_characterization/01_cw_resonator_spec_shfsg_shfqa_shfqc.ipynb and https://
github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/
02_pulsed_resonator_spec_shfsg_shfqa_shfqc.ipynb, and the LabOne Q User Manual.

Preparation

Please follow the preparation steps in Connecting to the Instrument and connect the instrument in
a loopback configuration as shown in Figure 4.37 or to a device under test.

Figure 4.37: SHFQC connection.

Tutorial

In this tutorial, we sweep frequency of output signal and measure the frequency response of the
cable or the device under test.

LabOne UI
This section shows how to use the LabOne UI to configure the instrument, run the measurement
and monitor the measurement results.

Configure the instrument
Set center frequency and power range of input and output signals
Configure these parameters on the Input and Output Tab as in Figure 4.38 and in Table
4.31.

1.
1.

4.2. Quantum Analyzer Tutorials

94 Zurich Instruments SHFQC User Manual

https://github.com/zhinst/zhinst-toolkit/blob/main/examples/shfqc_resonator_spectroscopy_cw.md
https://github.com/zhinst/zhinst-toolkit/blob/main/examples/shfqc_resonator_spectroscopy_cw.md
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/01_cw_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/01_cw_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/02_pulsed_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/02_pulsed_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/02_pulsed_resonator_spec_shfsg_shfqa_shfqc.ipynb
https://docs.zhinst.com/labone_q_user_manual/

Figure 4.38: Configurations on In/Out Tab.

Table 4.31: Settings of QA Channel 1 on In/Out Tab

Parameter Setting Description

QA Channel
Selection

All Select All to display all QA Channels.

Cent Freq (Hz) 5 GHz Set center frequency of the frequency sweep.

Signal Input 1 On Enable Enable the Signal Input 1.

Signal Input 1
Range (dBm)

0 dBm Set power range of Signal Input 1 to 0 dBm. This setting
allows the instrument to acquire a input signal with a
power up to 0 dBm.

Signal Input 1
Input Path

RF Set input path of Signal Input 1 to RF path.

Signal Output 1
On

Enable Enable the Signal Output 1.

Signal Output 1
Range

0 dBm Set power range of Signal Output 1 to 0 dBm. This
setting allows the instrument to output a signal with a
power up to 0 dBm.

Signal Output 1
Output Path

RF Set output path of the Signal Output 1 to RF path.

Upload and compile measurement sequence
The measurement sequence is defined on the Sequence sub-tab of the Readout Pulse
Generator tab, see Figure 4.39 and Table 4.32.

Figure 4.39: Configurations on Readout Pulse Generator Tab.

Table 4.32: Settings of QA Channel 1 on Readout Pulse Generator Tab.

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

2.

4.2. Quantum Analyzer Tutorials

95 Zurich Instruments SHFQC User Manual

Parameter Setting Description

Sub-Tab
Display

Sequence Select Sequence sub-tab and paste the sequence
program below or load
ziGenerator_functional_spectroscopy.seqc from the
"Examples" library and modify it. The Waveform Viewer
sub-tab displays readout envelope if it is uploaded.

Compile Click "To
Device"

Compile the sequence program by clicking "To Device".

Return Disable Disable return function.

Run/Stop Disable Disable Run/Stop.

Below is the the sequence program for the measurement. In the inner loop, the
setSweepStep(OSC0, i) command sets frequency of digital oscillator 0 to i-th
frequency in an array configured by configFreqSweep(OSC0, -500000000.0,
1000000.0) command, the setTrigger(value) command sets Sequencer Trigger 1
Output to high and then low to start integration, and waveform generation if pulsed
waveform is desired, the playZero(samples) command define time to the next
playZero(samples). The measurement is repeated 100 times by the outer loop.

// define which oscillator to use
const OSC0 = 0;

// set sequencer trigger output to 0
setTrigger(0);

// configure frequency sweep with a starting f of -500 MHz and a step
of 1 MHz
configFreqSweep(OSC0, -500000000.0, 1000000.0);

// sweep oscillator frequency and repeat 100 times
for(var j = 0; j < 100; j++) {

for(var i = 0; i < 1001; i++) {
// self-triggering mode

// define time from setting the oscillator frequency to
sending

// the spectroscopy trigger
playZero(160);

// set the oscillator frequency depending on the loop
variable i

setSweepStep(OSC0, i);
resetOscPhase();

// define time to the next iteration
playZero(22448);

// trigger the integration unit and pulsed playback in pulsed
mode

// set Sequencer Trigger Output 1 to high and then to low
// make sure the trigger singnal in spectroscopy mode is set

to sequencer trigger output 1
setTrigger(1);
setTrigger(0);

}
}

Configure signal generation and data acquisition
Signal generation and data acquisition are defined on QA Setup Tab and QA Result
logger Tab. The baseband readout signal is generated by a digital oscillator directly
("Continuous"), or by mixing the signal from the digital oscillator and a waveform
envelop saved in the waveform memory ("Pulse"). The input signal after frequency

3.

4.2. Quantum Analyzer Tutorials

96 Zurich Instruments SHFQC User Manual

down-conversion is integrated for 512 ns started 224 ns later after receiving a trigger
from Sequencer 1 Trigger Output 1.

Figure 4.40: Configurations on QA Setup Tab.

Table 4.33: Settings of QA Channel 1 on QA Setup Tab, see details on

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Application
Mode

Spectroscopy Use spectroscopy mode for resonator spectroscopy
measurement. In spectroscopy mode, frequency
sweep is done by sweeping the frequency of the
digital oscillator.

Trigger Signal Sequencer 1
Trigger Output
1

Select Sequencer 1 Trigger Output 1 as the trigger
source to trigger both output pulse generation and
integration. This selection matches the trigger
setting written in the sequence program.

Integration
Length (pts)

1048 Set the integration length in number of samples.

Integration
Delay (s)

224n Set the delay time after receiving a trigger before
starting integration. This setting ensures only
expected input signal is integrated. The internal
delay from signal generation to integration is about
224 ns. Therefore integration delay is > 224 ns if the
propagation delay from front panel signal output
port to signal input port is not negligible.

Power
Spectral
Density

Disable Disable the Power Spectral Density measurement
function.

Digital
Oscillator
Amplitude

0.5 Set the amplitude factor of the digital oscillator to
0.5. The range of amplitude factor is from 0 to 1.

Waveform
Mode

Continuous Set the Waveform Mode to continuous, so the
output waveform is continuous. Select "Pulse" and
upload a .csv file with complex data for waveform
envelope if pulsed output waveform is desired.

On the QA Result Logger Tab, it defines the source of the result, and how the result is
averaged and displayed, see Figure 4.41 and Table 4.34. After configuration of all
parameters, the QA Result Logger should be enabled to be ready to receive
measurement results.

4.2. Quantum Analyzer Tutorials

97 Zurich Instruments SHFQC User Manual

Figure 4.41: Configurations on QA Result Logger Tab.

Table 4.34: Settings of QA Channel 1 on QA Result Logger Tab.

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Sub-Tab Spectroscopy Select Spectroscopy sub-tab to monitor
measurement result when using the
Spectroscopy mode.

Plot Type Components Select Components to display I, Q, amplitude or
phase versus sample points. Select Dot Plot to
display I versus Q with scattered dots.

Result Length
(Sample)

1001 Set result length in number of samples. The
number must match what is set in the sequence
program.

Averages 100 Set number of averages. The number must
match what is set in the sequence program.

Average Mode Cyclic Set the average mode to cyclic. This setting must
match how the loop is configured in the
sequence program.

Vertical Axis
Groups

Add amplitude
and phase

Select amplitude and phase to be displayed on
the plot.

Run/Stop Enable Enable the result logger to receive and display
measurement results.

Run the measurement
By clicking "Run/Stop" icon on the Readout Pulse Generation Tab, the measurement is
started and finished in seconds.
Monitor the measurement result
The measurement result (complex data) is normalized by the integration length and displayed
on the QA Result Tab, as shown in Figure 4.42. Select "Dot Plot" to display result in IQ
(complex) plane.

Figure 4.42: Measurement results on the QA Result Logger Tab.

zhinst-toolkit
In specific, we demonstrate how to run a frequency sweep, obtain the transmission data and plot it.
For this, the Sweeper is configured to enable a continuous output signal that first probes the device

2.

3.

4.2. Quantum Analyzer Tutorials

98 Zurich Instruments SHFQC User Manual

under test and is then correlated with the generated signal. As a result, we obtain the amplitude and
phase response in transmission of our device under test.

Connect the Instrument
Create a toolkit session to the data server and connect the Instrument with the device ID, e.g.
'DEV12001', see Connecting to the Instrument.

Load the LabOne API and other necessary packages
from zhinst.toolkit import Session

DEVICE_ID = 'DEVXXXXX'
SERVER_HOST = 'localhost'

session = Session(SERVER_HOST) ## connect to data server
device = session.connect_device(DEVICE_ID) ## connect to device

Create a Sweeper and configure it
Python API SHFSweeper class is the core of the spectroscopy measurements. It defines all
relevant parameters for frequency sweeping and sequencing. Toolkit wraps around the
SHFSweeper and exposes an interface that is similar to the LabOne modules, meaning the
parameters are exposed in a node tree like structure.

sweeper = session.modules.shfqa_sweeper
sweeper.device(device)
CHANNEL_INDEX = 0 # physical Channel 1

sweeper.sweep.start_freq(-500e6) # in units of Hz
sweeper.sweep.stop_freq(500e6) # in units of Hz
sweeper.sweep.num_points(1001)
sweeper.sweep.oscillator_gain(0.8) # amplitude scaling factor, 0 to 1
sweeper.sweep.use_sequencer = True # True (recommended): sequencer-based
sweep; False: host-driven sweep

sweeper.average.integration_delay(224e-9) # internal delay is about 224 ns
sweeper.average.integration_time(10e-6) # in units of second
sweeper.sweep.wait_after_integration(1e-6) # waiting 1 us after integration
before starting a new measurement
sweeper.average.num_averages(200)
sweeper.average.mode("sequential") # "sequential" or "cyclic" averaging

sweeper.rf.channel(CHANNEL_INDEX)
sweeper.rf.center_freq(5e9) # in units of Hz
sweeper.rf.input_range(0) # in units of dBm
sweeper.rf.output_range(0) # in units of dBm

with device.set_transaction():
device.qachannels[CHANNEL_INDEX].input.on(1)
device.qachannels[CHANNEL_INDEX].output.on(1)

All available settings of the Sweeper can be find using this command.

list(sweeper)

The data class RfConfig includes the channel-specific settings, such as the center frequency
in units of Hz, and the power ranges of the Input and Output channel.
The data class SweepConfig allows to configure the sweeps start and stop frequency as the
in-band offset frequency. In addition, it contains the number of measured points in the sweep
'num_points', and the mapping of the points ('linear' or 'logarithmic'). The gain of the oscillator
'oscillator_gain' changes the output amplitude of the probe signal relative to the channels
power ranges. Hence, the output power of the probe signal hence changes quadratically with
this number.
Please note that in this example, the configuration option use_sequencer is not explicitly set
to its default value True. In this mode, a SeqC program is automatically generated, uploaded
and compiled in the SHFQC Sequencer, and the frequency of the digital oscillator is
controlled by the Sequencer. This mode allows a fast resonator spectroscopy with predicted
cycle time of , see Table
4.35. If set_sequencer is False, the sweeper is controlled by the host computer, and the
frequency sweep is slower.

1.

2.

tsettling time+tintegration delay+tintegration time+twait after integrationt_{\mathrm{settling\ time}} + t_{\mathrm{integration\ delay}} + t_{\mathrm{integration\ time}} + t_{\mathrm{wait\ after\ integration}}t +settling time t +integration delay t +integration time twait after integration

4.2. Quantum Analyzer Tutorials

99 Zurich Instruments SHFQC User Manual

The data class AvgConfig contains all settings related to averaging and integration. The
'integration_time' defines how long the signal is integrated in the qubit_measurement_unit,
which can be up to \~16.7 ms. The mode 'sequential' or 'cyclic' define, whether each point is
first averaged 'num_averages' times before the frequency is changed, or whether every
sweep is averaged 'num_averages' times.
Please note that default values of Sweeper parameters listed in Table 4.35 depend on the
zhinst version.
Table 4.35: Default values of Sweeper parameters.

Parameter Description Default
Value for
zhinst <
22.08

Default Value
for zhinst >=
23.02

settling time Waiting time after having set the new
frequency until issuing the setTrigger
command, which triggers the
spectroscopy unit.

200 ns 80 ns

integration
delay

Delay after the internal trigger arrives at
the spectroscopy unit until the
integration of the input signal starts.

0 ns 224 ns
(zhinst-utils version
≥ 0.1.5)

envelope
delay

Delay After the internal trigger arrives at
the spectroscopy unit until the playback
of the envelope waveform starts.

0 ns 0 ns

integration
time

Time to integrate the input data. 1 ms 1 ms

wait after
integration

Wait time after the end of the integration
until the start of the next cycle.

72 ns 0 ns

predicted
cycle time

Calculated duration of each cycle of the
spectroscopy loop. Note that this
property only applies in self-triggered
mode, which is active when the trigger
source is set to None and use_sequencer
is True.

- "settling time" +
"integration delay"
+ "integration time"
+ "wait after
integration"
(read-only)

Run the measurement with continuous output waveform and plot the data

result = sweeper.run()
num_points_result = len(result["vector"])
print(f"Measured at {num_points_result} frequency points.")
sweeper.plot()

After executing sweeper.run(), all above parameters are updated, and a SeqC program is
automatically generated, uploaded and compiled based on the sweep parameters, see in
Figure 4.43. In the program, ConfigFreqSweep sets the start frequency and the frequency
increment in units of Hz for a chosen oscillator, and setSweepStep sets the oscillator
frequency. The oscillator phase is reset by resetOscPhase before each measurement. The
trigger generated in the sequencer is used to start the integration, and the playZero sets the
cycle duration. The measurement is repeated using the nested for loop according to the
averaging mode. The measurement starts after enabling the sequencer.

Figure 4.43: Seqc program in the Readout Pulse Generator Tab.

The result returned from sweeper.run() is complex data in units of Vrms. It is
averaged and normalized by the integration length. The power and phase can be
calculated as,

3.

EsweeperE_{\mathrm{sweeper}}Esweeper

PPP ϕ\phiϕ

4.2. Quantum Analyzer Tutorials

100 Zurich Instruments SHFQC User Manual

where is 50 , 1000 is the conversion factor from W to mW. With sweeper.plot(), the
power and phase are calculated and plotted, see Figure 4.44.

Figure 4.44: Measurement result with continuous waveform output.

Run the measurement with pulsed output waveform and plot the data
In contrast to continuous readout waveform generation, pulsed readout waveform generation
requires an envelope data. Create a complex flat-top Gaussian envelope with 10 μs duration
and 50 ns rise and fall time. Enable the pulsed mode by sweeper.envelope.enable(True)
and upload the envelope to the waveform memory. This envelope can be displayed on the
Waveform Viewer of the Readout Pulse Generator.

from scipy.signal import gaussian
import numpy as np

SAMPLING_FREQUENCY = 2e9 # in units of Hz
ENVELOPE_DURATION = 10.0e-6 # in units of second
ENVELOPE_RISE_FALL_TIME = 0.05e-6 # in units of second

rise_fall_len = int(ENVELOPE_RISE_FALL_TIME * SAMPLING_FREQUENCY)
std_dev = rise_fall_len // 10
gauss = gaussian(2 * rise_fall_len, std_dev)
complex_amplitude = (1 - 1j)/np.sqrt(2)
flat_top_gaussian = np.ones(int(ENVELOPE_DURATION * SAMPLING_FREQUENCY)) * c
omplex_amplitude
flat_top_gaussian[0:rise_fall_len] = gauss[0:rise_fall_len] * complex_amplit
ude
flat_top_gaussian[-rise_fall_len:] = gauss[-rise_fall_len:] * complex_amplit
ude
sweeper.average.integration_delay(224e-9) # in units of second
sweeper.envelope.enable(True) # True: Pulsed mode; False: Continuous mode
sweeper.envelope.waveform(flat_top_gaussian) # upload envelope waveform

result = sweeper.run()
num_points_result = len(result["vector"])
print(f"Measured at {num_points_result} frequency points.")
sweeper.plot()

P=10lg(∣Esweeper∣2R1000),ϕ=arctanℑ(Esweeper)ℜ(Esweeper),(5) \begin{equation}\tag{1} \begin{aligned} P & = 10\lg(\frac{|E_{\mathrm{sweeper}}|^2}{R}1000), \newline \phi & = \arctan\frac{\Im(E_{\mathrm{sweeper}})}{\Re(E_{\mathrm{sweeper}})}, \end{aligned} \end{equation} P

ϕ

= 10 lg(1000),
R

∣E ∣sweeper
2

= arctan ,
ℜ(E)sweeper

ℑ(E)sweeper
(1)

RRR Ω\OmegaΩ

4.

4.2. Quantum Analyzer Tutorials

101 Zurich Instruments SHFQC User Manual

After executing sweeper.run(), all above parameters are updated, a SeqC program is
automatically generated, uploaded and compiled based on the sweep parameters, see Figure
4.43, and the result is downloaded after the measurement is done. The power and phase are
calculated, see in Figure 4.45. The result is consistent with measurement with continuous
waveform output.

Figure 4.45: Measurement results with pulsed waveform output.

4.2.3. Integration Weights Measurement

Note

This tutorial is applicable to all SHFQC Instruments and no additional instrumentation is needed.

Goals and Requirements

The goal of this tutorial is to demonstrate how to use the SHFQC Scope to measure integration
weights that are needed for high-fidelity single-shot readout using the LabOne User Interface (UI)
and Zurich Instruments Toolkit API.

For qubit control with the SHFSG Signal Generator, the SHFQC Qubit Controller and the HDAWG
Arbitrary Wave Generator, and instrument synchronization and feedback with the PQSC
Programmable Quantum System Controller, see tutorials in the Online Documentation.

Note

For zhinst-toolkit users, please find the example in https://github.com/zhinst/zhinst-toolkit/blob/
main/examples/shfqa_qubit_readout_weights.md, and the zhinst-toolkit documentation.

For LabOne Q users, please find the example in https://github.com/zhinst/laboneq/blob/main/
examples/01_qubit_characterization/12_readoutweight_calibration_shfsg_shfqa_shfqc.ipynb, and
the LabOne Q User Manual.

Preparation

Please follow the preparation steps in Connecting to the Instrument and connect the instrument in
a loopback configuration as shown in Figure 4.46 or to a device under test.

4.2. Quantum Analyzer Tutorials

102 Zurich Instruments SHFQC User Manual

https://github.com/zhinst/zhinst-toolkit/blob/main/examples/shfqa_qubit_readout_weights.md
https://github.com/zhinst/zhinst-toolkit/blob/main/examples/shfqa_qubit_readout_weights.md
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/12_readoutweight_calibration_shfsg_shfqa_shfqc.ipynb
https://github.com/zhinst/laboneq/blob/main/examples/01_qubit_characterization/12_readoutweight_calibration_shfsg_shfqa_shfqc.ipynb
https://docs.zhinst.com/labone_q_user_manual/

Figure 4.46: SHFQC connection.

Tutorial

In the tutorial, readout signals are recorded while the qubit is in ground and excited state. The
readout pulse is generated by the SHFQC Readout Pulse Generator, and the signal recording is done
by the SHFQC Scope. The integration weight is derived from the difference of the recorded readout
signals.

LabOne UI
This section shows how to use LabOne UI to configure the instrument, run the measurement,
monitor the measurement results and calculate the integration weight.

Configure the instrument
Set center frequency and power range of input and output signals
Configure these parameters on the Input and Output Tab as in Figure 4.47 and in Table
4.36.

Figure 4.47: Configurations on In/Out Tab.

Table 4.36: Settings of QA Channel 1 on In/Out Tab

Parameter Setting Description

QA Channel
Selection

All Select All to display all QA Channels.

Cent Freq (Hz) 5 GHz Set center frequency of the frequency sweep of QA
Channel 1.

Signal Input 1 On Enable Enable the Signal Input 1.

Signal Input 1
Range (dBm)

0 dBm Set power range of Signal Input 1 to 0 dBm. This setting
allows the instrument to acquire a input signal with a
power up to 0 dBm.

Signal Input 1
Input Path

RF Set input path of Signal Input 1 to RF path.

Signal Output 1
On

Enable Enable the Signal Output 1.

1.
1.

4.2. Quantum Analyzer Tutorials

103 Zurich Instruments SHFQC User Manual

Parameter Setting Description

Signal Output 1
Range

0 dBm Set power range of Signal Output 1 to 0 dBm. This
setting allows the instrument to output a signal with a
power up to 0 dBm.

Signal Output 1
Output Path

RF Set output path of the Signal Output 1 to RF path.

Upload and compile measurement sequence
The measurement sequence is defined on the Sequence Sub-Tab of the Readout Pulse
Generator Tab, see Table 4.37.
Table 4.37: Settings of QA Channel 1 on Readout Pulse Generator Tab.

Parameter Setting Description

QA channel
Selection

1 Select QA channel 1.

Sub-Tab
Display

Sequence Select Sequence sub-tab and paste the sequence
program below. The Waveform Viewer sub-tab displays
waveforms saved in Waveform Memory slots and
Integration Weight units.

Compile Click "To
Device"

Compile the sequence program by clicking "To Device".

Digital Triggers Digital
Trigger 1

Select Digital Trigger 1.

Digital Trigger 1
Signal

Internal
Trigger

Select Internal Trigger as the trigger source of Digital
Trigger 1.

Return Disable Disable return function.

Run/Stop Enable Run the sequence.

Below is the the sequence program for the measurement. In the loop, the
waitDigTrigger command waits a trigger (see Table 4.38) to continue the sequence,
the startQA command sends a trigger to generate output waveform and start
integration, it also sends a Sequencer Monitor Trigger (third argument of the startQA
command) to trigger SHFQC Scope to record input signal before integration. The
measurement is repeated 100 times to get averaged readout pulses according to qubit
prepared in ground and excited state.

// repeat sequence 100 times, i.e. readout qubit in group state and
excited state, and then repeat this 50 times
repeat (100) {

// wait for a trigger over ZSync. Assume the trigger period is
longer than the cycle time

// waitZSyncTrigger();

// alternatively wait for a trigger from digital trigger 1
waitDigTrigger(1);

// play readout waveform stored in Waveform Memory slot 1, send a
trigger to start integration, and send a Sequencer Monitor trigger to
trigger the Scope

startQA(QA_GEN_0, QA_INT_0, true);
}

The digital trigger set on the Trigger sub-tab is Internal Trigger. The configuration of the
internal is shown in and Table 4.38.
Table 4.38: Settings of Internal Trigger on DIO Setup Tab, see details on

Parameter Setting Description

Repetitions 100 Set number of repetitions.

Holdoff (s) 100u Set holdoff time to 100 s.

Synchronization Disabled Disable Synchronization.

2.

μ\muμ

4.2. Quantum Analyzer Tutorials

104 Zurich Instruments SHFQC User Manual

Parameter Setting Description

Run/Stop Disable Disable the internal trigger.

Configure signal generation
Signal generation is defined on QA Setup Tab, see Figure 4.48 and Table 4.39. Since we
are only interested in the signal before integration, the settings for integration weights
is not needed.

Figure 4.48: Configurations on QA Setup Tab.

Table 4.39: Settings of QA Channel 1 on QA Setup Tab.

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Application
Mode

Readout Use Readout mode for integration weight
measurement.

Clear
Waveform

Click "Clear" Clear all waveforms saved in Waveform Memory. Clear
all waveforms before uploading new ones to avoid
incorrect waveform generation or output overflow.

Waveform
Memory 1 Set
Mode

Parametric Generate waveform parametrically in Waveform
Memory slot 1. The parametrically generated
waveform is , where is the
dimensionless amplitude factor of the waveform, is
the frequency in units of Hz, is the phase in units of
degree.

Amplitude 0.5 Set amplitude factor to 0.5.

Frequency (Hz) 10M Set readout frequency to 10 MHz.

Phase (Deg) 0 Set phase to 0 degree.

Window Length 4096 Set length of the readout waveform in number of
samples.

Set To Device click "Set To
Device"

Upload the parametrically generated waveform to
Waveform Memory slot 1.

Configure SHFQC Scope
The SHFQC Scope is configured to record readout pulses before integration, and
display averaged readout pulses according to qubit in ground state and excited state,
see Figure 4.49 and Table 4.40.

3.

Aei(2πft+π180ϕ)Ae^{i (2 \pi f t + \frac{\pi}{180}\phi)}Aei(2πft+ ϕ)180
π

AAA
fff

ϕ\phiϕ

AAA

fff

ϕ\phiϕ

4.

4.2. Quantum Analyzer Tutorials

105 Zurich Instruments SHFQC User Manual

Figure 4.49: Configurations on Scope Tab.

Table 4.40: Settings on Scope Tab

Parameter Setting Description

Horizontal
Mode

Time Display data in time-domain.

Horizontal
Length (pts)

4096 Set recording length in number of samples. This
setting has to be readout pulse length.

Channel 1
Signal
Selection

Signal Input 1 Monitor signal comes from Signal Input 1 on Scope
Channel 1.

Channel 1
Enable

Enable Enable Scope Channel 1.

HW Averaging Enable Enable hardware averaging.

Averages 50 Set number of averages to 50. This setting matches
what is defined in the sequence program.

Display Mode Scope Display the Scope trace. Enable "2D" if 2D trace is
desired.

Add Signal Scope Wave
Channel 1 I
and Q

Add Scope Wave Channel 1 I and Scope Wave Channel
1 Q to the plot.

Trigger Mode Enable Enable trigger mode so that scope recording starts
only after receiving a trigger.

Trigger Signal Sequencer 1
Monitor
Trigger

Select Sequencer 1 Monitor Trigger as the trigger to
trigger the Scope.

Trigger Delay
(s)

224n Set trigger delay to 224 ns. The Scope starts to record
data 224 ns later after receiving a trigger. This setting
must has to match signal propagation delay including
internal delay about 224 ns and external delay
depending on the signal path between the front panel
Signal Output port and Signal Input port.

≥\ge≥

4.2. Quantum Analyzer Tutorials

106 Zurich Instruments SHFQC User Manual

Parameter Setting Description

Segments
Enable

Enable Enable Segments measurement. In Segments
measurement, the scope records data, where
is the number of segments, is the recording length
in number of samples.

Segments 2 Set number of segments to 2. 1 for recording readout
pulse when qubit in groud state, another for qubit in
excited state.

Run Mode Single Using Single mode for the measurement.

Run the measurement
By clicking "Run/Stop" icon on the System Settings sub-tab of DIO tab, the measurement is
started and finished in seconds.
Monitor the measurement results and calculate the integration weight
The recorded readout pulses are displayed on the Scope Tab, as shown in Figure 4.50. The
integration weights is calculated by taking the difference of the measured traces according to
the qubit is in ground state and excited state.

Figure 4.50: Recorded readout pulses on Scope Tab.

zhinst-toolkit
Connect the instrument
Create a toolkit session to the data server and connect the device with the device ID, e.g.
'DEV12001', see Connecting to the Instrument.

Load the LabOne API and other necessary packages
from zhinst.toolkit import Session, SHFQAChannelMode, Waveforms
from scipy.signal import gaussian
import numpy as np

DEVICE_ID = 'DEVXXXXX'
SERVER_HOST = 'localhost'

session = Session(SERVER_HOST) ## connect to data server
device = session.connect_device(DEVICE_ID) ## connect to device

Generate readout pulses
In the tutorial, the envelope of the readout waveforms is flat-top Gaussian with pulse length
of 500 ns and rise and fall time of 10 ns, amplitude factor of 0.9, and 8 readout frequencies
span from 32 MHz to 120 MHz. The amplitude factor is not scaled by the number of qubits as
in Multiplexed Qubit Readout because the readout output signal is generated from one of the
readout waveforms, see the sequence program in the following section. The zhinst-toolkit
class Waveforms is for converting waveform data written in Python to data that can be
uploaded to the instrument correctly.

NUM_QUBITS = 8
SAMPLING_FREQUENCY = 2e9
RISE_FALL_TIME = 10e-9
PULSE_DURATION = 500e-9

rise_fall_len = int(RISE_FALL_TIME * SAMPLING_FREQUENCY)

n×mn \times mn×m nnn
mmm

2.

3.

1.

2.

4.2. Quantum Analyzer Tutorials

107 Zurich Instruments SHFQC User Manual

pulse_len = int(PULSE_DURATION * SAMPLING_FREQUENCY)
std_dev = rise_fall_len // 10

gauss = gaussian(2 * rise_fall_len, std_dev)
flat_top_gaussian = np.ones(pulse_len)
flat_top_gaussian[0:rise_fall_len] = gauss[0:rise_fall_len]
flat_top_gaussian[-rise_fall_len:] = gauss[-rise_fall_len:]
Scaling
flat_top_gaussian *= 0.9

readout_pulses = Waveforms()
time_vec = np.linspace(0, PULSE_DURATION, pulse_len)

for i, f in enumerate(np.linspace(2e6, 32e6, NUM_QUBITS)):
readout_pulses.assign_waveform(

slot=i,
wave1=flat_top_gaussian * np.exp(2j * np.pi * f * time_vec)

)

Configure the channel
Configure center frequency, input and output power range and application mode of the
channel using qachannels[n].configure_channel, turn on the Input and Output, and
upload the readout waveforms using generator.write_to_waveform_memory.

configure inputs and outputs
CHANNEL_INDEX = 0 # physical Channel 1

device.qachannels[CHANNEL_INDEX].configure_channel(
center_frequency=5e9, # in units of Hz
input_range=0, # in units of dBm
output_range=-5, # in units of dBm
mode=SHFQAChannelMode.READOUT, # SHFQAChannelMode.READOUT or

SHFQAChannelMode.SPECTROSCOPY
)
device.qachannels[CHANNEL_INDEX].input.on(1)
device.qachannels[CHANNEL_INDEX].output.on(1)

write waveforms to the Waveform Memory
device.qachannels[CHANNEL_INDEX].generator.write_to_waveform_memory(readout_
pulses)

Configure the Scope
Configure the Scope to record 2 segments of data with length of 500 ns which are averaged
50 times using scopes[n].configure. The trigger of the Scope is1 Sequencer 1 Monitor
Trigger which is enabled by the startQA command.

SCOPE_CHANNEL = 0
RECORD_DURATION = 500e-9 # in units of second
NUM_SEGMENTS = 2
NUM_AVERAGES = 50
NUM_MEASUREMENTS = NUM_SEGMENTS * NUM_AVERAGES
SAMPLING_FREQUENCY = 2e9 # in units of Hz

device.scopes[0].configure(
input_select={SCOPE_CHANNEL: f"channel{CHANNEL_INDEX}_signal_input"},
num_samples=int(RECORD_DURATION * SAMPLING_FREQUENCY),
trigger_input=f"channel{CHANNEL_INDEX}_sequencer_monitor0", # Sequencer

1 monitor trigger
num_segments=NUM_SEGMENTS,
num_averages=NUM_AVERAGES,
trigger_delay=214e-9, # record the data 214 ns later after receiving a

trigger
)

Configure and run the measurement, and calculate the integration weights

3.

4.

5.

4.2. Quantum Analyzer Tutorials

108 Zurich Instruments SHFQC User Manual

In the measurement, the Sequencer is triggered by Internal Trigger using
configure_sequencer_trigger.
The integration weights for different qubits are measured sequentially with the for loop. In
each loop, the seqc_program is different and is uploaded to the instrument using
load_sequencer_program, both Scope and Sequencer run in Single mode set by
scopes[n].run and enable_sequencer respectively, the Generator sends 100 pulses to
readout 1 of the qubits prepared in ground and excited state, and the Scope acquires 2
segments of data which are averaged 50 times (see), and the data is downloaded using
scopes[n].read, and integration weights are calculated in the end.

results = []

device.qachannels[CHANNEL_INDEX].generator.configure_sequencer_triggering(
aux_trigger=8,# internal trigger
play_pulse_delay=0, # 0s delay between startQA trigger and the readout

pulse
)
device.system.internaltrigger.repetitions(int(NUM_SEGMENTS * NUM_AVERAGES))
device.system.internaltrigger.holdoff(100e-6)

for i in range(NUM_QUBITS):
qubit_result = {

'weights': None,
'ground_states': None,
'excited_states': None

}
print(f"Measuring qubit {i}.")

upload sequencer program
seqc_program = f"""

 repeat({NUM_MEASUREMENTS}) {{
 waitDigTrigger(1);
 startQA(QA_GEN_{i}, 0x0, true, 0, 0x0); // only QA_GEN_{i}
matters for this measurement

}}
 """

device.qachannels[CHANNEL_INDEX].generator.load_sequencer_program(seqc_p
rogram)

Start a measurement
device.scopes[SCOPE_CHANNEL].run(single=True)
device.qachannels[CHANNEL_INDEX].generator.enable_sequencer(single=True)
device.system.internaltrigger.enable(1)

get results to calculate weights and plot data
scope_data, *_ = device.scopes[0].read()

Calculates the weights from scope measurements
for the excited and ground states
split_data = np.split(scope_data[SCOPE_CHANNEL], 2)
ground_state_data = split_data[0]
excited_state_data = split_data[1]
qubit_result['ground_state_data'] = ground_state_data
qubit_result['excited_state_data'] = excited_state_data
qubit_result['weights'] = np.conj(excited_state_data -

ground_state_data)
results.append(qubit_result)

The following code snippet can be used to plot readout traces () and calculate integration
weights () of the last qubit.

Note
In order to achieve the highest possible resolution in the signal after integration, it’s advised
to scale the dimensionless readout integration weights with a factor so that their maximum
absolute value is equal to 1.

4.2. Quantum Analyzer Tutorials

109 Zurich Instruments SHFQC User Manual

import matplotlib.pyplot as plt

fig, (ax0, ax1) = plt.subplots(nrows = 2, sharex = True)

t = np.linspace(0, RECORD_DURATION, int(RECORD_DURATION *
SAMPLING_FREQUENCY/16)*16)
ax0.plot(t/1e-9, ground_state_data.real, '-', label = f'real')
ax0.plot(t/1e-9, ground_state_data.imag, '-', label = f'imag')
ax1.plot(t/1e-9, excited_state_data.real, '-', label = f'real')
ax1.plot(t/1e-9, excited_state_data.imag, '-', label = f'imag')

ax0.set_title('Ground state')
ax1.set_title('Excited state')
ax0.legend(loc='upper right')
ax1.legend(loc='upper right')
ax0.set_ylabel('Amplitude (Vrms)')
ax1.set_ylabel('Amplitude (Vrms)')
ax1.set_xlabel(r'Time (ns)')
plt.tight_layout()

plt.figure()
plt.plot(t/1e-9, results[0]['weights'])
plt.xlabel('Time (ns)')
plt.ylabel('Amplitude (Vrms)')
plt.tight_layout()

Figure 4.51: Readout pulses recorded by the Scope in loopback configuration

4.2. Quantum Analyzer Tutorials

110 Zurich Instruments SHFQC User Manual

Figure 4.52: Integration weights calculated from the readout pulses

4.2.4. Multiplexed Qubit Readout

Note

This tutorial is applicable to all SHFQC Instruments.

Goals and Requirements

The goal of this tutorial is to demonstrate how to use SHFQC to perform multiplexed qubit readout
using the LabOne User Interface (UI) and Zurich Instruments Toolkit API.

For qubit control with the SHFSG Signal Generator, the SHFQC Qubit Controller and the HDAWG
Arbitrary Wave Generator, and instrument synchronization and feedback with the PQSC
Programmable Quantum System Controller, see tutorials section under a specific instrument found
in the Online Documentation.

Note

For zhinst-toolkit users, please find the example in https://github.com/zhinst/zhinst-toolkit/blob/
main/examples/shfqa_qubit_readout_measurement.md, and the zhinst-toolkit documentation.

For SHFQC users, please find the examples in GitHub, https://github.com/zhinst.

Preparation

Please follow the preparation steps in Connecting to the Instrument and connect the instrument in
a loopback configuration as shown in Figure 4.53 or to a signal under test.

4.2. Quantum Analyzer Tutorials

111 Zurich Instruments SHFQC User Manual

https://github.com/zhinst/zhinst-toolkit/blob/main/examples/shfqa_qubit_readout_measurement.md
https://github.com/zhinst/zhinst-toolkit/blob/main/examples/shfqa_qubit_readout_measurement.md
https://github.com/zhinst

Figure 4.53: SHFQC connection.

Tutorial

In this tutorial, the instrument runs a measurement that readout 8 qubits in parallel, then the
measurement is repeated 100 100 times, finally returns 100 averaged complex data.

LabOne UI
This section shows how to use LabOne UI to configure the instrument, run the measurement and
monitor the measurement results.

Configure the instrument
Set center frequency and power range of input and output signals
Configure these parameters on the Input and Output Tab as in Figure 4.54 and in Table
4.41.

Figure 4.54: Configurations on In/Out Tab.

Table 4.41: Settings of QA Channel 1 on In/Out Tab

Parameter Setting Description

QA Channel
Selection

All Select All to display all QA Channels.

Cent Freq (Hz) 5 GHz Set center frequency of the frequency sweep.

Signal Input 1 On Enable Enable the Signal Input 1.

Signal Input 1
Range (dBm)

0 dBm Set power range of Signal Input 1 to 0 dBm. This setting
allows the instrument to acquire a input signal with a
power up to 0 dBm.

Signal Input 1
Input Path

RF Set input path of Signal Input 1 to RF path.

Signal Output 1
On

Enable Enable the Signal Output 1.

Signal Output 1
Range

0 dBm Set power range of Signal Output 1 to 0 dBm. This
setting allows the instrument to output a signal with a
power up to 0 dBm.

Signal Output 1
Output Path

RF Set output path of the Signal Output 1 to RF path.

Upload and compile measurement sequence
The measurement sequence is defined on the Sequence Sub-Tab of the Readout Pulse
Generator Tab, see Figure 4.55 and Table 4.42.

×\times×

1.
1.

2.

4.2. Quantum Analyzer Tutorials

112 Zurich Instruments SHFQC User Manual

Figure 4.55: Configurations on Readout Pulse Generator Tab.

Table 4.42: Settings of QA Channel 1 on Readout Pulse Generator Tab.

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Sub-Tab
Display

Sequence Select Sequence sub-tab and paste the sequence
program below. The Waveform Viewer sub-tab displays
waveforms saved in Waveform Memory slots and
Integration Weight units.

Compile Click "To
Device"

Compile the sequence program by clicking "To Device".

Digital Triggers Digital
Trigger 1

Select Digital Trigger 1.

Digital Trigger 1
Signal

Internal
Trigger

Select Internal Trigger as the trigger source of Digital
Trigger 1.

Return Disable Disable return function.

Run/Stop Enable Run the sequence.

Below is the the sequence program for the measurement. In the inner loop, the
waitDigTrigger(1) command waits a digital trigger to continue the sequence, the
first playZero command sets waiting time after receiving a trigger before running the
startQA command, the startQA(QA_GEN_ALL, QA_INT_ALL, true) command sends
a trigger to generate output waveform and start integration. The measurement is
repeated 100 times by the outer loop.

// repeat sequence 10000 times
repeat (100) {

repeat (100) {
// wait for a trigger over ZSync. Assume the trigger period

is longer than the cycle time
// waitZSyncTrigger();

// alternatively wait for a trigger from digital trigger 1
waitDigTrigger(1);

// wait for 4096 Samples between the trigger and the first
readout pulse

// Note: this playZero command does not yet block the
sequencer

playZero(4096);

// define how many samples to wait between the two upcoming
startQA commands

// Note: this command blocks the sequencer until the previous
playZero command is finished

playZero(32);

// play all pulses stored in Waveform Memory and read out
using all Integration Weights

4.2. Quantum Analyzer Tutorials

113 Zurich Instruments SHFQC User Manual

startQA(QA_GEN_ALL, QA_INT_ALL);
}

}

The digital trigger set on the Trigger sub-tab is Internal Trigger. The configuration of the
internal is shown in Figure 4.56 and Table 4.43.

Figure 4.56: Configurations of Internal Trigger on DIO Tab.

Table 4.43: Settings of Internal Trigger on DIO Setup Tab, see details on

Parameter Setting Description

Repetitions 10000 Set number of repetitions.

Holdoff (s) 100u Set holdoff time to 100 s.

Synchronization Disable Disable Synchronization.

Run/Stop Disable Disable the internal trigger.

Configure signal generation and data acquisition
Signal generation and data acquisition are defined on QA Setup Tab and QA Result
logger Tab.

Figure 4.57: Configurations on QA Setup Tab.

The baseband readout waveform is generated by summing up all waveforms saved in
the Waveform Memory. The input signal after frequency down-conversion is integrated
with 8 integration weights saved in integration weight units for 2048 ns started 224 ns
later after receiving a digital trigger.
We use Readout mode for multiplex qubit readout (Table 4.44) and generate both
readout waveforms and Integration weights parametrically (Table 4.45 and Table 4.46).
In this tutorial, the integration weight is simply a conjugate of the readout waveforms.
To achieve high readout fidelity optimal weights should be measured and uploaded,
see how to measure optimal weights in Integration Weights Measurement. Thresholds
need to be uploaded if qubit state discrimination is required.
Table 4.44: Application Settings of QA Channel 1 on QA Setup Tab.

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

μ\muμ

3.

4.2. Quantum Analyzer Tutorials

114 Zurich Instruments SHFQC User Manual

Parameter Setting Description

Application
Mode

Readout Use Readout mode for multiplex qubit readout. In Readout
mode, readout output waveforms is generated by summing
up readout waveforms in the Waveform Memory slots, thus
the instrument is able to readout to 16 qubits per channel in
parallel. In spectroscopy mode, readout waveform is
generated by a digital oscillator. Since there is only 1 digital
oscillator per channel, thus only single qubit readout is
possible in Spectroscopy mode.

Integration
Delay (s)

224 n Set the delay time after receiving a trigger before starting
integration. This setting ensures only expected input signal
is integrated. The internal delay from signal generation to
integration is about 224 ns. Therefore integration delay is >
224 ns if the propagation delay from front panel signal
output port to signal input port is not negligible.

Table 4.45: Readout Pulse Generation Settings of QA Channel 1 on QA Setup Tab.

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Clear Waveform Click "Clear" Clear all waveforms saved in Waveform Memory. Clear
all waveforms before uploading new ones to avoid
incorrect waveform generation or output overflow.

Waveform
Memory Set
Mode

Parametric Generate waveform parametrically saved in
Waveform Memory slot (is from 1 to 8). The
parametrically generated waveform is ,
where is the dimensionless amplitude factor of the
waveform, is the frequency in units of Hz, is the
phase in units of degree.

Waveform
Memory
Amplitude

0.1 Set amplitude factor of the parametrically
generated waveform saved in Waveform Memory slot
 (is from 1 to 8) to 0.1. This setting ensures the
amplitude factor of sum of all waveforms is 1.

Waveform
Memory
Frequency (Hz)

10e6 Set readout frequency of the parametrically
generated waveform saved in Waveform Memory slot
 (is from 1 to 8) to 10e6 Hz.

Waveform
Memory Phase
(Deg)

0 Set phase of the parametrically generated
waveform saved in Waveform Memory slot (is from
1 to 8) to 0 degree.

Waveform
Memory
Window Length

4096 Set length of the parametrically generated waveform
saved in Waveform Memory slot (is from 1 to 8) in
number of samples.

Waveform
Memory Set To
Device

click "Set To
Device"

Upload the parametrically generated waveform to
Waveform Memory slot (is from 1 to 8).

Table 4.46: Integration Weights Settings of QA Channel 1 on QA Setup Tab.

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Integration
Length

4096 Set the integration length in number of samples.

Clear Weights Click "Clear" Clear all weights saved in Integration Weight slots.
Clear all weights before uploading new ones to avoid
incorrect weight generation.

iii iii iii
Aei(2πft+π180ϕ)Ae^{i (2 \pi f t + \frac{\pi}{180}\phi)}Aei(2πft+ ϕ)180

π

AAA
fff ϕ\phiϕ

iii
AAA

iii iii
≤\le≤

iii
×i\times i×i fff

iii iii ×i\times i×i

iii
ϕ\phiϕ

iii iii

iii iii iii

iii iii iii

4.2. Quantum Analyzer Tutorials

115 Zurich Instruments SHFQC User Manual

Parameter Setting Description

Integration
Weights Set
Mode

Parametric Generate integration weight parametrically saved in
Integration Weights unit (is from 1 to 8). The
parametrically generated integration weight is

 , where is the dimensionless
amplitude factor of the integration weight, is the
frequency in units of Hz, is the phase in units of
degree.

Integration
Weights
Amplitude

1 Set amplitude factor of the parametrically
generated integration weight saved in Integration
Weights unit (is from 1 to 8)

Integration
Weights
Frequency (Hz)

10e6 Set readout frequency of the parametrically
generated integration weight saved in Integration
Weights unit (is from 1 to 8) to 10e6 Hz same as
the frequency of readout waveform saved in
Waveform Memory slot i.

Integration
Weights Phase
(Deg)

0 Set phase of the parametrically generated
integration weight saved in Integration Weights unit
(is from 1 to 8) to 0 degree.

Integration
Weights
Window Length

4096 Set length of the integration weight saved in
Integration Weights unit (is from 1 to 8) in number of
samples.

Integration
Weights Set To
Device

Click "Set To
Device"

Upload the parametrically generated integration
weight to Integration Weight unit 1. Use the same
setting for 8 integration weights saved in the first 8
Integration Weight Units.

How the measurement results are averaged and displayed are defined on QA Result
Logger Tab, see Figure 4.58 and Table 4.47.

Figure 4.58: Configurations on QA Result Logger Tab.

Table 4.47: Settings of QA Channel 1 on QA Result Logger Tab, see details on

Parameter Setting Description

QA Channel
Selection

1 Select QA Channel 1.

Sub-Tab Readout Select Readout sub-tab to monitor
measurement result in Readout Mode.

Display Source Integration Display result after integration to monitor results
in IQ plane. Choose "Integration (I, Q, Amp,
Phase)" If it is desired. Choose "Threshold" if
qubit state discrimination is desired.

Result Length
(Sample)

100 Set result length in number of samples. The
number must match what is set in the sequence
program.

Averages 100 Set the number of averages. The number must
match what is set in the sequence program.

iii iii iii

A′e−i(2πf′t+π180ϕ)
′A'e^{-i (2 \pi f' t + \frac{\pi}{180}\phi)'}
A e′ −i(2πf t+ ϕ)′

180
π ′

A′A'A′

f′f'f ′

ϕ′
\
p
h
i
'

ϕ′

iii
′A'AA′

iii iii

iii
×i\times i×i f′f'f ′

iii iii ×i\times i×i

iii
ϕ′
\
p
h
i
'

ϕ′

iii
iii

iii iii iii

iii

4.2. Quantum Analyzer Tutorials

116 Zurich Instruments SHFQC User Manual

Parameter Setting Description

Average Mode Cyclic Set the average mode to cyclic. This setting must
match how the loop is configured in the
sequence program.

Vertical Axis
Groups

Add QA 1 Result
Wave Value (is
from 1 to 8)

Add 8 qubit results to the plot.

Run/Stop Enable Run the result logger to receive and display
measurement results.

Run the measurement
Click "Run/Stop" icon on the System Settings sub-tab of DIO tab to run the measurement.
Monitor the measurement results
The measurement result is displayed on QA Result Tab, as shown in Figure 4.59. The data
format of measurement result is complex data. The spread of the readout results indicates
that each component of the input signal has a similar amplitude but different phase delay.

Figure 4.59: Measurement results on QA Result Logger Tab.

zhinst-toolkit
Connect the instrument
Create a toolkit session to the data server and connect the device with the device ID, e.g.
'DEV12001', see Connecting to the Instrument.

from zhinst.toolkit import Session, SHFQAChannelMode, Waveforms
from scipy.signal import gaussian
import numpy as np

DEVICE_ID = 'DEVXXXXX'
SERVER_HOST = 'localhost'

session = Session(SERVER_HOST) ## connect to data server
device = session.connect_device(DEVICE_ID) ## connect to device

Generate readout pulses and integration weights
To readout 8 qubits in parallel, 8 readout pulses with different amplitude, frequency and
phase are summed up to generate a single output signal. Please note that the maximum
amplitude of the sum of all readout pulses should not exceed 1.

generate readout pulses
NUM_QUBITS = 8
RISE_FALL_TIME = 10e-9 # in units of second
SAMPLING_RATE = 2e9 # in units of Hz
PULSE_DURATION = 500e-9 # in units of second
FREQUENCIES = np.linspace(32e6, 120e6, NUM_QUBITS) # in units of Hz
SCALING = 0.9 / NUM_QUBITS # amplitude scaling factor

rise_fall_len = int(RISE_FALL_TIME * SAMPLING_RATE)
pulse_len = int(PULSE_DURATION * SAMPLING_RATE)
std_dev = rise_fall_len // 10

iii
iii

2.

3.

1.

2.

4.2. Quantum Analyzer Tutorials

117 Zurich Instruments SHFQC User Manual

gauss = gaussian(2 * rise_fall_len, std_dev)
flat_top_gaussian = np.ones(pulse_len)
flat_top_gaussian[0:rise_fall_len] = gauss[0:rise_fall_len]
flat_top_gaussian[-rise_fall_len:] = gauss[-rise_fall_len:]
flat_top_gaussian *= SCALING
time_vec = np.linspace(0, PULSE_DURATION, pulse_len)

readout_pulses = Waveforms()
for i, f in enumerate(FREQUENCIES):

readout_pulses.assign_waveform(
slot=i,
wave1=flat_top_gaussian * np.exp(2j * np.pi * f * time_vec)

)

generate integration weights
ROTATION_ANGLE = 0
weights = Waveforms()
for waveform_slot, pulse in readout_pulses.items():

weights.assign_waveform(
slot=waveform_slot,
wave1=np.conj(pulse[0] * np.exp(1j * ROTATION_ANGLE)) /

np.abs(pulse[0])
)

In this tutorial, the envelope of all readout pulses is flat-top Gaussian with pulse length of 500
ns and rise and fall time of 10 ns, all amplitude are equally scaled by a factor of 0.9 and
divided by the number of qubits, 8 readout frequencies span from 32 MHz to 120 MHz, and all
phases are set to 0. The zhinst-toolkit class Waveforms is for converting waveform data
written in Python to data that can be uploaded to the instrument correctly.
In Readout mode, the frequency down-converted signal is integrated with the integration
weights. Tutorial Integration Weights Measurement. shows how to measure integration
weights to improve the SNR. In this tutorial, conjugated readout pulses with the amplitude
scaling factor of 1 are used and uploaded to the integration weight memory. The integration
delay can be measured with the SHFQC Scope triggered by Sequencer Monitor Trigger.
Configure the Channel
Configure the Channel such that the readout pulses are integrated with different integration
weights in parallel, and the measurement is repeated 10000 times.

CHANNEL_INDEX = 0 # physical Channel 1
NUM_READOUTS = 100
NUM_AVERAGES = 100
MODE_AVERAGES = 0 # 0: cyclic; 1: sequential;
INTEGRATION_TIME = PULSE_DURATION # in units of second

upload readout pulses and integration weights to waveform memory
device.qachannels[CHANNEL_INDEX].generator.clearwave() # clear all readout
waveforms
device.qachannels[CHANNEL_INDEX].generator.write_to_waveform_memory(readout_
pulses)
device.qachannels[CHANNEL_INDEX].readout.integration.clearweight() # clear
all integration weights
device.qachannels[CHANNEL_INDEX].readout.write_integration_weights(

weights=weights,
compensation for the delay between generator output and input of the

integration unit
integration_delay=224e-9

)

with device.set_transaction():
configure inputs and outputs
device.qachannels[CHANNEL_INDEX].configure_channel(

center_frequency=5e9, # in units of Hz
input_range=-30, # in units of dBm
output_range=-30, # in units of dBm
mode=SHFQAChannelMode.READOUT, # READOUT or SPECTROSCOPY

3.

4.2. Quantum Analyzer Tutorials

118 Zurich Instruments SHFQC User Manual

)
device.qachannels[CHANNEL_INDEX].input.on(1)
device.qachannels[CHANNEL_INDEX].output.on(1)

configure sequencer
device.qachannels[CHANNEL_INDEX].generator.configure_sequencer_triggerin

g(
aux_trigger=8, # internal trigger
play_pulse_delay=0, # 0s delay between startQA trigger and the

readout pulse
)

seqc_program = f"""
 repeat({int(NUM_READOUTS * NUM_AVERAGES)}){{
 waitDigTrigger(1);
 startQA(QA_GEN_ALL, QA_INT_ALL, true, 0, 0x0);

}}
 """

device.qachannels[CHANNEL_INDEX].generator.load_sequencer_program(seqc_p
rogram)

configure internal trigger
device.system.internaltrigger.repetitions(int(NUM_READOUTS * NUM_AVERAGE

S))
device.system.internaltrigger.holdoff(100e-6)

configure QA setup and QA result logger
device.qachannels[CHANNEL_INDEX].readout.integration.length(int(INTEGRAT

ION_TIME * SAMPLING_RATE))
device.qachannels[CHANNEL_INDEX].readout.configure_result_logger(

result_length=NUM_READOUTS,
result_source='result_of_integration', # “result_of_integration” or

“result_of_discrimination”.
num_averages=NUM_AVERAGES,
averaging_mode=MODE_AVERAGES,

)

The Readout pulses and integration weights with assigned waveform memory slots are
uploaded using generator.write_to_waveform_memory to the waveform memory after
clear all waveforms which may saved in the waveform memory previously.
The input range and output range of the Channel 1 is set to -30 dBm, and the center
frequency is 5 GHz. There are 2 application modes see Quantum Analyzer Setup Tab. For
multiplex readout, Readout mode is selected in order to use customized integration weights
for different qubits. All settings are configured using qachannels[n].configure_channel
function. The function configure_sequencer_triggering and load_sequencer_program
are used to configure the sequence trigger and upload the sequence program, respectively.
The measurement sequence is defined by the SeqC program such that it sends out the
readout pulse and integrates the signal for 500 ns with the integration delay of 224 ns after
receiving a trigger (Internal Trigger). The measurement is repeated 10000 times. These
parameters are configured by the function readout.configure_result_logger.
The result after integration and averaging is saved to the QA Result Logger. This configuration
can be used to calibrate control pulses and characterize the qubits, measure thresholds
without averaging for state discrimination or readout fidelity if the result source is set to
'result_of_discrimination' and the thresholds are updated using
device.qachannels[CHANNEL_INDEX].readout.discriminators[n].threshold() (n is
the qubit index).
Run the measurement, download and plot the result
Before starting the measurement, the QA Result Logger is enabled to be ready to get the
result, and the Sequencer is enabled by enable_sequencer to be ready to run the sequence
once receive an internal trigger. The measurement result is returned by readout.read
function, and it is also displayed in QA Result Logger Tab see Figure 4.60.

device.qachannels[CHANNEL_INDEX].readout.run() # enable QA Result Logger
device.qachannels[CHANNEL_INDEX].generator.enable_sequencer(single=True)
device.system.internaltrigger.enable(1)
readout_results = device.qachannels[CHANNEL_INDEX].readout.read()

4.

4.2. Quantum Analyzer Tutorials

119 Zurich Instruments SHFQC User Manual

Figure 4.60: Multiplexed readout of 8 qubits in loopback configuration.

Use the following code snippet to plot the readout result as seen in Figure 4.61

import matplotlib.pyplot as plt

plt.figure()
for i in range(NUM_QUBITS):

plt.plot(readout_results[i].real, readout_results[i].imag, '.', label =
f'Q{i}')
plt.legend()
plt.grid("both")
plt.axis("equal")
plt.xlabel("I (Vrms)")
plt.ylabel("Q (Vrms)")
plt.tight_layout()

Figure 4.61: Multiplexed readout of 8 qubits in loopback configuration.

4.2. Quantum Analyzer Tutorials

120 Zurich Instruments SHFQC User Manual

5. Functional Description
This chapter gives a detailed description of the setup and measurement functionality of the Zurich
Instruments SHFSG. The sections provide details and a complete settings overview of the setup
configurations - mainly accessible through our LabOne general user interface - and the measurement
functionality blocks depicted in the functional diagram. The explanations focus on introducing the
respective functionalities and how to configure them using either the APIs and/or the LabOne user
interface.

5.1. Setup Functionality

This chapter gives a detailed description of the setup functionality available through the LabOne
User Interface (UI) that is common to all Zurich Instruments' devices. LabOne provides a Data Server
and a Web Server to control the Instrument with any of the most common web browsers (e.g. Firefox,
Chrome, Edge, etc.). This platform-independent architecture supports interaction with the
Instrument using various devices (PCs, tablets, smartphones, etc.) - even at the same time if needed.

On top of standard functionality like acquiring and saving data points, or session-handling, the
SHFQC-specific functionality of the GUI is provided in the Measurement Functionality.

Note

Some of the pictures in the following sections may not show SHFQC-specific nodes, functionality or
pictures.

5.1.1. User Interface Overview

5.1.2. UI Nomenclature

This section provides an overview of the LabOne User Interface, its main elements and naming
conventions. The LabOne User Interface is a browser-based UI provided as the primary interface to
the SHFSG instrument. Multiple browser sessions can access the instrument simultaneously and
the user can have displays on multiple computer screens. Parallel to the UI, the instrument can be
controlled and read out by custom programs written in any of the supported languages (e.g.
LabVIEW, MATLAB, Python, C) connecting through the LabOne APIs.

Figure 5.1: LabOne User Interface (default view)

The LabOne User Interface automatically opens some tabs by default after a new UI session has
been started. At start-up, the UI is divided into two tab rows, each containing a tab structure that
gives access to the different LabOne tools. Depending on display size and application, tab rows can
be freely added and deleted with the control elements on the right-hand side of each tab bar.
Similarly, the individual tabs can be deleted or added by selecting app icons from the side bar on the

5. Functional Description

121 Zurich Instruments SHFQC User Manual

left. A click on an icon adds the corresponding tab to the display, alternatively the icon can be
dragged and dropped into one of the tab rows. Moreover, tabs can be moved by drag-and-drop
within a row or across rows.

Table 5.1 gives a brief descriptions and naming conventions for the most important UI items.

Table 5.1: LabOne User Interface features

Item
name

Position Description Contains

side bar left-hand
side of the UI

contains app icons for each of the available tabs
- a click on an icon adds or activates the
corresponding tab in the active tab row

app icons

status
bar

bottom of
the UI

contains important status and warning
indicators, device and session information, and
access to the command log

status indicators

main
area

center of the
UI

accommodates all active tabs – new rows can
be added and removed by using the control
elements in the top right corner of each tab row

tab rows, each
consisting of tab bar
and the active tab area

tab area inside of
each tab

provides the active part of each tab consisting
of settings, controls and measurement tools

sections, plots, sub-
tabs, unit selections

Further items are highlighted in Figure 5.2.

Figure 5.2: LabOne User Interface (more items)

Unique Set of Analysis Tools

All instruments feature a comprehensive tool set for signal generation and sequence programming.

The following table gives the overview of all app icons. Note that the selection of app icons may
depend on the upgrade options installed on a given instrument.

Table 5.2: Overview of app icons and short description

Control/
Tool

Option/
Range

Description

Config Provides access to software configuration.

Device Provides instrument specific settings.

Files Access settings and measurement data files on the host computer.

In/Out Gives access to all controls relevant for the Signal Inputs and Signal
Outputs of each channel.

Mod Access to all the settings of the digital modulation.

DIO Gives access to all controls relevant for the digital inputs and outputs
including DIO, Trigger Inputs, Trigger Outputs, and Marker Outputs.

5.1. Setup Functionality

122 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/
Range

Description

AWG Generate arbitrary signals using sequencing and sample-by-sample
definition of waveforms.

ZI Labs Experimental settings and controls.

Table 5.3 provides a quick overview over the different status bar elements along with a short
description.

Table 5.3: Status bar description

Control/
Tool

Option/
Range

Description

Command
log

last
command

Shows the last command. A different formatting (MATLAB, Python, ..) can
be set in the config tab. The log is also saved in [User]
\Documents\Zurich Instruments\LabOne\WebServer\Log

Show Log Show the command log history in a separate browser window.

Errors Errors Display system errors in separate browser tab.

Device devXXX Indicates the device serial number.

Identify
Device

When active, device LED blinks

MDS grey/green/
red/yellow

Multiple device synchronization indicator. Grey: Nothing to synchronize -
single device on the UI. Green: All devices on the UI are correctly
synchronized. Yellow: MDS sync in progress or only a subset of the
connected devices is synchronized. Red: Devices not synchronized or
error during MDS sync.

REC grey/red A blinking red indicator shows ongoing data recording (related to global
recording settings in the Config tab).

RCO grey/
yellow/red

Router Channel Overflow - Red: present overflow condition on the
channel. Yellow: indicates an overflow occurred in the past.

CF grey/
yellow/red

Clock Failure - Red: present malfunction of the external 10 MHz reference
oscillator. Yellow: indicates a malfunction occurred in the past.

OVI grey/
yellow/red

Signal Input Overload - Red: present overload condition on the signal
input also shown by the red front panel LED. Yellow: indicates an
overload occurred in the past.

OVO grey/
yellow/red

Overload Signal Output - Red: present overload condition on the signal
output. Yellow: indicates an overload occurred in the past.

COM grey/
yellow/red

Packet Loss - Red: present loss of data between the device and the host
PC. Yellow: indicates a loss occurred in the past.

COM grey/
yellow/red

Sample Loss - Red: present loss of sample data between the device and
the host PC. Yellow: indicates a loss occurred in the past.

C Reset status flags: Clear the current state of the status flags

Full
Screen

Toggles the browser between full screen and normal mode.

Plot Functionality

Several tools, such as the Waveform Viewer, provide a graphical display of data in the form of plots.
These are multi-functional tools with zooming, panning and cursor capability. This section
introduces some of the highlights.

5.1. Setup Functionality

123 Zurich Instruments SHFQC User Manual

Plot Area Elements

Plots consist of the plot area, the X range and the range controls. The X range (above the plot area)
indicates which section of the wave is displayed by means of the blue zoom region indicators. The
two ranges show the full scale of the plot which does not change when the plot area displays a
zoomed view. The two axes of the plot area instead do change when zoom is applied.

The mouse functionality inside of a plot greatly simplifies and speeds up data viewing and
navigation.

Table 5.4: Mouse functionality inside plots

Name Action Description Performed inside

Panning left click on any
location and move
around

moves the waveforms plot area

Zoom X axis mouse wheel zooms in and out the X
axis

plot area

Zoom Y axis shift + mouse wheel zooms in and out the Y
axis

plot area

Window zoom shift and left mouse
area select

selects the area of the
waveform to be zoomed in

plot area

Absolute jump
of zoom area

left mouse click moves the blue zoom
range indicators

X and Y range, but outside of
the blue zoom range
indicators

Absolute move
of zoom area

left mouse drag-
and-drop

moves the blue zoom
range indicators

X and Y range, inside of the
blue range indicators

Full Scale double click set X and Y axis to full
scale

plot area

Each plot area contains a legend that lists all the shown signals in the respective color. The legend
can be moved to any desired position by means of drag-and-drop.

The X range and Y range plot controls are described in simpara_title.

Note

Plot data can be conveniently exported to other applications such as Excel or Matlab by using
LabOne’s Net Link functionality, see LabOne Net Link for more information.

Table 5.5: Plot control description

Control/
Tool

Option/
Range

Description

Axis scaling
mode

Selects between automatic, full scale and manual axis scaling.

Axis
mapping
mode

Select between linear, logarithmic and decibel axis mapping.

Axis zoom in Zooms the respective axis in by a factor of 2.

Axis zoom
out

Zooms the respective axis out by a factor of 2.

Rescale axis
to data

Rescale the foreground Y axis in the selected zoom area.

Save figure Generates PNG, JPG or SVG of the plot area or areas for dual plots to
the local download folder.

5.1. Setup Functionality

124 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/
Range

Description

Save data Generates a CSV file consisting of the displayed wave or histogram
data (when histogram math operation is enabled). Select full scale to
save the complete wave. The save data function only saves one shot at
a time (the last displayed wave).

Cursor
control

Cursors can be switch On/Off and set to be moved both independently
or one bound to the other one.

Net Link Provides a LabOne Net Link to use displayed wave data in tools like
Excel, MATLAB, etc.

Cursors and Math

The plot area provides two X and two Y cursors which appear as dashed lines inside of the plot area.
The four cursors are selected and moved by means of the blue handles individually by means of
drag-and-drop. For each axis, there is a primary cursor indicating its absolute position and a
secondary cursor indicating both absolute and relative position to the primary cursor.

Cursors have an absolute position which does not change upon pan or zoom events. In case a cursor
position moves out of the plot area, the corresponding handle is displayed at the edge of the plot
area. Unless the handle is moved, the cursor keeps the current position. This functionality is very
effective to measure large deltas with high precision (as the absolute position of the other cursors
does not move).

The cursor data can also be used to define the input data for the mathematical operations
performed on plotted data. This functionality is available in the Math sub-tab of each tool. The Table
5.6 gives an overview of all the elements and their functionality. The chosen Signals and Operations
are applied to the currently active trace only.

Note

Cursor data can be conveniently exported to other applications such as Excel or MATLAB by using
LabOne’s Net Link functionality, see LabOne Net Link for more information.

Table 5.6: Plot math description

Control/
Tool

Option/Range Description

Source
Select

Select from a list of input sources for math operations.

Cursor Loc Cursor coordinates as input data.

Cursor Area Consider all data of the active trace inside the rectangle defined by
the cursor positions as input for statistical functions (Min, Max,
Avg, Std).

Tracking Display the value of the active trace at the position of the
horizontal axis cursor X1 or X2.

Plot Area Consider all data of the active trace currently displayed in the plot
as input for statistical functions (Min, Max, Avg, Std).

Peak Find positions and levels of up to 5 highest peaks in the data.

Trough Find positions and levels of up to 5 lowest troughs in the data.

Histogram Display a histogram of the active trace data within the x-axis range.
The histogram is used as input to statistical functions (Avg, Std).
Because of binning, the statistical functions typically yield different
results than those under the selection Plot Area.

Resonance Display a curve fitted to a resonance.

Linear Fit Display a linear regression curve.

5.1. Setup Functionality

125 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/Range Description

Operation
Select

Select from a list of mathematical operations to be performed on
the selected source. Choice offered depends on the selected
source.

Cursor Loc: X1,
X2, X2-X1, Y1, Y2,
Y2-Y1, Y2 / Y1

Cursors positions, their difference and ratio.

Cursor Area: Min,
Max, Avg, Std

Minimum, maximum value, average, and bias-corrected sample
standard deviation for all samples between cursor X1 and X2. All
values are shown in the plot as well.

Tracking: Y(X1),
Y(X2), ratioY,
deltaY

Trace value at cursor positions X1 and X2, the ratio between these
two Y values and their difference.

Plot Area: Min,
Max, Pk Pk, Avg,
Std

Minimum, maximum value, difference between min and max,
average, and bias-corrected sample standard deviation for all
samples in the x axis range.

Peak: Pos, Level Position and level of the peak, starting with the highest one. The
values are also shown in the plot to identify the peak.

Histogram: Avg,
Std, Bin Size,
(Plotter tab only:
SNR, Norm Fit,
Rice Fit)

A histogram is generated from all samples within the x-axis range.
The bin size is given by the resolution of the screen: 1 pixel = 1 bin.
From this histogram, the average and bias-corrected sample
standard deviation is calculated, essentially assuming all data
points in a bin lie in the center of their respective bin. When used in
the plotter tab with demodulator or boxcar signals, there
additionally are the options of SNR estimation and fitting statistical
distributions to the histogram (normal and rice distribution).

Resonance: Q,
BW, Center, Amp,
Phase, Fit Error

A curve is fitted to a resonator. The fit boundaries are determined
by the two cursors X1 and X2. Depending on the type of trace
(Demod R or Demod Phase) either a Lorentzian or an inverse
tangent function is fitted to the trace. The Q is the quality factor of
the fitted curve. BW is the 3dB bandwidth (FWHM) of the fitted
curve. Center is the center frequency. Amp gives the amplitude
(Demod R only), whereas Phase returns the phase at the center
frequency of the resonance (demod Phase only). The fit error is
given by the normalized root-mean-square deviation. It is
normalized by the range of the measured data.

Linear Fit:
Intercept, Slope,
R²

A simple linear least squares regression is performed using a QR
decomposition routine. The fit boundaries are determined by the
two cursors X1 and X2. The parameter outputs are the Y-axis
intercept, slope and the R²-value, which is the coefficient of
determination to determine the goodness-of-fit.

Add Add the selected math function to the result table below.

Add All Add all operations for the selected signal to the result table below.

Clear
Selected

Clear selected lines from the result table above.

Clear All Clear all lines from the result table above.

Copy Copy selected row(s) to Clipboard as CSV

Unit Prefix Adds a suitable prefix to the SI units to allow for better readability
and increase of significant digits displayed.

CSV Values of the current result table are saved as a text file into the
download folder.

Net Link Provides a LabOne Net Link to use the data in tools like Excel,
MATLAB, etc.

Help Opens the LabOne User Interface help.

5.1. Setup Functionality

126 Zurich Instruments SHFQC User Manual

Note

The standard deviation is calculated using the formula for the unbiased

estimator of the sample standard deviation with a total of N samples and an arithmetic average
 . The formula above is used as-is to calculate the standard deviation for the Histogram Plot Math

tool. For large number of points (Cursor Area and Plot Area tools), the more accurate pairwise
algorithm is used (Chan et al., "Algorithms for Computing the Sample Variance: Analysis and
Recommendations", The American Statistician 37 (1983), 242-247).

Tree Selector

The Tree selector allows one to access streamed measurement data in a hierarchical structure by
checking the boxes of the signals that should be displayed. The tree selector also supports data
selection from multiple instruments, where available. Depending on the tool, the Tree selector is
either displayed in a separate Tree sub-tab, or it is accessible by a click on the button.

Figure 5.3: Tree selector with Display drop-down menu

Vertical Axis Groups

Vertical Axis groups are available as part of the plot functionality in many of the LabOne tools. Their
purpose is to handle signals with different axis properties within the same plot. Signals with
different units naturally have independent vertical scales even if they are displayed in the same plot.
However, signals with the same unit should preferably share one scaling to enable quantitative
comparison. To this end, the signals are assigned to specific axis group. Each axis group has its own
axis system. This default behavior can be changed by moving one or more signals into a new group.

The tick labels of only one axis group can be shown at once. This is the foreground axis group. To
define the foreground group click on one of the group names in the Vertical Axis Groups box. The
current foreground group gets a high contrast color.

Select foreground group

1N−1∑i=1N(xi−xˉ)2\sqrt \frac{1}{N-1}\sum_{i=1}^{N}(x_i-\bar{x})^2(x −N−1
1 ∑i=1

N
i)x̄ 2

xix_ixi
xˉ\bar{x}x̄

5.1. Setup Functionality

127 Zurich Instruments SHFQC User Manual

Click on a signal name or group name inside the Vertical Axis Groups. If a group is empty the
selection is not performed.

Split the default vertical axis group

Use drag-and-drop to move one signal on the field [Drop signal here to add a new group]. This
signal will now have its own axis system.

Change vertical axis group of a signal

Use drag-and-drop to move a signal from one group into another group that has the same unit.

Group separation

In case a group hosts multiple signals and the unit of some of these signals changes, the group will
be split in several groups according to the different new units.

Remove a signal from the group

In order to remove a signal from a group drag-and-drop the signal to a place outside of the Vertical
Axis Groups box.

Remove a vertical axis group

A group is removed as soon as the last signal of a custom group is removed. Default groups will
remain active until they are explicitly removed by drag-and-drop. If a new signal is added that match
the group properties it will be added again to this default group. This ensures that settings of default
groups are not lost, unless explicitly removed.

Rename a vertical axis group

New groups get a default name "Group of ...". This name can be changed by double-clicking on the
group name.

Hide/show a signal

Uncheck/check the check box of the signal. This is faster than fetching a signal from a tree again.

Figure 5.4: Vertical Axis Group typical drag and drop moves.

Demodulator data is only available when using a Zurich Instruments lock-in amplifier from the SHF,
UHF, HF, or MF series.

Table 5.7: Vertical Axis Groups description

Control/
Tool

Option/
Range

Description

Vertical Axis
Group

Manages signal groups sharing a common vertical axis. Show or hide
signals by changing the check box state. Split a group by dropping
signals to the field [Drop signal here to add new group]. Remove signals
by dragging them on a free area.

Rename group names by editing the group label. Axis tick labels of the
selected group are shown in the plot. Cursor elements of the active
wave (selected) are added in the cursor math tab.

Signal Type Select signal types for the Vertical Axis Group.

Channel integer
value

Selects a channel to be added.

Signal integer
value

Selects signal to be added.

5.1. Setup Functionality

128 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/
Range

Description

Add Signal Adds a signal to the plot. The signal will be added to its default group. It
may be moved by drag and drop to its own group. All signals within a
group share a common y-axis. Select a group to bring its axis to the
foreground and display its labels.

Window
Length

2 s to 12 h Window memory depth. Values larger than 10 s may cause excessive
memory consumption for signals with high sampling rates. Auto scale or
pan causes a refresh of the display for which only data within the
defined window length are considered.

Trends

The Trends tool lets the user monitor the temporal evolution of signal features such as minimum and
maximum values, or mean and standard deviation. This feature is available for the tab. Using the
Trends feature, one can monitor all the parameters obtained in the Math sub-tab of the
corresponding tab.

The Trends tool allows the user to analyze recorded data on a different and adjustable time scale
much longer than the fast acquisition of measured signals. It saves time by avoiding post-processing
of recorded signals and it facilitates fine-tuning of experimental parameters as it extracts and
shows the measurement outcome in real time.

To activate the Trends plot, enable the Trends button in the Control sub-tab of the corresponding
main tab. Various signal features can be added to the plot from the Trends sub-tab in the Vertical
Axis Groups . The vertical axis group of Trends has its own Run/Stop button and Length setting
independent from the main plot of the tab. Since the Math quantities are derived from the raw
signals in the main plot, the Trends plot is only shown together with the main plot. The Trends
feature is only available in the LabOne user interface and not at the API level.

5.1.3. Config Tab

The Config tab provides access to all major LabOne settings and is available on all SHFSG
instruments.

Features

 define instrument connection parameters
 browser session control
 define UI appearance (grids, theme, etc.)
 store and load instrument settings and UI settings
 configure data recording

Description

The Config tab serves as a control panel for all general LabOne settings and is opened by default on
start-up. Whenever the tab is closed or an additional one of the same type is needed, clicking the
following icon will open a new instance of the tab.

Table 5.8: App icon and short description

Control/Tool Option/Range Description

Config Provides access to software configuration.

The Config tab (see LabOne UI: Config tab) is divided into four sections to control connections,
sessions, settings, user interface appearance and data recording.

5.1. Setup Functionality

129 Zurich Instruments SHFQC User Manual

Figure 5.5: LabOne UI: Config tab

The Connection section provides information about connection and server versions. Access from
remote locations can be restricted with the connectivity setting.

The Session section provides the session number which is also displayed in the status bar. Clicking
on Session Dialog opens the session dialog window (same as start up screen) that allows one to load
different settings files as well as to connect to other instruments.

The Settings section allows one to load and save instrument and UI settings. The saved settings are
later available in the session dialog.

The User Preferences section contains the settings that are continuously stored and automatically
reloaded the next time an SHFSG instrument is used from the same computer account.

For low ambient light conditions the use of the dark display theme is recommended (see Figure 5.6).

Figure 5.6: LabOne UI: Config tab - dark theme

Functional Elements

Table 5.9: Config tab

Control/
Tool

Option/Range Description

About Get information about LabOne software.

Web Server
Version and
Revision

string Web Server version and revision number

Host default is localhost:
127.0.0.1

IP-Address of the LabOne Web Server

Port 4 digit integer LabOne Web Server TCP/IP port

Data Server
Version and
Revision

string Data Server version and revision number

Host default is localhost:
127.0.0.1

IP-Address of the LabOne Data Server

Port default is 8004 TCP/IP port used to connect to the LabOne Data Server.

Connect/
Disconnect

Connect/disconnect the LabOne Data Server of the
currently selected device. If a LabOne Data Server is
connected only devices that are visible to that specific
server are shown in the device list.

Status grey/green Indicates whether the LabOne User Interface is connected
to the selected LabOne data server. Grey: no connection.
Green: connected. Red: error while connecting.

Connectivity From Everywhere Forbid/Allow to connect to this Data Server from other
computers.

Localhost Only

5.1. Setup Functionality

130 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/Range Description

File Upload drop area Drag and drop files in this box to upload files. Clicking on the
box opens a file dialog for file upload.

Supported files: Settings (*.xml).

Session Id integer number Session identifier. A session is a connection between a
client and LabOne Data Server.

Session
Manager

Open the session manager dialog. This allows for device or
session change. The current session can be continued by
pressing cancel.

File Name selection of available
file names

Save/load the device and user interface settings to/from
the selected file on the internal flash drive. The setting files
can be downloaded/uploaded using the Files tab.

Include Enable Save/Load of particular settings.

No Include Settings Please enable settings type to be included during Save/
Load.

Include Device Enable Save/Load of Device settings.

Include UI Enable Save/Load of User Interface settings.

Include UI and
Device

Enable Save/Load of User Interface and Device settings.

Include Preferences Enable loading of User Preferences from settings file.

Include UI, Device
and Preferences

Enable Save/Load of User Interface, Device and User
Preferences.

Save Save the user interface and device setting to a file.

Load Load the user interface and device setting from a file.

Language Choose the language for the tooltips.

Display
Theme

Dark Choose theme of the user interface.

Light

Plot Print
Theme

Dark Choose theme for printing SVG plots.

Light

Plot Grid None Select active grid setting for all SVG plots.

Dashed

Solid

Plot
Rendering

Select rendering hint about what tradeoffs to make as the
browser renders SVG plots. The setting has impact on
rendering speed and plot display for both displayed and
saved plots.

Auto Indicates that the browser shall make appropriate tradeoffs
to balance speed, crisp edges and geometric precision, but
with geometric precision given more importance than
speed and crisp edges.

Optimize Speed The browser shall emphasize rendering speed over
geometric precision and crisp edges. This option will
sometimes cause the browser to turn off shape anti-
aliasing.

Crisp Edges Indicates that the browser shall attempt to emphasize the
contrast between clean edges of artwork over rendering
speed and geometric precision. To achieve crisp edges, the
user agent might turn off anti-aliasing for all lines and
curves or possibly just for straight lines which are close to
vertical or horizontal.

Geometric Precision Indicates that the browser shall emphasize geometric
precision over speed and crisp edges.

5.1. Setup Functionality

131 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/Range Description

Resampling
Method

Select the resampling interpolation method. Resampling
corrects for sample misalignment in subsequent scope
shots. This is important when using reduced sample rates
with a time resolution below that of the trigger.

Linear Linear interpolation

PCHIP Piecewise Cubic Hermite Interpolating Polynomial

Show
Shortcuts

ON / OFF Displays a list of keyboard and mouse wheel shortcuts for
manipulating plots.

Dynamic Tabs ON / OFF If enabled, sections inside the application tabs are
collapsed automatically depending on the window width.

Graphical
Mode

Collapsed Select the display mode for the graphical elements. Auto
format will select the format which fits best the current
window width.Auto

Expanded

Log Format .NET Choose the command log format. See status bar and [User]
\Documents\Zurich Instruments\LabOne\WebServer\Log

MATLAB

Python

CSV Delimiter Tab Select which delimiter to insert for CSV files.

Comma

Semicolon

CSV Locale System locale. Use
the symbols set in
the language and
region settings of the
computer

Select the locale used for defining the decimal point and
digit grouping symbols in numeric values in CSV files. The
default locale uses dot for the decimal point and no digit
grouping, e.g. 1005.07. The system locale uses the symbols
set in the language and region settings of the computer.

Default locale. Dot
for the decimal point
and no digit
grouping, e.g. 1005.07

HDF5 Saving Multiple files. Each
measurement goes
in a separate file

For HDF5 file format only: Select whether each
measurement should be stored in a separate file, or
whether all measurements should be saved in a single file.

Single file. All
measurements go in
one file

Auto Start ON / OFF Skip session manager dialog at start-up if selected device is
available.

In case of an error or disconnected device the session
manager will be reactivated.

Update
Reminder

ON / OFF Display a reminder on start-up if the LabOne software
wasn't updated in 180 days.

Update Check ON / OFF Periodically check for new LabOne software over the
internet.

Drive Select the drive for data saving.

Format SXM (Nanonis) File format of recorded and saved data.

MATLAB

CSV

Open Folder Open recorded data in the system File Explorer.

Folder path indicating file
location

Folder containing the recorded data.

5.1. Setup Functionality

132 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/Range Description

Save Interval Time in seconds Time between saves to disk. A shorter interval means less
system memory consumption, but for certain file formats
(e.g. MATLAB) many small files on disk. A longer interval
means more system memory consumption, but for certain
file formats (e.g. MATLAB) fewer, larger files on disk.

Queue integer number Number of data chunks not yet written to disk.

Size integer number Accumulated size of saved data in the current session.

Record ON / OFF Start and stop saving data to disk as defined in the
selection filter. Length of the files is determined by the
Window Length setting in the Plotter tab.

Writing grey/green Indicates whether data is currently written to disk.

Display filter or regular
expression

Display specific tree branches using one of the preset view
filters or a custom regular expression.

Tree ON / OFF Click on a tree node to activate it.

All Select all tree elements.

None Deselect all tree elements.

5.1.4. Device Tab

The Device tab is the main settings tab for the connected instrument and is available on all SHFSG
instruments.

Features

 Option and upgrade management
 External clock referencing (10/100 MHz)
 Instrument connectivity parameters
 Device monitor

Description

The Device tab serves mainly as a control panel for all settings specific to the instrument that is
controlled by LabOne in this particular session. Whenever the tab is closed or an additional one of
the same type is needed, clicking the following icon will open a new instance of the tab.

Table 5.10: App icon and short description

Control/Tool Option/Range Description

Device Provides instrument specific settings.

The Device tab is divided into five sections: general instrument information, configuration,
communication parameters, statistics, and a device monitor.

Figure 5.7: LabOne UI: Device tab

The Information section provides details about the instrument hardware and indicates the
installed upgrade options. This is also the place where new options can be added by entering the
provided option key.

5.1. Setup Functionality

133 Zurich Instruments SHFQC User Manual

The Configuration section allows one to change the reference from the internal clock to an
external 10 / 100 MHz reference. The reference is to be connected to the Clock Input on the
instrument back panel. The section also allows one to select a frequency of 10 or 100 MHz of the
reference clock output, which is generated at the Clock Output on the instrument back panel.

The Communication section offers access to the instruments TCP/IP settings.

The Statistics section gives an overview on communication statistics.

Note

Packet loss on data streaming over UDP, TCP or USB: data packets may be lost if total bandwidth
exceeds the available physical interface bandwidth. Data may also be lost if the host computer is
not able to handle high-bandwidth data.

Packet loss on command streaming over TCP or USB: command packets should never be lost as it
creates an invalid state.

The Device Monitor section is collapsed by default and generally only needed for servicing. It
displays vitality signals of some of the instrument’s hardware components.

Functional Elements

Table 5.11: Device tab

Control/Tool Option/Range Description

Serial 1-4 digit number Device serial number

Type string Device type

FPGA integer number HDL firmware revision.

Digital Board version number Hardware revision of the FPGA base board.

Firmware integer number Revision of the device internal controller software.

Installed Options short names for
each option

Options that are installed on this device.

Install Click to install options on this device. Requires a unique
feature code and a power cycle after entry.

More Information Display additional device information in a separate
browser tab.

Upgrade Device
Options

Display available upgrade options.

Input Reference
Clock Source

Selects Internal, External or the ZSync clock source as
reference. Instruments will be disconnected from ZSync
if clock source is changed to Internal or External.

Internal The internal 100MHz clock is used as the frequency and
time base reference.

External An external clock is intended to be used as the
frequency and time base reference. Provide a clean and
stable 10MHz or 100MHz reference to the appropriate
back panel connector.

ZSync A ZSync clock is intended to be used as the frequency
and time base reference.

Actual Input
Reference Clock
Source

Currently active clock source. This might differ from the
Set Source choice if the set clock is not available.

Internal Internal 100MHz clock is actually used as the frequency
and time base reference.

External An external clock is actually used as the frequency and
time base reference.

5.1. Setup Functionality

134 Zurich Instruments SHFQC User Manual

Control/Tool Option/Range Description

ZSync ZSync clock is actually used as the frequency and time
base reference.

Input Reference
Clock Frequency

Indicates the frequency of the input reference clock.

Indicates the status of the input reference clock. Green:
locked. Yellow: the device is busy trying to lock onto the
input reference clock signal. Red: there was an error
locking onto the input reference clock signal. The
instrument is currently not operational.

Output Reference
Clock Enable

Enable clock signal on the reference clock output.

Output Reference
Clock Frequency

Selects the frequency of the output reference clock to
be 10MHz or 100MHz.

Synchronization
Source

Selects the source for synchronization of channels:
internal (default) or external

Internal Synchronization of all channels of a device that have the
corresponding synchronization setting enabled.

External Same as internal plus synchronization to other devices
via ZSync.

Load Factory
Default

Load the factory default settings.

Busy grey/green Indicates that the device is busy with either loading,
saving or erasing a preset.

Error Returns a 0 if the last preset operation was successfully
completed or 1 if the last preset operation was illegal.

0 Last preset operation was successfully completed.

1 Last preset operation was illegal.

Error LED grey/red Turns red if the last operation was illegal.

Interface Active interface between device and data server. In case
multiple options are available, the priority as indicated
on the left applies.

MAC Address 80:2F:DE:xx:xx:xx MAC address of the device. The MAC address is defined
statically, cannot be changed and is unique for each
device.

IPv4 Address default 192.168.1.10 Current IP address of the device. This IP address is
assigned dynamically by a DHCP server, defined
statically, or is a fall-back IP address if the DHCP server
could not be found (for point to point connections).

Static IP ON / OFF Enable this flag if the device is used in a network with
fixed IP assignment without a DHCP server.

IPv4 Address default 192.168.1.10 Static IP address to be written to the device.

IPv4 Mask default
255.255.255.0

Static IP mask to be written to the device.

Gateway default 192.168.1.1 Static IP gateway

Program Click to program the specified IPv4 address, IPv4 Mask
and Gateway to the device.

Pending integer value Number of buffers ready for receiving command packets
from the device.

Processing integer value Number of buffers being processed for command
packets. Small values indicate proper performance. For a
TCP/IP interface, command packets are sent using the
TCP protocol.

Packet Loss integer value Number of command packets lost since device start.
Command packets contain device settings that are sent
to and received from the device.

5.1. Setup Functionality

135 Zurich Instruments SHFQC User Manual

Control/Tool Option/Range Description

Bandwidth numeric value Command streaming bandwidth usage on the physical
network connection between device and data server.

Pending integer value Number of buffers ready for receiving data packets from
the device.

Processing integer value Number of buffers being processed for data packets.
Small values indicate proper performance. For a TCP/IP
interface, data packets are sent using the UDP protocol.

Packet Loss integer value Number of data packets lost since device start. Data
packets contain measurement data.

Bandwidth numeric value Data streaming bandwidth usage on the physical
network connection between device and data server.

5.1.5. File Manager Tab

5.1.6. Features

 Download measurement data, instruments settings and log files to a local device
 Manage file structure (browse, copy, rename, delete) on instrument flash drive and attached USB

mass storage devices
 Update instrument from USB mass storage
 Quick access to measurement files, log files and settings files
 File preview for settings files and log files

Description

The File Manager tab provides standard tools to see and organize the files relevant for the use of the
instrument. Files can be conveniently copied, renamed and deleted. Whenever the tab is closed or
an additional one of the same type is needed, clicking the following icon will open a new instance of
the tab.

Table 5.12: App icon and short description

Control/
Tool

Option/
Range

Description

Files Access settings and measurement data files on the host
computer.

The Files tab (see LabOne UI: File Manager tab) provides three windows for exploring. The left
window allows one to browse through the directory structure, the center window shows the files of
the folder selected in the left window, and the right window displays the content of the file selected
in the center window, e.g. a settings file or log file.

Figure 5.8: LabOne UI: File Manager tab

Functional Elements

Table 5.13: File tab

5.1. Setup Functionality

136 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/
Range

Description

New Folder Create new folder at current location.

Rename Rename selected file or folder.

Delete Delete selected file(s) and/or folder(s).

Copy Copy selected file(s) and/or folder(s) to Clipboard.

Cut Cut selected file(s) and/or folder(s) to Clipboard.

Paste Paste file(s) and/or folder(s) from Clipboard to the selected
directory.

Upload Upload file(s) and/or folder(s) to the selected directory.

Download Download selected file(s) and/or folder(s).

5.1.7. Saving and Loading Data

5.1.8. Overview

In this section we discuss how to save and record measurement data with the SHFQA Instrument
using the LabOne user interface. In the LabOne user interface, there are 3 ways to save data:

 Saving the data that is currently displayed in a plot
 Continuously recording data in the background
 Saving trace data in the History sub-tab

Furthermore, the History sub-tab supports loading data. In the following, we will explain these
methods.

Saving Data from Plots

A quick way to save data from any plot is to click on the Save CSV icon at the bottom of the plot
to store the currently displayed curves as a comma-separated value (CSV) file to the download
folder of your web browser. Clicking on will save a graphics file instead.

Recording Data

The recording functionality allows you to store measurement data continuously, as well as to track
instrument settings over time. The Config Tab gives you access to the main settings for this function.
The Format selector defines which format is used: HDF5, CSV, or MATLAB. The CSV delimiter
character can be changed in the User Preferences section. The default option is Semicolon.

The node tree display of the Record Data section allows you to browse through the different
measurement data and instrument settings, and to select the ones you would like to record. For
instance, the demodulator 1 measurement data is accessible under the path of the form Device
0000/Demodulators/Demod 1/Sample. An example for an instrument setting would be the filter
time constant, accessible under the path Device 0000/Demodulators/Demod 1/Filter Time
Constant.

The default storage location is the LabOne Data folder which can, for instance, be accessed by the
Open Folder button . The exact path is displayed in the Folder field whenever a file has been
written.

Clicking on the Record checkbox will initiate the recording to the hard drive.

5.1. Setup Functionality

137 Zurich Instruments SHFQC User Manual

Figure 5.9: Browsing and inspecting files in the LabOne File Manager tab

In case HDF5 or MATLAB is selected as the file format, LabOne creates a single file containing the
data for all selected nodes. For the CSV format, at least one file for each of the selected nodes is
created from the start. At a configurable time interval, new data files are created, but the maximum
size is capped at about 1 GB for easier data handling. The storage location is indicated in the Folder
field of the Record Data section.

The File Manager Tab is a good place to inspect CSV data files. The file browser on the left of the tab
allows you to navigate to the location of the data files and offers functionalities for managing files in
the LabOne Data folder structure. In addition, you can conveniently transfer files between the folder
structure and your preferred location using the Upload/Download buttons. The file viewer on the
right side of the tab displays the contents of text files up to a certain size limit. Figure 5.9 shows the
Files tab after recording Demodulator Sample and Filter Time Constant for a few seconds. The file
viewer shows the contents of the demodulator data file.

Note

The structure of files containing instrument settings and of those containing streamed data is the
same. Streaming data files contain one line per sampling period, whereas in the case of instrument
settings, the file usually only contains a few lines, one for each change in the settings. More
information on the file structure can be found in the LabOne Programming Manual.

History List

Tabs with a history list such as Scope Tab, support feature saving, autosaving, and loading
functionality. By default, the plot area in those tools displays the last 100 measurements (depending
on the tool, these can be sweep traces, scope shots, DAQ data sets, or spectra), and each
measurement is represented as an entry in the History sub-tab. The button to the left of each list
entry controls the visibility of the corresponding trace in the plot; the button to the right controls the
color of the trace. [^1]Double-clicking on a list entry allows you to rename it. All measurements in the
history list can be saved with . Clicking on the button (note the dropdown button)
saves only those traces that were selected by a mouse click. Use the Control or Shift button
together with a mouse click to select multiple traces. The file location can be accessed by the Open
Folder button . Figure 5.12.8 illustrates some of these features. Figure 5.10 illustrates the data
loading feature.

5.1. Setup Functionality

138 Zurich Instruments SHFQC User Manual

Figure 5.10: History sub-tab features. The entries "My measurement 1" etc. were
renamed by the user. Measurement 1, 2, 3, 4 are currently displayed in the plot because

their left-hand-side button is enabled. Clicking on Save Sel would save "My
measurement 3" and "My measurement 4" to a file, because these entries were

selected (gray overlay) by a Control key + mouse click action.

Which quantities are saved depends on which signals have been added to the Vertical Axis Groups
section in the Control sub-tab. Only data from demodulators with enabled Data Transfer in the Lock-
in tab can be included in the files.

The history sub-tab supports an autosave functionality to store measurement results continuously
while the tool is running. Autosave directories are differentiated from normal saved directories by
the text "autosave" in the name, e.g. sweep_autosave_000. When running a tool continuously
(button) with Autosave activated, after the current measurement (history entry) is
complete, all measurements in the history are saved. The same file is overwritten each time, which
means that old measurements will be lost once the limit defined by the history Length setting has
been reached. When performing single measurements (button) with Autosave activated,
after each measurement, the elements in the history list are saved in a new directory with an
incrementing count, e.g. sweep_autosave_001, sweep_autosave_002.

Data which was saved in HDF5 file format can be loaded back into the history list. Loaded traces are
marked by a prefix "loaded " that is added to the history entry name in the user interface. The
createdtimestamp information in the header data marks the time at which the data were
measured.

 Only files created by the Save button in the History sub-tab can be loaded.
 Loading a file will add all history items saved in the file to the history list. Previous entries are

kept in the list.
 Data from the file is only displayed in the plot if it matches the current settings in the Vertical

Axis Group section the tool. Loading e.g. PID data in the Sweeper will not be shown, unless it is
selected in the Control sub-tab.

 Files can only be loaded if the devices saving and loading data are of the same product family.
The data path will be set according to the device ID loading the data.

Figure 5.11 illustrates the data loading feature.

5.1. Setup Functionality

139 Zurich Instruments SHFQC User Manual

Figure 5.11: History data loading feature. Here, the file sweep_00000.h5 is loaded by
drag-and-drop. The loaded data are added to the measurements in the history list.

Supported File Formats

HDF5

Hierarchical Data File 5 (HDF5) is a widespread memory-efficient, structured, binary, open file
format. Data in this format can be inspected using the dedicated viewer HDFview. HDF5 libraries or
import tools are available for Python, MATLAB, LabVIEW, C, R, Octave, Origin, Igor Pro, and others. The
following example illustrates how to access demodulator data from a sweep using the h5py library in
Python:

import h5py
filename = 'sweep_00000.h5'
f = h5py.File(filename, 'r')
x = f['000/dev3025/demods/0/sample/frequency']

The data loading feature of LabOne supports HDF5 files, while it is unavailable for other formats.

MATLAB

The MATLAB File Format (.mat) is a proprietary file format from MathWorks based on the open HDF5
file format. It has thus similar properties as the HDF5 format, but the support for importing .mat files
into third-party software other than MATLAB is usually less good than that for importing HDF5 files.

SXM

SXM is a proprietary file format by Nanonis used for SPM measurements.

5.1. Setup Functionality

140 Zurich Instruments SHFQC User Manual

https://www.hdfgroup.org/downloads/hdfview/

5.1.9. Upgrade Tab

The Upgrade tab serves as a source of information about the possible upgrade options for the
instrument in use. The tab has no functional purpose but provides the user with a quick link to
further information about the upgrade options online.

5.1.10. ZI Labs Tab

The ZI Labs tab contains experimental LabOne functionalities added by the ZI development team.
The settings found here are often relevant to special applications, but have not yet found their
definitive place in one of the other LabOne tabs. Naturally this tab is subject to frequent changes,
and the documentation of the individual features would go beyond the scope of this user manual.
Clicking the following icon will open a new instance of the tab.

Table 5.14: App Icon and short description

Control/Tool Option/Range Description

ZI Labs Experimental settings and controls.

5.2. Measurement Functionality

In this section, the measurement functionality of the SHFQC is described, i.e. the functionality that is
useful when setting up and carrying out experiments. Each chapter first introduces the functionality,
provides a summary of the functional elements before - if applicable - explaining the representation
in the LabOne general user interface.

The instrument functionality is a combination of the functionalities of the SHFQA and SHFSG and is
thus identical in most aspects to what is described in the SHFSG and SHFQA user manuals. The
functionality is represented by a node tree. Each node can either set, read or poll settings or data
from the device. This can be done either through the General User Interface, or through our APIs.
Most of the functionality resides within the different channels of the SHFQC, each of which is
represented by its own version of the QAChannels (/dev..../qachannels/0/...), or SGChannels
(/dev..../sgchannels/n/...) branch. Functionality that is either independent of the output
Channels or shared between them has its own branch, e.g. common device features (/dev..../
features/...), or system features (/dev..../systems/n/...). All nodes are listed within the node
tree documentation.

Note

The following chapters are constantly being upgraded and new documentation is added. For the
latest version of the documentation, please always refer to the online documentation.

5.2.1. In/Out Tab

The In / Out tab provides access to the settings of the Instrument’s Signal Input and Signal Output
of the Quantum Analyzer Channel, as well as the Instrument’s Signal Outputs of the Signal Generator
Channels. It is available on all SHFQC Instruments.

Features Overview

 Enable/disable inputs and outputs
 Define the Center Frequency of the modulation and analysis bands
 Define the input and output power ranges
 Switch between Radio Frequency (RF) and Low Frequency (LF) paths on the Signal Generator

Channels

Description

Table 5.15: App icon and short description

5.2. Measurement Functionality

141 Zurich Instruments SHFQC User Manual

https://docs.zhinst.com/shfsg_user_manual
https://docs.zhinst.com/shfqa_user_manual

Control/
Tool

Option/
Range

Description

Output Quick overview and access to all the settings for configuring the
analog upconversion path.

The SHFQC uses the double super-heterodyne frequency upconversion technique to generate its RF
output frequencies. The SHFQC has two types of channels: One Quantum Analyzer Channel for
performing qubit readout measurements, and 2, 4, or 6 Signal Generator Channels for generating
signals to control the qubit states.

Note

It is highly recommended to enable all required inputs and outputs and wait for 2 hours after
powering on the instrument.

Note

Please do not change the center frequency or input range while acquiring data. Mishandling of this
could lead to an invalid scaling of the result vector.

Signal Generator Channels

Each Signal Generator Channel has its own frequency upconversion chain. Each Signal Generator
Channel has two available Output paths: the RF path for generating signals with center frequencies
from 0.6 GHz to 8 GHz, and the LF path for generating signals with center frequencies from 0 GHz to
2 GHz. When using the RF path, center frequencies determine the frequency of an analog
synthesizer and can be set with a resolution of 0.1 GHz. All variants of the SHFQC contain 4
synthesizers. The Quantum Analyzer Channel uses one synthesizer, and each pair of Signal
Generator Channels share one synthesizer. This means that Signal Generator Channels 1 and 2 must
share the same RF center frequency when using the RF path. To achieve different output
frequencies on Signal Generator Channels 1 and 2, digital modulation must be employed (see the
Modulation Tab). When using the LF path, the center frequencies of each channel must be a multiple
of 0.1 GHz can be set independently of the other channels in all variants of the SHFQC Instrument.

Note

The LF and RF paths can be programmed with the same sequences (see the tutorial Basic
Waveform Playback) but the LF path has a smaller latency than the RF path due to the differences in
the analog part of the signal path. The differences in latencies can be compensated by appropriate
use of the playZero command, described in the Tutorials.

Figure 5.12: Analog Signal Output Stage

When using the Signal Output of the RF path, the digital 1-GHz-wide modulation band centered
around DC is first interpolated by a factor of 3, then digitally upconverted to 2 GHz (light blue
elements) before it is passed to the 14-bit DAC. The resulting 2 GHz analog signal (dark blue
elements) is then converted to 12 GHz by means of a local oscillator at 10 GHz. To remove all
unwanted spurious signals, the signal is strongly filtered before it is down-converted in a second
mixing process with a variable local oscillator. Depending on its software-controllable frequency
value, the final output frequency band has a center frequency between 0.6-8 GHz and a width of
±0.5 GHz. Several amplifiers, attenuators, and filters in the up-conversion chain ensure that the
different elements are not saturated and that the DAC range is faithfully mapped to the selected
Output Range.

5.2. Measurement Functionality

142 Zurich Instruments SHFQC User Manual

When using the LF path, the digital 1-GHz-wide modulation signal is still interpolated by a factor of 3
and passed to the 14-bit DAC, but the analog upconversion chain is bypassed. The center frequency
is determined by setting the frequency of the oscillator used in the digital upconversion (fixed at 2
GHz when using the RF path, and can be set to a multiple of 100 MHz in the range 0 - 2 GHz when
using the LF path). In this way, signals with center frequencies between 0 and 2 GHz can be
generated with the LF path.

The advantages of this up-conversion scheme compared to IQ-mixer-based frequency conversion
are that it is calibration-free, wide-band, and stable, in addition to having superior spurious tone
performance. The optimal selection of the different gains, attenuators, and filters in the frequency
conversion chains are taken over by the SHFQC, such that only a few settings need to be set in the
Output band parameters of the SHFQC: Center Frequency, Output Range, and Output On.

Note

For both the LF and RF paths, the output power can be set in steps of 5 dBm, in the range -30 dBm
to +10 dBm for the RF path and -30 dBm to +5 dBm for the LF path. If the power is set to a value that
is outside this range or not a multiple of 5 dBm, the value will automatically be rounded to the
nearest multiple of 5 dBm within the range for the path.

Quantum Analyzer Channel

The Quantum Analyzer Channel of the SHFQC uses a similar up-conversion chain as for the Signal
Generator Channel. For the Signal Output, the digital 1-GHz-wide analysis band centered around DC
is first interpolated by a factor of 3, then digitally up-converted to 2 GHz (light blue elements) before
it is passed to the 14-bit DAC. Then, the analog signal (dark blue elements) is mixed to 12 GHz by
means of a local oscillator at 10 GHz. To remove all unwanted spurious signals, the signal is strongly
filtered before it is down-converted in a second mixing process with a variable local oscillator.
Depending on its software-controllable frequency value, the final output frequency band has a
center frequency between 1-8 GHz and a width of ±0.5 GHz. Several amplifiers, attenuators and
filters in the up-conversion chain ensure that the different elements are not saturated and that the
ADC range is faithfully mapped to the selected Output Range.

Figure 5.13: Analog signal output stage

The Signal Input down-conversion chain (dark blue elements) works analogously, but in the
backwards direction. The main differences to the Signal Output are the missing selectable filter and
the conversion to 3 GHz instead of 2 GHz before the digitization through the 14-bit ADC. Because of
the sampling rate of 2 GSa/s, the 3 GHz signal appears as a 1-GHz signal in the digital domain (light
blue elements) before being down-converted to DC.

Figure 5.14: Analog signal input stage

Frequency Representation

The frequency of the output signal on each channel can be calculated as

where is the center frequency (Center Freq (Hz)), is the offset frequency (Offset Freq (Hz))
set by either a Digital Oscillator, or an uploaded waveform (see in Quantum Analyzer Setup Tab or

foutf_{\mathrm{out}}fout

fout=f0+foffset,(6) \begin{equation}\tag{1} f_{\mathrm{out}} = f_0 + f_{\mathrm{offset}}, \end{equation} f = f + f ,out 0 offset (1)

f0f_0f0 foffsetf_{\mathrm{offset}}foffset

5.2. Measurement Functionality

143 Zurich Instruments SHFQC User Manual

Digital Modulation Tab). The range of is from -1 GHz to 1 GHz. Please note that signals with an
absolute offset frequency greater than 500 MHz will be attenuated significantly.

The frequency of the input signal on each channel can be calculated as

where is the intermediate frequency (IF) after frequency down-conversion. The down-converted
signal can be monitored by the SHFQC Scope. In resonator spectroscopy experiments, the signal
with is integrated by the same Digital Oscillator. In qubit readout experiments, it is integrated by
an uploaded waveform.

Power Representation

The power of the output signal on each channel is calculated as

where is the output power range in units of dBm, () is the amplitude gain of
the Digital Oscillator, () is the amplitude of an uploaded waveform. Please note that the 14-
bit vertical resolution of the output signal counts both waveform amplitude and oscillator amplitude
gain in Spectroscopy mode. To have full 14-bit vertical resolution on the uploaded waveform, the
amplitude gain of the oscillator has to be 1.

The input signal can be monitored by the SHFQC Scope. The power of the input signal on each
channel can be calculated as

where () is the amplitude of IF I (Q) components displayed on the SHFQC Scope in units
of RMS voltage (Vrms). The is calculated in units of dBm.

In / Out Tab in the LabOne GUI

The In / Out settings can be accessed through the In / Out tab of the SHFQC’s LabOne general user
interface. After clicking on the tab, an overview subtab opens that displays all settings for all
available Quantum Analyzer and Signal Generator Channels.

Figure 5.15: The Overview Sub-tab of the In / Out Tab

With the selectors at the left side of the In / Out tab, the detailed view of the up-conversion chain for
the different Signal Generator Channels can be displayed, as well as the down-conversion chain for
the Quantum Analyzer Channel. Each detailed view shows the available settings in the first, leftmost
panel. In the second panel, graphical representations of the currently selected parameters of the
up-conversion chain and down-conversion chain (if applicable) are displayed.

foffsetf_{\mathrm{offset}}foffset

finf_{\mathrm{in}}fin

fin=f0+fIF,(7) \begin{equation}\tag{2} f_{\mathrm{in}} = f_0 + f_{\mathrm{IF}}, \end{equation} f = f + f ,in 0 IF (2)

fIFf_{\mathrm{IF}}fIF

fIFf_{\mathrm{IF}}fIF

PoutP_{\mathrm{out}}Pout

Pout={Prange, out+20log10(gosc),Spectroscopy mode, ContinuousPrange, out+20log10(goscA),Spectroscopy mode, PulsePrange, out+20log10(A),Readout mode(8) \begin{equation}\tag{3} P_{\mathrm{out}} = \begin{cases} P_{\mathrm{range,\ out}} + 20\log_{10}(g_{\mathrm{osc}}), & \text{Spectroscopy mode, Continuous}\newline P_{\mathrm{range,\ out}} + 20\log_{10}(g_{\mathrm{osc}}A), & \text{Spectroscopy mode, Pulse}\newline P_{\mathrm{range,\ out}} + 20\log_{10}(A), & \text{Readout mode} \end{cases} \end{equation}

P =out
⎩
⎨
⎧P + 20 log (g),range, out 10 osc

P + 20 log (g A),range, out 10 osc

P + 20 log (A),range, out 10

Spectroscopy mode, Continuous
Spectroscopy mode, Pulse
Readout mode

(3)

Prange, outP_{\mathrm{range,\ out}}Prange, out goscg_{\mathrm{osc}}gosc gosc≤1g_{\mathrm{osc}} \le 1g ≤osc 1
AAA k≤1k\le1k ≤ 1

PinP_{\mathrm{in}}Pin

Pin=10log10AIF, I2+AIF, Q250+30,(9) \begin{equation}\tag{4} P_{\mathrm{in}} = 10\log_{10}\frac{A^2_{\mathrm{IF,\ I}} + A^2_{\mathrm{IF,\ Q}}}{50}+30, \end{equation}
P = 10 log + 30,in 10 50

A + AIF, I
2

IF, Q
2

(4)

AIF, IA_{\mathrm{IF,\ I}}AIF, I AIF, QA_{\mathrm{IF,\ Q}}AIF, Q

PinP_{\mathrm{in}}Pin

5.2. Measurement Functionality

144 Zurich Instruments SHFQC User Manual

Figure 5.16: A detailed view of a Signal Generator Channel

Figure 5.17: A detailed view of a Quantum Analyzer Channel

Functional Elements

Table 5.16: Output tab

Control/
Tool

Option/Range Description

Center
Frequency

Center frequency of the output band at the
output of the instrument. A copy of the
displayed value is also contained in the read-
only node '/{device}/sgchannels/{n}/centerfreq'.

Center
Frequency

Set center frequency of digital mixer.

Output Digital
Mixer
Frequency

The Center Frequency of the digital mixer for the
Signal Output.

Center
Frequency

Center frequency of the detection band at the
input/output of the instrument.

Variable Local
Oscillator
Frequency

This local oscillator converts between the fixed
signal band around 12 GHz and the variable
readout band at the In/Out connector. Shared
between the Signal Input/Output modules of the
same channel, its value is given by the user-
determined Center Frequency value + 12 GHz.

Input Digital
Mixer
Frequency

The Center Frequency of the digital mixer for the
Signal Input.

Variable Local
Oscillator
Frequency

This local oscillator converts between the fixed
signal band around 12 GHz and the variable
output band at the Out connector. Its value is
given by the user-determined Center Frequency
value + 12 GHz.

Range Maximal power at the input of the instrument.

Input Path RF path is used. Switch between RF and LF input path.

LF path is used.

Range Maximal power at the output of the instrument.

5.2. Measurement Functionality

145 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/Range Description

Selectable RF
Output Filter

The filter value is selected according to the
Center Frequency value and ensures that higher
signal harmonics are removed at the Signal
Output.

Output Path RF path is used. Switch between RF and LF output path.

LF path is used.

Delay (s) This value adds a delay to both the signal and
trigger/marker outputs.

Channel
Select

Select which channel is to be cleared.

Reset All Reset all the channels.

Reset
Channel

Reset only the selected channel.

Mode In automatic mode the
instrument automatically resets
the NCOs of all channels
whenever a channel is switched
from LF to RF, in order to restore
alignment.

Configure the NCO reset mode.

In manual mode the instrument
does not automatically reset
NCOs when switching a channel
from LF to RF mode.

5.2.2. Quantum Analyzer Setup Tab

The Quantum Analyzer Setup is the main control panel for the qubit measurement unit on the
Instrument (see Functional Overview for an overview block diagram). It is available on all SHFQC
Instruments.

Features

 Spectroscopy mode and readout mode
 Continuous or pulsed resonator spectroscopy
 Power spectral density
 Weighted integration
 Readout up to 16 qubits per channel
 2-state and multistate discrimination

Description

Table 5.17: App icon and short description

Control/Tool Option/Range Description

QA Setup Configure the Qubit Measurement Unit

The Quantum Analyzer Setup tab is divided into 2 sub-tab groups for resonator spectroscopy (see
Figure 5.18) and qubit readout (see Figure 5.19) application. By selecting Application Mode,
Spectroscopy or Readout, the corresponding sub-tabs provide all configurations of readout pulse
generation and acquired data processing (see). The main differences of the Application Modes are
listed in Table 5.18.

5.2. Measurement Functionality

146 Zurich Instruments SHFQC User Manual

Figure 5.18: LabOne GUI: QA Setup Tab - Spectroscopy Mode

Figure 5.19: LabOne GUI: QA Setup Tab - Readout Mode

Figure 5.20: LabOne GUI: Readout Pulse Generator Tab - Waveform Viewer

Table 5.18: Main differences of Spectroscopy and Readout mode

Parameters Spectroscopy mode Readout mode

Waveform generation Digital oscillator and envelope Sample by Sample

Waveform output mode Continuous or pulsed Pulsed

Waveform length Continuous
or up to 16 μs or 32 μs

Up to 2 μs

Number of qubits per channel 1 Up to 8 or 16

Integration length Up to 16.7 ms Up to 2 μs

Integration weight unit per
channel

Not applicable Up to 8 or 16

Result normalization after
integration

Normalized by integration length in
samples

Not normalized

Real-time state discrimination Not applicable Yes

Multistate discrimination Not applicable Qubits, qutrits and
ququads

Spectroscopy Mode

Spectroscopy mode is mainly used for resonator spectroscopy and power spectral density
measurement. The SHFQC has 1 Digital Oscillator per Quantum Analyzer channel. In Spectroscopy
mode, the Digital Oscillator is used for readout waveform generation and integration. The SHFQC
Sweeper class (API) is the central controller for the Spectroscopy mode, see tutorial Continuous
Resonator Spectroscopy and Pulsed Resonator Spectroscopy.

5.2. Measurement Functionality

147 Zurich Instruments SHFQC User Manual

There are 2 operation modes for readout waveform generation, Continuous and Pulsed. In
Continuous mode, signal from the Digital Oscillator is routed to the digital IQ mixing stage (see
Functional Overview) for readout waveform generation in the output path, and to multiply the input
signal for readout waveform integration in the input path, see Figure 5.21. In Pulsed mode, signal
from the Digital Oscillator modulates the envelope from the Waveform Memory and then is routed to
the output and input paths same as in Continuous mode. The pulse envelope can be displayed on
the Waveform Viewer sub-tab of the Readout Pulse Generator tab. The main differences of the 2
operation modes are listed in Table 5.19.

Figure 5.21: Readout waveform generation and integration in Spectroscopy mode

Table 5.19: Main differences of Continuous and Pulsed mode in Spectroscopy

Parameters Continuous mode Pulsed mode

Readout pulse
length

Continuous wave Up to 16 μs or 32 μs
(up to 32 kSa or 64 kSa)

Envelope delay Not applicable Up to 131.1 μs

Readout pules
amplitude

Controlled by output range and gain
factor of the Digital Oscillator

Controlled by output range, gain factor
of the Digital Oscillator and the
envelope

Readout Waveform Output In Spectroscopy Mode

The readout waveform on the Instrument output can be expressed as

where is the conversion factor converting the power range of the
output signal in units of dBm to the amplitude in units of V, , is the complex readout envelope in
Pulsed mode and in Continuous mode, is the amplitude gain factor of the baseband
Digital Oscillator. The frequency is the offset frequency set by the baseband Digital Oscillator
and is the global phase, which can be reset by resetting the phase of the baseband Digital
Oscillator. The frequency is the RF center frequency set in the Input/Output tab. Note: when using
the LF path the center frequency from the Input/Output tab does not apply and one has to set
 in the above formula.

The readout waveform envelope in Pulsed mode can be displayed on the Waveform Viewer, see
Figure 5.20.

Eoutput(t)=CP→ARe[A(t)goscei2π(f0+fosc)t+iϕoutput],(10) \begin{equation}\tag{1} E_{\mathrm{output}}(t) = C_{P\rightarrow A}\operatorname{Re}[A(t)g_{\mathrm{osc}}e^{i2\pi (f_0 + f_{\mathrm{osc}}) t + i\phi_{\mathrm{output}}}], \end{equation} E (t) = C Re[A(t)g e],output P→A osc
i2π(f +f)t+iϕ0 osc output (1)

CP→A=10Prange, output−1020C_{P\rightarrow A} = 10^{\frac{P_{\mathrm{range,\ output}}-10}{20}}C =P→A 10 20
P −10range, output Prange, outputP_{\mathrm{range,\ output}}Prange, output

A(t)A(t)A(t)
A(t)=1A(t) = 1A(t) = 1 goscg_{\mathrm{osc}}gosc

foscf_{\mathrm{osc}}fosc

ϕoutput\phi_{\mathrm{output}}ϕoutput

f0f_0f0
f0=0f_0 = 0f =0

0

A(t)A(t)A(t)

5.2. Measurement Functionality

148 Zurich Instruments SHFQC User Manual

Readout Results In Spectroscopy Mode

The readout input signal after analog frequency down-conversion before the ADC is

where is the amplitude of input signal on the front panel of the instrument, is the
frequency of the input signal before ADC, is the global phase of the input signal on the front
panel of the instrument. After the ADC, it becomes

where is the conversion factor depending on gain factor, ADC range and bit resolution,
 is the frequency after the ADC, means the -th sample. The signal is then

down-converted by a digital oscillator at frequency of 1 GHz (0 Hz) when using RF (LF) path
and filtered the high frequency components, as

where is the differential frequency,
 is the sum frequency. The signal at is filtered out by the digital filter. The baseband

signal can be monitored by the SHFQC Scope as

Note that the conversion factor is used for the RF path, and is used for LF
path. The signal is then demodulated with the signal ()
from the baseband Digital Oscillator, integrated and normalized by the number of integration
samples ,

If is constant (and integration length is much longer than with LF path),

then . By multiply the factor of , the units of the results

is converted to , and then can be downloaded from the instrument via the Instrument

node /dev.../qachannels/n/spectroscopy/result/data/wave, see Device Node Tree. The
power of input signal is then derived as

The power and phase of the input signal can also be calculated and plotted using the Sweeper
class.

Ebefore ADC(t)=Re(Ainput(t)ei2πfbefore ADCt+iϕinput)=Ainput(t)cos(2πfbefore ADCt+ϕinput)=Ainput(t)ei2πfbefore ADCt+iϕinput+e−i2πfbefore ADCt−iϕinput2,(11) \begin{equation}\tag{2} \begin{aligned} E_{\mathrm{before\ ADC}}(t) & = \operatorname{Re}(A_{\mathrm{input}}(t)e^{i2\pi f_{\mathrm{before\ ADC}} t + i\phi_{\mathrm{input}}})\\ & = A_{\mathrm{input}}(t)\cos({2\pi f_{\mathrm{before\ ADC}} t + \phi_{\mathrm{input}}})\\ & = A_{\mathrm{input}}(t)\frac{e^{i2\pi f_{\mathrm{before\ ADC}} t + i\phi_{\mathrm{input}}} + e^{-i2\pi f_{\mathrm{before\ ADC}} t - i\phi_{\mathrm{input}}}}{2}, \end{aligned} \end{equation} E (t)before ADC = Re(A (t)e)input
i2πf t+iϕbefore ADC input

= A (t) cos(2πf t+ ϕ)input before ADC input

= A (t) ,input 2
e + ei2πf t+iϕbefore ADC input −i2πf t−iϕbefore ADC input

(2)

Ainput(t)A_{\mathrm{input}}(t)A (t)input fbefore ADCf_{\mathrm{before\ ADC}}fbefore ADC

ϕinput\phi_{\mathrm{input}}ϕinput

Ei, after ADC=CscalingAi, input2(ei2πfafter ADCti+iϕinput+e−i2πfafter ADCti−iϕinput),(12) \begin{equation}\tag{3} E_{i,\ \mathrm{after\ ADC}} = \frac{C_{\mathrm{scaling}}A_{i,\ \mathrm{input}}}{2}(e^{i2\pi f_{\mathrm{after\ ADC}} t_i + i\phi_{\mathrm{input}}} + e^{-i2\pi f_{\mathrm{after\ ADC}} t_i - i\phi_{\mathrm{input}}}), \end{equation} E = (e + e),i, after ADC 2
C Ascaling i, input i2πf t +iϕafter ADC i input −i2πf t −iϕafter ADC i input (3)

CscalingC_{\mathrm{scaling}}Cscaling

fafter ADCf_{\mathrm{after\ ADC}}fafter ADC iii iii Ei, after ADCE_{i,\ \mathrm{after\ ADC}}Ei, after ADC

finput, LO2f_{\mathrm{input,\ LO2}}finput, LO2

Ei, before integration=Ei, after ADCe−i2πfafter, LO2ti=CscalingAi, input2(ei2πfafter ADCti+iϕinput+e−i2πfafter ADCti−iϕinput)e−i2πfinput, LO2ti,=CscalingAi, input2(ei2πfbasebandti+iϕinput+e−i2πfsumti−iϕinput)=filter{CscalingAi, input2ei2πfbasebandti+iϕinput,RF path,CscalingAi, inputcos(2πfbasebandti+ϕinput),LF path,(13) \begin{equation}\tag{4} \begin{aligned} E_{i,\ \mathrm{before\ integration}} & = E_{i,\ \mathrm{after\ ADC}}e^{-i2\pi f_{\mathrm{after,\ LO2}}t_i}\\ & = \frac{C_{\mathrm{scaling}}A_{i,\ \mathrm{input}}}{2}(e^{i2\pi f_{\mathrm{after\ ADC}} t_i + i\phi_{\mathrm{input}}} + e^{-i2\pi f_{\mathrm{after\ ADC}} t_i - i\phi_{\mathrm{input}}})e^{-i2\pi f_{\mathrm{input,\ LO2}}t_i},\\ & = \frac{C_{\mathrm{scaling}}A_{i,\ \mathrm{input}}}{2}(e^{i2\pi f_{\mathrm{baseband}} t_i + i\phi_{\mathrm{input}}} + e^{-i2\pi f_{\mathrm{sum}} t_i - i\phi_{\mathrm{input}}})\\ & \stackrel{\mathrm{filter}}{=} \begin{cases} \frac{C_{\mathrm{scaling}}A_{i,\ \mathrm{input}}}{2}e^{i2\pi f_{\mathrm{baseband}} t_i + i\phi_{\mathrm{input}}}, & \mathrm{RF\ path,} \\ C_{\mathrm{scaling}} A_{i,\ \mathrm{input}}\cos{(2\pi f_{\mathrm{baseband}} t_i + \phi_{\mathrm{input}})}, & \mathrm{LF\ path,} \end{cases} \end{aligned} \end{equation} Ei, before integration = E ei, after ADC
−i2πf tafter, LO2 i

= (e + e)e ,
2

C Ascaling i, input i2πf t +iϕafter ADC i input −i2πf t −iϕafter ADC i input −i2πf tinput, LO2 i

= (e + e)
2

C Ascaling i, input i2πf t +iϕbaseband i input −i2πf t −iϕsum i input

=filter {
e ,2

C Ascaling i, input i2πf t +iϕbaseband i input

C A cos (2πf t + ϕ),scaling i, input baseband i input

RF path,
LF path,

(4)

fbaseband=fafter ADC−finput, LO2=foscf_{\mathrm{baseband}} = f_{\mathrm{after\ ADC}}-f_{\mathrm{input,\ LO2}} = f_{\mathrm{osc}}f =baseband f −after ADC f =input, LO2 fosc fsum=fbefore ADC+finput, LO2f_{\mathrm{sum}} = f_{\mathrm{before\ ADC}}+f_{\mathrm{input,\ LO2}}f =sum f +before ADC

finput, LO2 fsumf_{\mathrm{sum}}fsum

Ei, before integrationE_{i,\ \mathrm{before\ integration}}Ei, before integration

EScope={2CscalingEi, before integration=Ai, input2ei2πfbasebandti+iϕinput,RF path,1CscalingEi, before integration=Ai, inputcos(2πfbasebandti+ϕinput),LFpath.(14) \begin{equation}\tag{5} E_{\mathrm{Scope}} = \begin{cases} \frac{\sqrt{2}}{C_{\mathrm{scaling}}} E_{i,\ \mathrm{before\ integration}} = \frac{A_{i,\ \mathrm{input}}}{\sqrt{2}}e^{i2\pi f_{\mathrm{baseband}} t_i + i\phi_{\mathrm{input}}}, & \mathrm{RF\ path,} \\ \frac{1}{C_{\mathrm{scaling}}} E_{i,\ \mathrm{before\ integration}} =A_{i,\ \mathrm{input}}\cos{(2\pi f_{\mathrm{baseband}} t_i + \phi_{\mathrm{input}})}, & \mathrm{LF path.} \end{cases} \end{equation}
E =Scope {

E = e ,Cscaling

2
i, before integration 2

Ai, input i2πf t +iϕbaseband i input

E = A cos (2πf t + ϕ),Cscaling

1
i, before integration i, input baseband i input

RF path,

LFpath.
(5)

2/
Cscaling\sqrt{2}/C_{\mathrm{scaling}}

/C2 scaling 1/
Cscaling1/C_{\mathrm{scaling}}
1/Cscaling

Ei, before integrationE_{i,\ \mathrm{before\ integration}}Ei, before integration e−i2πfosctie^{-i2\pi f_{\mathrm{osc}} t_i}e−i2πf tosc i fosc=fbasebandf_{\mathrm{osc}} =f_{\mathrm{baseband}}f =osc fbaseband

NNN

Eafter integration=1N∑i=1NEi, before integratione−i2πfoscti,={Cscaling2N∑i=1NAi, inputeiϕinput,RF path,Cscaling2N∑i=1NAi, input(eiϕinput+e−i4πfbasebandti−iϕinput),LF path.(15) \begin{equation}\tag{6} \begin{aligned} E_{\mathrm{after\ integration}} & = \frac{1}{N}\sum_{i = 1}^{N}E_{i,\ \mathrm{before\ integration}}e^{-i2\pi f_{\mathrm{osc}} t_i},\\ & = \begin{cases} \frac{C_{\mathrm{scaling}}}{2N}\sum_{i = 1}^{N} A_{i,\ \mathrm{input}}e^{i\phi_{\mathrm{input}}}, & \mathrm{RF\ path,}\\ \frac{C_{\mathrm{scaling}}}{2N}\sum_{i = 1}^{N} A_{i,\ \mathrm{input}}(e^{i\phi_{\mathrm{input}}}+e^{-i 4 \pi f_{\mathrm{baseband}} t_i - i\phi_{\mathrm{input}}}), & \mathrm{LF\ path.} \end{cases} \end{aligned} \end{equation}
Eafter integration = E e ,

N
1

i=1

∑
N

i, before integration
−i2πf tosc i

= {
A e ,2N

Cscaling ∑i=1
N

i, input
iϕinput

A (e + e),2N
Cscaling ∑i=1

N
i, input

iϕinput −i4πf t −iϕbaseband i input

RF path,
LF path.

(6)

Ai, input=AinputA_{i,\ \mathrm{input}} = A_{\mathrm{input}}A =i, input Ainput 1/
(2fosc)1/(2 f_{\mathrm{osc}})
1/(2f)osc

Eafter integration=CscalingAinput2eiϕinputE_{\mathrm{after\ integration}}=\frac{C_{\mathrm{scaling}}A_{\mathrm{input}}}{2}e^{i\phi_{\mathrm{input}}}E =after integration e2
C Ascaling input iϕinput 2/

Cscaling\sqrt{2}/C_{\mathrm{scaling}}
/C2 scaling

Ainput2eiϕinput\frac{A_{\mathrm{input}}}{\sqrt{2}}e^{i\phi_{\mathrm{input}}}e
2

Ainput iϕinput

Pinput=10log10∣Eafter integration∣250+30.(16) \begin{equation}\tag{7} \begin{aligned} P_{\mathrm{input}} & = 10\log_{10}\frac{|E_{\mathrm{after\ integration}}|^2}{50} + 30. \end{aligned} \end{equation} Pinput = 10 log + 30.10 50
∣E ∣after integration

2

(7)

5.2. Measurement Functionality

149 Zurich Instruments SHFQC User Manual

Power spectral density

Power Spectral Density (PSD) measurements are generally required to characterize an amplification
chain. In Spectroscopy mode, a PSD measurement can be performed using the SHFQC Sweeper, see
GitHub zhinst-toolkit example or zhinst-toolkit Online Documentation, or using instrument nodes,
see Device Node Tree.

Here, the PSD is calculated on the hardware as (see

Spectral density Wikipedia), where is the time step, is the sampling rate,
is the integration length in seconds, is the integration length in samples, is the
 -th complex data of the input signal. This calculation is done by the Instrument, and it returns the

real-valued PSD in units of . The applicable ranges of the PSD measurement are listed in .

Note that the measurement bandwidth is determined by the inverse of integration time, and the
frequency step should be less than or equal to the measurement bandwidth. Typically, the PSD
measurement requires many averages to be accurate. Setting the number of averages ≥ 1000 is
recommended.

Table 5.20: Applicable ranges of PSD measurements

Parameters Values

LabOne version ≥ 23.02

Number of channels 2 or 4 for SHFQA;
1 for SHFQC

Input frequency range RF: 0.5 - 8.5 GHz
LF: DC - 800 MHz

Input Power Range RF: -50 to +10 dBm
LF: -30 to +10 dBm

Input waveform length continuous or pulsed (> 2 ns)

Measurement bandwidth (1 / integration time) 60 Hz to 500 MHz (16.7 ms to 2 ns)

Number of averages 1 to 131k

Input voltage noise density see Specifications

Input spurious free dynamic range (excluding harmonics) see Specifications

Readout Mode

Readout mode is mainly used for multi qubit readout. The SHFQC has 8 or 16 readout Waveform
Memory slots, and 8 or 16 integration weight units per Quantum Analyzer channel. In readout mode,
these memory slots are used for readout pulse generation and weighted integration. The SHFQC
Readout Pulse Generator is the central controller in Readout mode, see Figure 5.22 and tutorial
Multiplexed Qubit Readout.

Sxx(f)=limN→∞(Δt)2T∣∑n=−Nn=Nxne−i2πfnΔt∣2S_{xx}(f) = \lim_{N\to\infty} \frac{(\Delta t)^2}{T}|\sum_{n = -N}^{n = N} x_ne^{-i2\pi f n\Delta t}|^2S (f) =xx lim ∣ x e ∣N→∞ T
(Δt)2

∑n=−N
n=N

n
−i2πfnΔt 2

Δt=1/
fs\Delta t = 1/f_\mathrm{s}
Δt = 1/fs fsf_\mathrm{s}fs T=(2N+1)ΔtT = (2N+1)\Delta tT = (2N + 1)Δt

2N+12N+12N + 1 xne−i2πfnΔtx_ne^{-i2\pi f n\Delta t}x en −i2πfnΔt

nnn
Vrms2/
Hz\mathrm{Vrms}^2/\mathrm{Hz}
Vrms /Hz2

5.2. Measurement Functionality

150 Zurich Instruments SHFQC User Manual

https://github.com/zhinst/zhinst-toolkit/tree/main/examples
https://en.wikipedia.org/wiki/Spectral_density

Figure 5.22: Readout waveform generation, integration and discrimination in Readout
mode.

There are 2 state discrimination modes, 2-state discrimination (default, see tutorial Multiplexed
Qubit Readout and multistate discrimination). Both modes are based on the linear Support Vector
Machine and one versus one classification. Note that multistate discrimination can only be
configured via LabOne APIs.

Readout Waveform Generation In Readout Mode

The readout waveform can be generated parametrically by LabOne GUI and APIs, and then uploaded
and saved in the Waveform Memory. All readout waveforms saved in the Waveform Memory can be
erased by clicking Clear on LabOne GUI or using LabOne APIs. Each readout waveform can be used
for a single qudit readout, and up to 8 or 16 qubits can be readout simultaneously using a sum of the
readout waveforms saved in the Waveform Memory. The Readout Waveform Generator controls
which and how readout waveforms are played, see the Readout Pulse Generator Tab.

The readout waveform saved in the -th (8 or 16) Waveform Memory slot is complex data, which
can be expressed as

where is the amplitude factor of the readout waveform at the -th
sample, is the offset frequency, is the global phase. The output signal on the front
panel is

where the sum depends on number of qudits readout in parallel. Note that the maximum amplitude
factor of the sum of all waveforms in use should not exceed 1.

Integration Weights

The integration weights can be parametrically generated or measured with the SHFQC Scope for the
best SNR (see tutorial Integration Weights Measurement), and uploaded to the integration weight
units. All integration weights saved in the memory can be erased by clicking Clear on LabOne GUI
Integration Weights sub-tab or using LabOne APIs. The length of the integration weight is
automatically extended to 4096 Samples once it’s uploaded, and integration length is used to
configure how long it integrates. The Readout Waveform Generator controls which and how
integration weights are used, see Readout Pulse Generator Tab.

jjj j≤j\lej ≤

Ei, j, readout=Ai, j, readoutei2πfj, offsetti+iϕj, readout(17) \begin{equation}\tag{8} \begin{aligned} E_{i,\ j,\ \mathrm{readout}} & = A_{i,\ j,\ \mathrm{readout}}e^{i2\pi f_{j,\ \mathrm{offset}}t_{i} + i\phi_{j,\ \mathrm{readout}}} \end{aligned} \end{equation} Ei, j, readout = A ei, j, readout
i2πf t +iϕj, offset i j, readout (8)

Ai, j, readout (0≤Ai, j, readout≤1)A_{i,\ j,\ \mathrm{readout}}\ (0\le A_{i,\ j,\ \mathrm{readout}}\le 1)A (0 ≤i, j, readout A ≤i, j, readout 1) iii
fj, offsetf_{j,\ \mathrm{offset}}fj, offset ϕj, readout\phi_{j,\ \mathrm{readout}}ϕj, readout

Eoutput(t)=Re[∑jAj, readout(t)ei2π(fj, offset+f0)t+iϕj, readout](18) \begin{equation}\tag{9} \begin{aligned} E_{\mathrm{output}}(t) & = \operatorname{Re}[\sum_j A_{j,\ \mathrm{readout}}(t)e^{i2\pi (f_{j,\ \mathrm{offset}}+f_0)t + i\phi_{j,\ \mathrm{readout}}}] \end{aligned} \end{equation} E (t)output = Re[A (t)e]
j

∑ j, readout
i2π(f +f)t+iϕj, offset 0 j, readout

(9)

5.2. Measurement Functionality

151 Zurich Instruments SHFQC User Manual

https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine

The integration weights saved in the -th integration weight unit is complex data, can be expressed
as

where is the amplitude factor of the integration weight at -th
sample, is the frequency of the integration weight, is the global phase of the
integration weight.

In 2-state discrimination mode, 1 qubit requires 1 integration weight, i.e. the conjugated difference of
readout input signal while qubit is prepared in state |0> and |1>, see Figure 5.23. In multistate
discrimination mode, 1 qudit with states requires integration weighs (one vs one
classification), i.e. the conjugated differences of any 2 readout input signal while qudit is prepared in
state | > and | >, where and are integer and . Only
integration weights need to be uploaded, and the integration results from the rest of integration
weights are calculated by the Instrument automatically, see Figure 5.24 and Figure 5.25.

All integration weights saved in the integration weight units can be displayed on the Waveform
Viewer, see Figure 5.20.

Note

In order to achieve the highest possible resolution in the signal after integration, it’s advised to scale
the dimensionless readout integration weights with a factor so that their maximum absolute value is
equal to 1.

Thresholding

Thresholding sub-tab is used to configure thresholds for state discrimination in 2-state
discrimination mode. In multistate discrimination mode, thresholds and assignment matrix are
configured by LabOne APIs.

The input signal before integration is

where indicates the -th sample of the input signal, indicates the -th component of the input
signal for a qubit or qudit, is the amplitude of -th components of the input signal,

 is the frequency of -th component of the input signal, , is the phase of -th
component of input signal. The signal can be monitored by the SHFQC Scope with the same
conversion factors as in Spectroscopy mode,

This signal is then integrated with integration weights (
) simultaneously. The -th integration result after weighted integration is

If , is a constant, , and integration length is
much longer than with LF path, the result after integration can be simplified as

 . This result with RF (LF) path is complex data, and can be

kkk

Ei, k, weights=Ai, k, weighte−i2πfk, weightti−iϕk, weight,(19) \begin{equation}\tag{10} \begin{aligned} E_{i,\ k,\ \mathrm{weights}} & = A_{i,\ k,\ \mathrm{weight}}e^{-i2\pi f_{k,\ \mathrm{weight}}t_{i} - i\phi_{k,\ \mathrm{weight}}}, \end{aligned} \end{equation} Ei, k, weights = A e ,i, k, weight
−i2πf t −iϕk, weight i k, weight (10)

Ai, k, weight (0≤Ai, k, weight≤1)A_{i,\ k,\ \mathrm{weight}}\ (0\le A_{i,\ k,\ \mathrm{weight}}\le 1)A (0 ≤i, k, weight A ≤i, k, weight 1) iii
fk, weightf_{k,\ \mathrm{weight}}fk, weight ϕk, weight\phi_{k,\ \mathrm{weight}}ϕk, weight

nnn n(n−1)/
2n(n-1)/2
n(n− 1)/2

iii jjj i (0≤i≤n−2)i\ (0\le i\le n-2)i (0 ≤ i ≤ n− 2) j (1≤j≤n−1)j\ (1\le j\le n-1)j (1 ≤ j ≤ n− 1) i≠ji \neq ji = j n−1n-1n− 1

Ei, before integration={Cscaling∑jAi, j, input2ei2πfj, basebandti+ϕj, input,RF path,Cscaling∑jAi, j, inputcos(2πfj, basebandti+ϕj, input),LF path,(20) \begin{equation}\tag{11} \begin{aligned} E_{i,\ \mathrm{before\ integration}} = \begin{cases} C_{\mathrm{scaling}}\sum_j \frac{A_{i,\ j,\ \mathrm{input}}}{2}e^{i2\pi f_{j,\ \mathrm{baseband}}t_i+\phi_{j,\ \mathrm{input}}}, & \mathrm{RF\ path},\\ C_{\mathrm{scaling}}\sum_j A_{i,\ j,\ \mathrm{input}}\cos{(2\pi f_{j,\ \mathrm{baseband}}t_i+\phi_{j,\ \mathrm{input}}}), & \mathrm{LF\ path}, \end{cases} \end{aligned} \end{equation}
E =i, before integration {

C e ,scaling ∑j 2
Ai, j, input i2πf t +ϕj, baseband i j, input

C A cos (2πf t + ϕ),scaling ∑j i, j, input j, baseband i j, input

RF path,
LF path,

(11)

iii iii jjj jjj
Ai, j, inputA_{i,\ j,\ \mathrm{input}}Ai, j, input jjj

fj, basebandf_{j,\ \mathrm{baseband}}fj, baseband jjj ϕj, input\phi_{j,\ \mathrm{input}}ϕj, input jjj

EScope={ΣjAi, j, input2ei2πfj, basebandti+iϕj, input,RF path,ΣjAi, j, inputcos(2πfj, basebandti+ϕj, input),LF path.(21) \begin{equation}\tag{12} E_{\mathrm{Scope}} = \begin{cases} \Sigma_j\frac{A_{i,\ j,\ \mathrm{input}}}{\sqrt{2}}e^{i2\pi f_{j,\ \mathrm{baseband}} t_i + i\phi_{j,\ \mathrm{input}}}, & \mathrm{RF\ path,} \\ \Sigma_j A_{i,\ j,\ \mathrm{input}}\cos{(2\pi f_{j,\ \mathrm{baseband}} t_i + \phi_{j,\ \mathrm{input}})}, & \mathrm{LF\ path.} \end{cases} \end{equation}
E =Scope {

Σ e ,j 2
Ai, j, input i2πf t +iϕj, baseband i j, input

Σ A cos (2πf t + ϕ),j i, j, input j, baseband i j, input

RF path,

LF path.
(12)

Ai, j, weighte−i2πfj, weightti−iϕj, weightA_{i,\ j,\ \mathrm{weight}}e^{-i2\pi f_{j,\ \mathrm{weight}}t_i-i\phi_{j,\ \mathrm{weight}}}A ei, j, weight
−i2πf t −iϕj, weight i j, weight fj, weight=fj, basebandf_{j,\ \mathrm{weight}} = f_{j,\ \mathrm{baseband}}f =j, weight

fj, baseband jjj

Ej, after integration=Σi=1NEi, j, before integrationAi,j, weighte−i2πfj, basebandti−iϕj, weight={Cscaling2∑i=1NAi, j, inputAi,j, weightei(ϕj, input−ϕj, weight),RF path,Cscaling2∑i=1NAi, j, inputAi,j, weight×(ei(ϕj, input−ϕj, weight)+e−i4πfj, basebandti−iϕj, weight−iϕj, weight),LF path.(22) \begin{equation}\tag{13} \begin{aligned} E_{j,\ \mathrm{after\ integration}} &= \Sigma_{i=1}^N {E_{i,\ j,\ \mathrm{before\ integration}}A_{i, j,\ \mathrm{weight}}e^{-i2\pi f_{j,\ \mathrm{baseband}}t_i-i\phi_{j,\ \mathrm{weight}}}}\\ &= \begin{cases} \frac{C_{\mathrm{scaling}}}{2}\sum_{i=1}^N A_{i,\ j,\ \mathrm{input}}A_{i, j,\ \mathrm{weight}}e^{i(\phi_{j,\ \mathrm{input}}-\phi_{j,\ \mathrm{weight}})}, & \mathrm{RF\ path,}\\ \frac{C_{\mathrm{scaling}}}{2}\sum_{i=1}^N A_{i,\ j,\ \mathrm{input}}A_{i, j,\ \mathrm{weight}}\times\\ (e^{i(\phi_{j,\ \mathrm{input}}-\phi_{j,\ \mathrm{weight}})} + e^{-i 4 \pi f_{j,\ \mathrm{baseband}}t_i-i\phi_{j,\ \mathrm{weight}}-i\phi_{j,\ \mathrm{weight}}}), & \mathrm{LF\ path.} \end{cases} \end{aligned} \end{equation} Ej, after integration = Σ E A ei=1
N

i, j, before integration i,j, weight
−i2πf t −iϕj, baseband i j, weight

=
⎩
⎨
⎧ A A e ,2

Cscaling ∑i=1
N

i, j, input i,j, weight
i(ϕ −ϕ)j, input j, weight

A A ×2
Cscaling ∑i=1

N
i, j, input i,j, weight

(e + e),i(ϕ −ϕ)j, input j, weight −i4πf t −iϕ −iϕj, baseband i j, weight j, weight

RF path,

LF path.

(13)

ϕj, input=ϕj, weight\phi_{j,\ \mathrm{input}}=\phi_{j,\ \mathrm{weight}}ϕ =j, input ϕj, weight Ai, j, input=Aj, inputA_{i,\ j,\ \mathrm{input}} = A_{j,\ \mathrm{input}}A =i, j, input Aj, input Ai, j, weights=1A_{i,\ j,\ \mathrm{weights}} = 1A =i, j, weights 1
1/
(2fj, baseband)1/(2 f_{j,\ \mathrm{baseband}})
1/(2f)j, baseband

Ej, after integration=NCscalingAj, input2E_{j,\ \mathrm{after\ integration}} = \frac{NC_{\mathrm{scaling}}A_{j,\ \mathrm{input}}}{2}E =j, after integration 2
NC Ascaling j, input

5.2. Measurement Functionality

152 Zurich Instruments SHFQC User Manual

downloaded and displayed on the Quantum Analyzer Result Tab with a conversion factor of
 (), as ().

To achieve the best SNR, the largest separation of qubit states and discriminate states with real
data, one can apply optimal weights , where

() is the readout signal when qubit in state () before integration recorded by the

scope, "*" is a conjugate operation, is a factor to normalize the optimal weights. The readout
signal of a single qubit after weighted integration with the optimal weights is

where (

) is a normalization factor, () and () is the amplitude and phase of

the signal in state (), respectively. Similarly, the readout signal after
weighted integration with the optimal weights is

Take the real part of the integrated results, and the 2 states can be discriminated by a threshold as

The separation between state and state can be calculated directly as

 , and it is the same as calculated from

In 2-state discrimination mode, all integration weights can be uploaded via LabOne GUI and APIs,
and all integration results saved in the result logger can be displayed on the Quantum Analyzer
Result Tab if integration is selected as result source. In multistate discrimination mode, all
integration weights can only be uploaded via LabOne APIs, and only integration results are
saved in the result logger if integration is selected as result source, the rest are calculated
automatically in the pairwise difference units.

Before state discrimination, threshold for each qudit has to be estimated and uploaded to the
Instrument with an internal conversion factor () in RF (LF) path. During thresholding, the

real part of the result after integration is compared with a threshold, and it returns 0 or 1. Qubit state
discrimination can be done in both 2-state and multistate discrimination modes. The readout result
of qubit after thresholding is

where is the threshold of the -th qubit, see Figure 5.23. The result after thresholding can
represent qubit state directly.

2/
Cscaling\sqrt{2}/C_{\mathrm{scaling}}

/C2 scaling 1/
Cscaling1/C_{\mathrm{scaling}}
1/Cscaling NAj, input2\frac{NA_{j,\ \mathrm{input}}}{\sqrt{2}}

2
NAj, input NAj, input2\frac{NA_{j,\ \mathrm{input}}}{2}2

NAj, input

(Ej, ∣b⟩, Scope−Ej,
∣a⟩, Scope)∗/
Anorm(E_{j,\ |b\rangle,\ \mathrm{Scope}} - E_{j,\, |a\rangle,\ \mathrm{Scope}})^*/A_{\mathrm{norm}}

(E −j, ∣b⟩, Scope E) /Aj, ∣a⟩, Scope
∗

norm Ej,
∣b⟩, ScopeE_{j,\, |b\rangle,\ \mathrm{Scope}}
Ej, ∣b⟩, Scope

Ej,
∣a⟩, ScopeE_{j,\, |a\rangle,\ \mathrm{Scope}}
Ej, ∣a⟩, Scope ∣b⟩|b\rangle∣b⟩ ∣a⟩|a\rangle∣a⟩

AnormA_{\mathrm{norm}}Anorm

E∣b⟩ , after integrationE_{|b\rangle\ ,\ \mathrm{after\ integration}}E∣b⟩ , after integration

E∣b⟩ , after integration={Cscaling2Σi=1NAi, ∣b⟩Ai, norm′eiϕ∣b⟩(Ai, ∣b⟩eiϕ∣b⟩−Ai, ∣a⟩eiπ∣a⟩)∗,RF path,CscalingΣi=1NAi, ∣b⟩Ai, norm′′cosϕ∣b⟩(Ai, ∣b⟩cosϕ∣b⟩−Ai, ∣a⟩cosϕ∣a⟩),LF path,={Cscaling2Σi=1NAi, ∣b⟩Ai, norm′[Ai, ∣b⟩−Ai, ∣a⟩cos(ϕ∣b⟩−ϕ∣a⟩)−iAi, asin(ϕ∣b⟩−ϕ∣a⟩)],RF path,CscalingΣi=1NAi, ∣b⟩Ai, norm′′cosϕ∣b⟩(Ai, ∣b⟩cosϕ∣b⟩−Ai, ∣a⟩cosϕ∣a⟩),LF path,(23) \begin{equation}\tag{14} \begin{aligned} &E_{|b\rangle\ ,\ \mathrm{after\ integration}}\\ &= \begin{cases} \frac{C_{\mathrm{scaling}}}{2}\Sigma_{i=1}^N\frac{A_{i,\ |b\rangle}}{A'_{i,\ \mathrm{norm}}}e^{i\phi_{|b\rangle}}(A_{i,\ |b\rangle}e^{i\phi_{|b\rangle}} - A_{i,\ |a\rangle}e^{i\pi_{|a\rangle}})^*,& \mathrm{RF\ path},\\ C_{\mathrm{scaling}}\Sigma_{i=1}^N\frac{A_{i,\ |b\rangle}}{A''_{i,\ \mathrm{norm}}}\cos{\phi_{|b\rangle}}(A_{i,\ |b\rangle}\cos{\phi_{|b\rangle}} - A_{i,\ |a\rangle}\cos{\phi_{|a\rangle}}), & \mathrm{LF\ path}, \end{cases}\\ &= \begin{cases} \frac{C_{\mathrm{scaling}}}{2}\Sigma_{i=1}^N\frac{A_{i,\ |b\rangle}}{A'_{i,\ \mathrm{norm}}}[A_{i,\ |b\rangle}-A_{i,\ |a\rangle}\cos{(\phi_{|b\rangle}-\phi_{|a\rangle})-i A_{i,\ a}\sin{(\phi_{|b\rangle}-\phi_{|a\rangle})}}], & \mathrm{RF\ path},\\ C_{\mathrm{scaling}}\Sigma_{i=1}^N\frac{A_{i,\ |b\rangle}}{A''_{i,\ \mathrm{norm}}}\cos{\phi_{|b\rangle}}(A_{i,\ |b\rangle}\cos{\phi_{|b\rangle}} - A_{i,\ |a\rangle}\cos{\phi_{|a\rangle}}), & \mathrm{LF\ path}, \end{cases} \end{aligned} \end{equation} E∣b⟩ , after integration

=
⎩
⎨
⎧ Σ e (A e − A e) ,2

Cscaling
i=1
N

Ai, norm
′
Ai, ∣b⟩ iϕ∣b⟩

i, ∣b⟩
iϕ∣b⟩

i, ∣a⟩
iπ∣a⟩ ∗

C Σ cosϕ (A cosϕ − A cosϕ),scaling i=1
N

Ai, norm
′′
Ai, ∣b⟩

∣b⟩ i, ∣b⟩ ∣b⟩ i, ∣a⟩ ∣a⟩

RF path,

LF path,

=
⎩
⎨
⎧ Σ [A − A cos (ϕ − ϕ) − iA sin (ϕ − ϕ)],2

Cscaling
i=1
N

Ai, norm
′
Ai, ∣b⟩

i, ∣b⟩ i, ∣a⟩ ∣b⟩ ∣a⟩ i, a ∣b⟩ ∣a⟩

C Σ cosϕ (A cosϕ − A cosϕ),scaling i=1
N

Ai, norm
′′
Ai, ∣b⟩

∣b⟩ i, ∣b⟩ ∣b⟩ i, ∣a⟩ ∣a⟩

RF path,

LF path,

(14)

Ai, norm′=Ai, ∣b⟩
2+Ai, ∣a⟩
2−2Ai, ∣a⟩
Ai, ∣b⟩
c
o
s(ϕ∣a⟩
−ϕ∣b⟩)A'_{i,\ \mathrm{norm}}=\sqrt{A_{i,\ |b\rangle}^2+A_{i,\ |a\rangle}^2-2 A_{i,\ |a\rangle}A_{i,\ |b\rangle}\cos{(\phi_{|a\rangle}-\phi_{|b\rangle})}}

A =i, norm
′ A + A − 2A A cos (ϕ − ϕ)i, ∣b⟩

2
i, ∣a⟩
2

i, ∣a⟩ i, ∣b⟩ ∣a⟩ ∣b⟩ Ai, norm′
′=Ai, ∣b⟩
c
o
sϕ∣b⟩
−Ai, ∣a⟩
c
o
sϕ∣a⟩
A
'
'
_
{
i
,
\
\
m
a
t
h
r
m
{
n
o
r
m
}
}
=
A
_
{
i
,
\
|
b
\
r
a
n

A =i, norm
′′ A cosϕ −i, ∣b⟩ ∣b⟩

A cosϕi, ∣a⟩ ∣a⟩ Ai, ∣b⟩
A
_
{
i
,
\
|
b
\
r
a
n
g
l
e
}

Ai, ∣b⟩ Ai, ∣a⟩
A
_
{
i
,
\
|
a
\
r
a
n
g
l
e
}

Ai, ∣a⟩ ϕ∣b⟩
\
p
h
i
_
{
|
b
\
r
a
n
g
l
e
}

ϕ∣b⟩ ϕ∣a⟩
\
p
h
i
_
{
|
a
\
r
a
n
g
l
e
}

ϕ∣a⟩

∣b⟩|b\rangle∣b⟩ ∣a⟩|a\rangle∣a⟩ E∣a⟩ , after integrationE_{|a\rangle\ ,\ \mathrm{after\ integration}}E∣a⟩ , after integration

E∣a⟩ , after integration={Cscaling2Σi=1NAi, ∣a⟩Ai, norm′[−Ai, ∣a⟩+Ai, ∣b⟩cos(ϕ∣a⟩−ϕ∣b⟩)+iAi, ∣b⟩sin(ϕ∣a⟩−ϕ∣b⟩)],RF path,CscalingΣi=1NAi, ∣a⟩Ai, norm′′cosϕ∣a⟩(Ai, ∣b⟩cosϕ∣b⟩−Ai, ∣a⟩cosϕ∣a⟩),LF path,(24) \begin{equation}\tag{15} \begin{aligned} &E_{|a\rangle\ ,\ \mathrm{after\ integration}}\\ &=\begin{cases} \frac{C_{\mathrm{scaling}}}{2}\Sigma_{i=1}^N\frac{A_{i,\ |a\rangle}}{A'_{i,\ \mathrm{norm}}}[-A_{i,\ |a\rangle}+A_{i,\ |b\rangle}\cos{(\phi_{|a\rangle}-\phi_{|b\rangle})+i A_{i,\ |b\rangle}\sin{(\phi_{|a\rangle}-\phi_{|b\rangle})}}], & \mathrm{RF\ path},\\ C_{\mathrm{scaling}}\Sigma_{i=1}^N\frac{A_{i,\ |a\rangle}}{A''_{i,\ \mathrm{norm}}}\cos{\phi_{|a\rangle}}(A_{i,\ |b\rangle}\cos{\phi_{|b\rangle}} - A_{i,\ |a\rangle}\cos{\phi_{|a\rangle}}), & \mathrm{LF\ path}, \end{cases} \end{aligned} \end{equation} E∣a⟩ , after integration

=
⎩
⎨
⎧ Σ [−A + A cos (ϕ − ϕ) + iA sin (ϕ − ϕ)],2

Cscaling
i=1
N

Ai, norm
′
Ai, ∣a⟩

i, ∣a⟩ i, ∣b⟩ ∣a⟩ ∣b⟩ i, ∣b⟩ ∣a⟩ ∣b⟩

C Σ cosϕ (A cosϕ − A cosϕ),scaling i=1
N

Ai, norm
′′
Ai, ∣a⟩

∣a⟩ i, ∣b⟩ ∣b⟩ i, ∣a⟩ ∣a⟩

RF path,

LF path,
(15)

Re[E∣b⟩ , after integration]+Re[E∣a⟩ , after integration]2={Cscaling2Σi=1N1Ai, norm′(Ai, ∣b⟩2−Ai, ∣a⟩2),RF path,CscalingΣi=1N1Ai, norm′′(Ai, ∣b⟩2cos2ϕ∣b⟩−Ai, ∣a⟩2cos2ϕ∣a⟩),LF path.(25) \begin{equation}\tag{16} \begin{aligned} &\frac{\operatorname{Re}[E_{|b\rangle\ ,\ \mathrm{after\ integration}}]+\operatorname{Re}[E_{|a\rangle\ ,\ \mathrm{after\ integration}}]}{2}\\ &=\begin{cases} \frac{C_{\mathrm{scaling}}}{2}\Sigma_{i=1}^N\frac{1}{A'_{\mathrm{i,\ norm}}}(A_{i,\ |b\rangle}^2 - A_{i,\ |a\rangle}^2), & \mathrm{RF\ path},\\ C_{\mathrm{scaling}}\Sigma_{i=1}^N\frac{1}{A''_{\mathrm{i,\ norm}}}(A_{i,\ |b\rangle}^2\cos^2{\phi_{|b\rangle}} - A_{i,\ |a\rangle}^2\cos^2{\phi_{|a\rangle}}), & \mathrm{LF\ path}. \end{cases} \end{aligned} \end{equation}
2

Re[E] + Re[E]∣b⟩ , after integration ∣a⟩ , after integration

=
⎩
⎨
⎧ Σ (A − A),2

Cscaling
i=1
N

Ai, norm
′

1
i, ∣b⟩
2

i, ∣a⟩
2

C Σ (A cos ϕ − A cos ϕ),scaling i=1
N

Ai, norm
′′

1
i, ∣b⟩
2 2

∣b⟩ i, ∣a⟩
2 2

∣a⟩

RF path,

LF path.

(16)

∣b⟩|b\rangle∣b⟩ ∣a⟩|a\rangle∣a⟩
Σi=1N(Ai, ∣b⟩
2+Ai, ∣a⟩
2−2Ai, ∣a⟩
Ai, ∣b⟩
c
o
s(ϕ∣b⟩
−ϕ∣a⟩))
\
s
q
r
t
{
\
S
i
g
m
a
_
{
i
=

)Σ (A + A − 2A A cos (ϕ − ϕ)i=1
N

i, ∣b⟩
2

i, ∣a⟩
2

i, ∣a⟩ i, ∣b⟩ ∣b⟩ ∣a⟩

∣Re[E∣b⟩ , after integration]−Re[E∣a⟩ , after integration]∣.(26) \begin{equation}\tag{17} \begin{aligned} |\operatorname{Re}[E_{|b\rangle\ ,\ \mathrm{after\ integration}}]-\operatorname{Re}[E_{|a\rangle\ ,\ \mathrm{after\ integration}}]|. \end{aligned} \end{equation} ∣ Re[E] − Re[E]∣.∣b⟩ , after integration ∣a⟩ , after integration (17)

n−1n-1n− 1

TjT_jTj
2Cscaling\frac{2}{C_{\mathrm{scaling}}}Cscaling

2 1Cscaling\frac{1}{C_{\mathrm{scaling}}}Cscaling

1

Ej, after thresholding={0Re[Ej, after integration]≤Tj,1Re[Ej, after integration]>Tj,(27) \begin{equation}\tag{18} \begin{aligned} E_{j,\ \mathrm{after\ thresholding}}= \begin{cases} 0 & \mathrm{Re}[E_{j,\ \mathrm{after\ integration}}] \le T_j,\\ 1 & \mathrm{Re}[E_{j,\ \mathrm{after\ integration}}] \gt T_j, \end{cases} \end{aligned} \end{equation}
E =j, after thresholding {

0
1

Re[E] ≤ T ,j, after integration j

Re[E] > T ,j, after integration j
(18)

TjT_jTj jjj

5.2. Measurement Functionality

153 Zurich Instruments SHFQC User Manual

Figure 5.23: Readout data processing for qubits. The green blocks are used for both
state discrimination modes and the blue blocks are used for multistate discrimination
mode only configured by LabOne APIs. is the readout input signal at the -th sample,

 is the optimal integration weight calculated from the difference while qubit is
prepared in state |0> and |1>, is the threshold for the integrated result.

For a qutrit, 3 thresholds are used, 2 for the integration results in the weighted integration units and
1 for the integration result in the pairwise difference units, see Figure 5.24. After thresholding, the 3-
bit data is assigned to 0, 1 or 2 by the assignment matrix, and the discriminated results can be
displayed in the Quantum Analyzer Result Tab. The discriminated result represented by 2-bit data
can be transferred to control instruments via DIO and ZSync for feedback experiment.

Figure 5.24: Readout data processing for qutrits. The green blocks are used for both
state discrimination modes and the blue blocks are used for multistate discrimination
mode only configured by LabOne APIs. is the readout input signal at the -th sample,

 and are the integration weights measured by calculating the readout pulse
difference when the qutrit is prepared in state |0> and |1>, and state |0> and |2>,

respectively. "a - b" is the pairwise difference of the integration results. The pairwise
difference is equivalent to having the third weighted integration . ,

 and are the thresholds for the 3 integration results.

For a ququad, 6 thresholds are used, 3 for the integration results in the weighted integration units
and 3 for the integration results in the pairwise difference units, see Figure 5.25. After thresholding,
the 6-bit data is assigned to 0, 1, 2 or 3 by the assignment matrix, and the discriminated results can
be displayed in the Quantum Analyzer Result Tab. The discriminated result represented by 2-bit data
can be transferred to control instruments via DIO and ZSync for feedback experiment.

Figure 5.25: Readout data processing for ququads. is the readout input signal at the
-th sample, , and are the integration weights measured by calculating the

xix_ixi iii
w1, iw_{1,\ i}w1, i

T1T_1T1

xix_ixi iii
w1, iw_{1,\ i}w1, i w2, iw_{2,\ i}w2, i

∑(w1, i−w2, j)⋅xi\sum (w_{1,\ i} - w_{2,\ j}) \cdot x_i(w −∑ 1, i w) ⋅2, j xi T1T_1T1

T2T_2T2 T3T_3T3

xix_ixi iii
w1, iw_{1,\ i}w1, i w2, iw_{2,\ i}w2, i w3, iw_{3,\ i}w3, i

5.2. Measurement Functionality

154 Zurich Instruments SHFQC User Manual

readout pulse difference when the ququad is prepared in state |0> and |1>, state |0>
and |2>, and state |0> and |3>, respectively. "a - b" are the pairwise differences of the
integration results. These pairwise differences are equivalent to having 3 more

weighted integration , and . ,
 , , , and are the thresholds for 6 integration results.

Functional Elements

Table 5.21: QA setup settings

Control/Tool Option/Range Description

Application
Mode

Spectroscopy Using internal digital oscillator for waveform generation
and integration.

Readout Using uploaded waveform for output signal generation
and customized weights for integration.

Errors Number Number of hold-off errors detected since last reset.

Spectroscopy

Trigger Signal Selects the source of the trigger for the integration and
envelope in Spectroscopy mode.

Integration
Length

2^2 to 2^25 Sets the integration length in Spectroscopy mode in
number of samples. Up to 33.5 MSa (2^25 samples, with
granularity of 4 Samples) can be recorded, which
corresponds to 16.7 ms.

Integration
Delay

-4 ns to 131.1 μs Sets the delay of the integration in Spectroscopy mode
with respect to the trigger signal. The resolution is 2 ns.

Operation Mode Continuous The output of the internal digital oscillator is used
directly for frequency up-conversion.

Pulse The waveform envelope is modulated by the internal
digital oscillator before frequency up-conversion.

Length 4 to 32 k (SHFQC
without 16W option)
or 64 k

Indicate the length of uploaded envelope waveform in
units of Samples. The granularity is 4 Samples.

Delay 0 ns to 131.1 μs Set a delay between readout pulse playback trigger and
the first sample of the readout pulse (in Pulsed mode).
The resolution is 2 ns.

File Upload CSV file Drop CSV file to upload the envelope waveform.

Center
Frequency

RF: 1 - 8 GHz
LF: 0 Hz

Display center frequency in Spectroscopy mode.

Offset
Frequency

- 1 to +1 GHz Set offset frequency to the internal digital oscillator in
Spectroscopy mode.

Output
Frequency

DC - 8.5 GHz Display frequency of the output signal in Spectroscopy
mode.

Amplitude 0 to 1 Set gain of the internal digital oscillator in Spectroscopy
mode. The recommended range is from 0.01 to 1 in pulsed
mode.

Readout

Integration
Length

4 to 4096 Sets the length of all Integration Weights in number of
samples. A maximum of 4096 samples can be integrated,
which corresponds to 2.05 μs. The granularity is 4
Samples.

Integration
Delay

0 ns to 131.1 μs Sets a common delay for the start of the readout
integration for all Integration Weights with respect to the
time when the trigger is received. The resolution is 2 ns.

Sequencer Run/
Stop

Run or Stop Enables the Sequencer.

Waveforms
Clear

Empty all readout Waveform Memory slots or Integration
weight Units.

∑(w1, i−w2, j)⋅xi\sum (w_{1,\ i} - w_{2,\ j}) \cdot x_i(w −∑ 1, i w) ⋅2, j xi ∑(w1, i−w3, j)⋅xi\sum (w_{1,\ i} - w_{3,\ j}) \cdot x_i(w −∑ 1, i w) ⋅3, j xi ∑(w2, i−w3, j)⋅xi\sum (w_{2,\ i} - w_{3,\ j}) \cdot x_i(w −∑ 2, i w) ⋅3, j xi T1T_1T1

T2T_2T2 T3T_3T3 T4T_4T4 T5T_5T5 T6T_6T6

5.2. Measurement Functionality

155 Zurich Instruments SHFQC User Manual

Control/Tool Option/Range Description

Waveform
Generation

Parametric or Upload Select the way to generate waveform.

Parametric
Amplitude

0 to 1 Set amplitude factor for parametric readout pulse and
integration weight generation.

Parametric
Frequency

-1 to +1 GHz Set offset frequency for parametric readout pulse or
integration weight generation.

Parametric
Phase

-180 to 180 degree Set phase for parametric readout pulse and integration
weight generation.

Parametric
Window Type

Rectangular Display window function to be applied in complex
exponential function for parametric readout pulse and
integration weight generation.

Parametric
Window Length

4 to 4096 Length of the selected window in samples for parametric
readout pulse and integration weight generation.

Parametric Set
To Device

Yes or No Set parametrically generated readout pulse and
integration weight to waveform memory slot and
integration memory slot, respectively.

Thresholding -14.51 kV to 14.51 kV Set threshold for quantum state discrimination. Note
that the data before thresholding is not normalized by
the integration length.

5.2.3. Quantum Analyzer Result Tab

The Quantum Analyzer Result tab is the interface to the Result Logger unit of the Instrument and
displays processed data after the qubit measurement unit (see Functional Overview for an overview
block diagram). It is available on all SHFQC Instruments.

Features

 Configure result source, result length and averaging
 Display readout results in Readout mode with different coordinates

Description

Table 5.22: App icon and short description

Control/Tool Option/Range Description

QA Result Configure the Result Logger.

The Quantum Analyzer Result tab (see Figure 5.26) is divided into a display section on the left and a
configuration section on the right.

Figure 5.26: LabOne UI: Quantum Analyzer Result Tab.

This tool allows users to acquire, average, and analyze large sets of data sourced at various points of
the signal processing chain. The data source setting is listed in Table 5.23

The data are stored in a vector with a length of up to points and displayed in the plot area on the
left once the acquisition is complete. The Result Logger supports hardware averaging and 2
averaging modes. The complex readout result after integration can be displayed in different
coordinates, i.e. complex plane (IQ plane) or amplitude and phase versus measurement points.

2192^{19}219

5.2. Measurement Functionality

156 Zurich Instruments SHFQC User Manual

Note that the QA Result Logger will be turned off automatically only if the number of acquired data
equals the product of the Length and the Averages set in the tab. A timeout error may occur if the
QA Result Logger does not receive enough trigger events, e.g. if the number of readouts configured
in the Sequencer is less than the product of the Length and Averages, or if the readout repetition
rate exceeds 1/(440 ns) (including the minimum integration hold off time of 20 ns).

Functional Elements

Table 5.23: QA result settings.

Control/
Tool

Option/Range Description

Run/Stop Run/Stop the Result Logger.

Source Integration Data or averaged data after weighted
integration.

Threshold Data or averaged data after thresholding.

Length to Number of data points to record. One data
point corresponds to a single averaged
output of the selected source. The
granularity is 1.

Averages to Number of averages per recorded data
point. The granularity is 1.

Acquired Length x Averages Indicate the index of the data point that
will be recorded next.

Mode Cyclic Set Cyclic averaging of the Result Logger.
The first point of the Result vector is the
average of the results number 1, M+1, 2M+1,
and so forth, where M is equal to the
Length setting. The second point is the
average of the results number 2, M+2,
2M+2, and so forth.

Sequential Set Sequential averaging of the Result
Logger. The first point of the Result
vector is the average of the first N
results, where N is equal to the Averages
setting. The second point of the Result
vector is the average of the following N
results, and so forth.

5.2.4. Readout Pulse Generator Tab

The Readout Pulse Generator tab is the main control panel for readout measurement sequences. It
is available on all SHFQC Instruments.

Features Overview

 1 Sequencer for each Readout Channel
 8 or 16 readout waveform memory slots, 4 kSa for each memory slot
 8 or 16 integration weights memory slots, 4 kSa for each memory slot
 Sequence branching
 Access to multiple internal triggers
 Interface to DIO and ZSync for synchronization and feedback
 High-level programming language
 Display waveforms in waveform memory and integration weight units

Description

Table 5.24: App icon and short description

202^020 2192^{19}219

202^020 2172^{17}217

5.2. Measurement Functionality

157 Zurich Instruments SHFQC User Manual

Control/Tool Option/Range Description

Generator Generate readout measurement sequences.

Figure 5.27: SHFQC Readout Pulse Generator Tab

The Sequencer Editor can be considered the central control unit of the Quantum Analyzer channel
of the SHFQC as it has access to the playback of the Waveform Memories to generate Readout
Pulses, the start of the Integration of the Readout Signals from the experiment and the
communication with additional devices through the DIO or ZSync. The programming language SeqC
is based on C and specified in detail in SeqC language. In contrast to other AWG Sequencers, e.g.
from the HDAWG, it does not provide writing access to the Waveform Memories and hence does not
come with predefined waveforms. The stricter separation between Sequencer and Waveform
Memory allows implementation of more advanced and application-specific features, e.g. Time-
Staggered Readout, while still providing real-time sequencing.

The Sequencer features a compiler which translates the high-level sequence program (SeqC) into
machine instructions to be stored in the Instrument sequencer memory. The sequence program is
written using high-level control structures and syntax that are inspired by human language, whereas
machine instructions reflect exactly what happens on the hardware level. Writing the sequence
program using SeqC represents a more natural and efficient way of working in comparison to writing
lists of machine instructions, which is the traditional way of programming AWGs. Concretely, the
improvements rely on features such as:

 Waveform playback and sequencing in a single script
 Easily readable syntax and naming for run-time variables and constants
 Definition of user functions and procedures for advanced structuring
 Syntax validation

By design, there is no one-to-one link between the list of statements in the high-level language and
the list of instructions executed by the Sequencer. In order to understand the execution timing, it’s
helpful to consider the internal architecture of the Readout Pulse Generator, consisting of the
Sequencer itself, and the Waveform Memory including a Waveform Player.

On the Control sub-tab the user configures signal parameters and controls the execution of the
sequencer. The sequencer can be started by clicking on Run/Stop. When enabling the Rerun
button, the Sequencer will be restarted automatically when its program completes. The Compiler
Status shows whether compilation is successful, or generated warnings or errors.

On the Trigger sub-tab users can configure the trigger inputs of the sequencer and control the
Hardware Trigger Engine functionality of the Instrument. The sequencer can be triggered by Digital
trigger source including DIO trigger, ZSync trigger, or the internal trigger unit. Only Digital trigger and
DIO trigger are configured in this sub-tab. ZSync trigger is configured in Device Tab.The internal
trigger is configured in the DIO Tab. There are 2 digital triggers that can be configured for each
sequencer. The options of Digital trigger source include,

 the physical trigger input A and B of all Quantum Analyzer channels,
 the physical trigger input of all Signal Generator channels,
 the sequencer trigger defined in all sequencers, such as through the command setTrigger,
 the readout done of all Quantum Analyzer channels,
 the internal trigger,
 the software trigger.

The sequencer can also be triggered by DIO trigger input with chosen Valid bit and Polarity (see DIO
Tab)

5.2. Measurement Functionality

158 Zurich Instruments SHFQC User Manual

The Advanced sub-tab displays the compiled list of sequencer instructions and the current state of
the sequencer on the Instrument. This can help an advanced user in debugging a sequence program
and understanding its execution.

Sequencer Operation

Every pulse sequence requires defining a SeqC program. For an example of how to define and
upload a sequence, see the Pulse Spectroscopy Tutorial. The status of the upload can be monitored
via the Ready node. Once it returns true, the compilation is successful and the program is
transferred to the device. If the compilation fails, the Status node will display debug messages.

After successful uploading of a sequence to the Instrument, the Sequencer can be started using the
Enable node.

If the Sequencer should wait for a Trigger Input Signal, it can either directly wait for a ZSync Trigger,
or access the Auxiliary Triggers.

With the SHFQC utility functions, the above-mentioned steps can be realized by a single function. A
set of Python API examples can be found in GitHub

All nodes for the Sequencer can be accessed through the node trees,

/dev..../qachannels/n/generator/...

and

/dev..../qachannels/n/generator/sequencer/....

SeqC

The syntax of the LabOne AWG Sequencer programming language is based on C, but with a few
simplifications. Each statement is concluded with a semicolon, several statements can be grouped
with curly brackets, and comment lines are identified with a double slash.

The following example shows some of the fundamental functionalities: repeated playback,
triggering, and single/dual-channel waveform playback and readout. See Tutorials for a step-by-step
introduction with more examples. The command waitZSyncTrigger is used to wait a trigger from
PQSC Programmable Quantum System Controller via ZSync. Alternatively, an external digital trigger
from the front panel or an internal trigger can also be used to start the sequence by the command
waitDigTrigger. The first playZero sets the delay between the trigger and the first readout pulse,
and the second playZero sets the delay between the first and the second readout pulse. The
command startQA sends out internal triggers to play readout pulses saved in the waveform
memory, to start integrations with waveforms saved in the integration weight units, and to send a
Sequencer monitor trigger which can be used to trigger the Scope. The third playZero ensures that
the previous commands playZero are finished.

// repeat sequence 100 times
repeat (100) {
 // wait for a trigger over ZSync. Assume the trigger period is longer than
the cycle time
 waitZSyncTrigger();

 // alternatively wait for a trigger from digital trigger 1
 // waitDigTrigger(1);

 // wait for 4096 Samples between the trigger and the first readout pulse
 // Note: this playZero command does not yet block the sequencer
 playZero(4096);

 // define how many samples to wait between the two upcoming startQA commands
 // Note: this command blocks the sequencer until the previous playZero
command is finished
 playZero(4096);

5.2. Measurement Functionality

159 Zurich Instruments SHFQC User Manual

https://github.com/zhinst/labone-api-examples

 // play the pulse stored in Waveform Memory slot 0 and read out using
Integration Weight 0
 startQA(QA_GEN_0, QA_INT_0, true, 0x0, 0x0);

 // minimal duration playZero command to wait until the previous playZero
command is finished
 playZero(32);

 // play the pulse stored in Waveform Memory slot 0, 1 and 2, and read out
using all Integration Weights
 startQA(QA_GEN_0|QA_GEN_1|QA_GEN_2, QA_INT_ALL, true, 0x0, 0x0);
}

Keywords and Comments

The following table lists the keywords used in the LabOne AWG Sequencer language.

Table 5.25: Programming keywords

Keyword Description

const Constant declaration

var Integer variable declaration

cvar Compile-time variable declaration

string Constant string declaration

true Boolean true constant

false Boolean false constant

for For-loop declaration

while While-loop declaration

repeat Repeat-loop declaration

if If-statement

else Else-part of an if-statement

switch Switch-statement

case Case-statement within a switch

default Default-statement within a switch

return Return from function or procedure, optionally with a return value

The following code example shows how to use comments.

const a = 10; // This is a line comment. Everything between the double
 // slash and the end of the line will be ignored.

/* This is a block comment. Everything between the start-of-block-comment and
end-of-block-comment markers is ignored.

For example, the following statement will be ignored by the compiler.

const b = 100;
*/

5.2. Measurement Functionality

160 Zurich Instruments SHFQC User Manual

Constants and Variables

Constants may be used to make the program more readable. They may be of integer or floating-
point type. It must be possible for the compiler to compute the value of a constant at compile time,
i.e., on the host computer. Constants are declared using the const keyword.

Compile-time variables may be used in computations and loop iterations during compile time, e.g.
to create large numbers of waveforms in a loop. They may be of integer or floating-point type. They
are used in a similar way as constants, except that they can change their value during compile time
operations. Compile-time variables are declared using the cvar keyword.

Variables may be used for making simple computations during run time, i.e., on the Instrument. The
Sequencer supports integer variables, addition, and subtraction. Not supported are floating-point
variables, multiplication, and division. Typical uses of variables are to step waiting times, to output
DIO values, or to tag digital measurement data with a numerical identifier. Variables are declared
using the var keyword.

The following code example shows how to use variables.

var b = 100; // Create and initialize a variable

// Repeat the following block of statements 100 times
repeat (100) {
 b = b + 1; // Increment b
 wait(b); // Wait 'b' cycles
}

The following table shows the predefined constants. These constants are intended to be used as
arguments in certain run-time evaluated functions that encode device parameters with integer
numbers.

Table 5.26: Predefined Constants

Name Value Description

M_E 2.71828182845904523536028747135266250 e

M_LOG2E 1.44269504088896340735992468100189214 log2(e)

M_LOG10E 0.434294481903251827651128918916605082 log10(e)

M_LN2 0.693147180559945309417232121458176568 loge(2)

M_LN10 2.30258509299404568401799145468436421 loge(10)

M_PI 3.14159265358979323846264338327950288 pi

M_PI_2 1.57079632679489661923132169163975144 pi/2

M_PI_4 0.785398163397448309615660845819875721 pi/4

M_1_PI 0.318309886183790671537767526745028724 1/pi

M_2_PI 0.636619772367581343075535053490057448 2/pi

M_2_SQRTPI 1.12837916709551257389615890312154517 2/sqrt(pi)

M_SQRT2 1.41421356237309504880168872420969808 sqrt(2)

M_SQRT1_2 0.707106781186547524400844362104849039 1/sqrt(2)

Numbers can be expressed using either of the following formatting.

const a = 10; // Integer notation
const b = -10; // Negative number
const h = 0xdeadbeef; // Hexadecimal integer
const bin = 0b10101; // Binary integer
const f = 0.1e-3; // Floating point number.
const not_float = 10e3; // Not a floating point number

Booleans are specified with the keywords true and false. Furthermore, all numbers that evaluate to
a nonzero value are considered true. All numbers that evaluate to zero are considered false.

5.2. Measurement Functionality

161 Zurich Instruments SHFQC User Manual

Strings are delimited using "" and are interpreted as constants. Strings may be concatenated using
the + operator.

string AWG_PATH = "awgs/0/";
string AWG_GAIN_PATH = AWG_PATH + "gains/0";

Waveform Playback and Predefined Functions

The following table contains the definition of functions for waveform playback and other purposes.

void setDIO(var value)

Writes the value as a 32-bit value to the DIO bus.

The value can be either a const or a var value. Configure the Mode setting in the DIO tab when using
this command. The DIO interface speed of 50 MHz limits the rate at which the DIO output value is
updated.

Args:

 value: The value to write to the DIO (const or var)

var getDIO()

Reads a 32-bit value from the DIO bus.

Returns:

var containing the read value

var getDIOTriggered()

Reads a 32-bit value from the DIO bus as recorded at the last DIO trigger position.

Returns:

var containing the read value

void setTrigger(var value)

Sets the Sequencer Trigger output signals.

The state of the two Sequencer Trigger output signals is defined by the bits in the binary
representation of the integer value. Allowed parameter values are 0 to 3. For higher integer values,
only the two least-significant bits will have an effect.Binary notation of the form 0b00 is
recommended for readability.

Args:

 value: to be written to the trigger distribution unit

5.2. Measurement Functionality

162 Zurich Instruments SHFQC User Manual

void wait(var cycles)

Waits for the given number of Sequencer clock cycles (4 ns per cycle). The execution of the
instruction adds an offset of 2 clock cycles, i.e., the statement wait(3) leads to a waiting time of 5 * 4
ns = 20 ns.

Note: the minimum waiting time amounts to 3 cycles, which means that wait(0) and wait(1) will both
result in a waiting time of 3 * 4 ns = 12 ns.

Args:

 cycles: number of cycles to wait

void waitTrigger(const mask, const value)

Waits until the masked trigger input is equal to the given value.

Args:

 mask: mask to be applied to the input signal
 value: value to be compared with the trigger input

void waitDIOTrigger()

Waits until the DIO interface trigger is active. The trigger is specified by the Strobe Index and Strobe
Slope settings in the AWG Sequencer tab.

var getDigTrigger(const index)

Gets the state of the indexed Digital Trigger input (1 or 2).

The physical signal connected to the Digital Trigger input is to be configured in the Readout section
of the Quantum Analyzer Setup tab.

Args:

 index: index of the Digital Trigger input to be read; can be either 1 or 2

Returns:

trigger state, either 0 or 1

void error(string msg,...)

Throws the given error message when reached.

Args:

 msg: Message to be displayed

void info(string msg,...)

Returns the specified message when reached.

Args:

 msg: Message to be displayed

5.2. Measurement Functionality

163 Zurich Instruments SHFQC User Manual

void setUserReg(const register, var value)

Writes a value to one of the User Registers (indexed 0 to 15).

The User Registers may be used for communicating information to the LabOne User Interface or a
running API program.

Args:

 register: The register index (0 to 15) to be written to
 value: The integer value to be written

var getUserReg(const register)

Reads the value from one of the User Registers (indexed 0 to 15). The User Registers may be used for
communicating information to the LabOne User Interface or a running API program.

Args:

 register: The register to be read (0 to 15)

Returns:

current register value

void playZero(var samples)

Zero Playback, which can be used to specify spacings in number of samples at the sample rate of 2
GSa/s between the execution times of commands, such as startQA. Each playZero command blocks
the execution of subsequent commands when a previous Zero Playback is already running. Note: the
playback of actual waveforms with the startQA command happens in parallel to the Zero Playback,
in contrast to the HDAWG and SHFSG!

Args:

 samples: Number of samples for the spacing. The minimal spacing is 32 samples and the
granularity is 16 samples.

void playZero(var samples, const rate)

Zero Playback, which can be used to specify spacings in number of samples between the execution
times of commands, such as startQA. Each playZero command blocks the execution of subsequent
commands when a previous Zero Playback is already running. Note: the playback of actual
waveforms with the startQA command happens in parallel to the Zero Playback, in contrast to the
HDAWG and SHFSG!

Args:

 rate: Sample rate with which the spacing is specified. Divides the device sample rate by 2^rate.
Note: this rate does not affect the sample rate of the QA waveform generator (startQA
command).

 samples: Number of samples for the spacing. The minimal spacing is 32 samples and the
granularity is 16 samples.

void waitDigTrigger(const index)

Waits for the reception of a trigger signal on the indexed Digital Trigger (index 1 or 2). The physical
signals connected to the two AWG Digital Triggers are to be configured in the Trigger sub-tab of the
AWG Sequencer tab. The Digital Triggers are configured separately for each AWG Core.

Args:

 index: Index of the digital trigger input; can be either 1 or 2.

5.2. Measurement Functionality

164 Zurich Instruments SHFQC User Manual

void resetOscPhase()

Reset the phase of the oscillator controllable by the sequencer. Each sequencer can control the
oscillator of its QACHANNEL.

void configFreqSweep(const oscillator_index, const freq_start, const
freq_increment)

Configures a frequency sweep.

Args:

 freq_increment: Specify how much to increment the frequency for each step of the sweep [Hz]
 freq_start: Specify the start frequency value for the sweep [Hz]
 oscillator_index: Index of the oscillator that will be used for the sweep

void setSweepStep(const oscillator_index, var sweep_index)

Executes a step within a frequency sweep.

Args:

 oscillator_index: Index of the oscillator that will be used for the sweep
 sweep_index: Sets the step index, from which the frequency is set

void setOscFreq(const oscillator_index, const freq)

Configures the frequency of an oscillator.

Args:

 freq: Frequency to be set [Hz]
 oscillator_index: Index of oscillator

var getFeedback(const data_type)

Read the last received feedback message. The argument specify which data the function should
return.

Args:

 data_type: Specifies which data the function should return: ZSYNC_DATA_RAW: Return the
data received on the ZSync as-is without parsing. The structure of the message can change
across different LabOne releases. ZSYNC_DATA_PQSC_REGISTER: Get last readout register
forwarded by the PQSC ZSYNC_DATA_PQSC_DECODER: Get last output of the decoder received
from the PQSC. QA_DATA_RAW: Return the last readout data received from the QA as-is
QA_DATA_PROCESSED: Return the last readout data received from the QA, after processing

Returns:

var containing the read value

5.2. Measurement Functionality

165 Zurich Instruments SHFQC User Manual

var getFeedback(const data_type, var wait_cycles)

Read the last received feedback message. The argument specify which data the function should
return.

Args:

 data_type: Specifies which data the function should return: ZSYNC_DATA_RAW: Return the
data received on the ZSync as-is without parsing. The structure of the message can change
across different LabOne releases. ZSYNC_DATA_PQSC_REGISTER: Get last readout register
forwarded by the PQSC ZSYNC_DATA_PQSC_DECODER: Get last output of the decoder received
from the PQSC. QA_DATA_RAW: Return the last readout data received from the QA as-is
QA_DATA_PROCESSED: Return the last readout data received from the QA, after processing

 wait_cycles: Wait for the specified number of cycles after the most recent waitZSyncTrigger()
or waitDigTrigger() instruction

Returns:

var containing the read value

void waitZSyncTrigger()

Waits for a trigger over ZSync.

void startQA(const waveform_generator_mask, const
weighted_integrator_mask, const monitor, const result_address, const
trigger)

Starts the Quantum Analysis (QA) Readout Waveform Generation, Integration, and Result units.

Args:

 monitor: Enable the Sequencer Monitor Trigger, which is issued simultaneously with the start of
the weighted integration units. In addition to setting this argument to true, the Sequencer
Monitor Trigger must be selected as trigger source for the SHFQA Scope in order to align the
start of the time trace to the start of the weighted integration. Default: false.

 result_address: Specify the address of the PQSC readout register in which to store the
readout result from this SHFQA. Please refer to the PQSC user manual for more details. Default:
0x0

 trigger: Sets the sequencer trigger output in the same manner as the setTrigger() command.
Default: 0b00

 waveform_generator_mask: Readout Waveform Generator unit enable mask. Providing a value
for this argument is mandatory. The mask can be specified using the predefined constants
QA_GEN_n, where n is an index ranging from 0 to 15, except for the 2-channel SHFQA without
16W option, where the range only spans from 0 to 7. To construct more elaborate masks that
enable multiple units, combine these predefined constants using the operator | (bit-wise OR). The
constant QA_GEN_ALL can be used to enable all units simultaneously. NOTE: the signals from
simultaneously enabled Waveform Generation units are combined by a digital adder.

 weighted_integrator_mask: Integration unit enable mask, default: QA_INT_ALL The mask can
be specified using the predefined constants QA_INT_n, where n is an index ranging from 0 to 15,
except for the 2-channel SHFQA without 16W option, where the range only spans from 0 to 7. To
construct more elaborate masks that enable multiple units, combine these predefined constants
using the operator | (bit-wise OR). The constant QA_INT_ALL can be used to enable all units
simultaneously.

Expressions

Expressions may be used for making computations based on mathematical functions and
operators. There are two kinds of expressions: those evaluated at compile time (when the sequencer
program is compiled on the computer), and those evaluated at run time.

Compile-time evaluated expressions only involve constants (const) or compile-time variables
(cvar) and can be computed at compile time by the host computer. Such expressions can make use
of standard mathematical functions and floating point arithmetic.

5.2. Measurement Functionality

166 Zurich Instruments SHFQC User Manual

Run-time evaluated expressions involve variables (var) and are evaluated by the Sequencer on the
Instrument. Due to the limited computational capabilities of the Sequencer, these expressions may
only operate on integer numbers and there are less operators available than at compile time.

The following table contains the list of mathematical functions supported at compile time.

Table 5.27: Mathematical Functions

Function Description

const abs(const c) absolute value

const acos(const c) inverse cosine

const acosh(const c) hyperbolic inverse cosine

const asin(const c) inverse sine

const asinh(const c) hyperbolic inverse sine

const atan(const c) inverse tangent

const atanh(const c) hyperbolic inverse tangent

const cos(const c) cosine

const cosh(const c) hyperbolic cosine

const exp(const c) exponential function

const ln(const c) logarithm to base e (2.71828...)

const log(const c) logarithm to the base 10

const log2(const c) logarithm to the base 2

const log10(const c) logarithm to the base 10

const sign(const c) sign function -1 if x<0; 1 if x>0

const sin(const c) sine

const sinh(const c) hyperbolic sine

const sqrt(const c) square root

const tan(const c) tangent

const tanh(const c) hyperbolic tangent

const ceil(const c) smallest integer value not less than the argument

const round(const c) round to nearest integer

const floor(const c) largest integer value not greater than the argument

const avg(const c1, const c2,...) mean value of all arguments

const max(const c1, const c2,...) maximum of all arguments

const min(const c1, const c2,...) minimum of all arguments

const pow(const base, const exp) first argument raised to the power of second argument

const sum(const c1, const c2,...) sum of all arguments

The following table contains the list of predefined mathematical constants. These can be used for
convenience in compile-time evaluated expressions.

Table 5.28: Predefined Constants

Name Value Description

commandTableEntries {4096}

AWG_RATE_2000MHZ 0 Constant to set Sampling Rate to 2.0 GHz.

AWG_RATE_1000MHZ 1 Constant to set Sampling Rate to 1.0 GHz.

AWG_RATE_500MHZ 2 Constant to set Sampling Rate to 500 MHz.

AWG_RATE_250MHZ 3 Constant to set Sampling Rate to 250 MHz.

AWG_RATE_125MHZ 4 Constant to set Sampling Rate to 125 MHz.

5.2. Measurement Functionality

167 Zurich Instruments SHFQC User Manual

Name Value Description

AWG_RATE_62P5MHZ 5 Constant to set Sampling Rate to 62.5 MHz.

AWG_RATE_31P25MHZ 6 Constant to set Sampling Rate to 31.25 MHz.

AWG_RATE_15P63MHZ 7 Constant to set Sampling Rate to 15.63 MHz.

AWG_RATE_7P81MHZ 8 Constant to set Sampling Rate to 7.81 MHz.

AWG_RATE_3P9MHZ 9 Constant to set Sampling Rate to 3.9 MHz.

AWG_RATE_1P95MHZ 10 Constant to set Sampling Rate to 1.95 MHz.

AWG_RATE_976KHZ 11 Constant to set Sampling Rate to 976 kHz.

AWG_RATE_488KHZ 12 Constant to set Sampling Rate to 488 kHz.

AWG_RATE_244KHZ 13 Constant to set Sampling Rate to 244 kHz.

DEVICE_SAMPLE_RATE <actual
device
sample
rate>

ZSYNC_DATA_RAW 0 Constant to use as argument to getZSyncData.

QA_INT_0 (1 << 0)
Constant to enable Integration unit 0 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_1 (1 << 1)
Constant to enable Integration unit 1 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_2 (1 << 2)
Constant to enable Integration unit 2 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_3 (1 << 3)
Constant to enable Integration unit 3 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_4 (1 << 4)
Constant to enable Integration unit 4 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_5 (1 << 5)
Constant to enable Integration unit 5 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_6 (1 << 6)
Constant to enable Integration unit 6 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_7 (1 << 7)
Constant to enable Integration unit 7 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

5.2. Measurement Functionality

168 Zurich Instruments SHFQC User Manual

Name Value Description

QA_INT_8 (1 << 8)
Constant to enable Integration unit 8 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_9 (1 << 9)
Constant to enable Integration unit 9 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_10 (1 << 10)
Constant to enable Integration unit 10 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_11 (1 << 11)
Constant to enable Integration unit 11 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_12 (1 << 12)
Constant to enable Integration unit 12 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_13 (1 << 13)
Constant to enable Integration unit 13 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_14 (1 << 14)
Constant to enable Integration unit 14 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_15 (1 << 15)
Constant to enable Integration unit 15 in the Integration unit
enable mask of the function startQA(). To construct more
elaborate masks that enable multiple units, combine these
predefined constants using the operator

QA_INT_ALL (1 << 16) - 1
Constant to enable all Integration units in the Integration
unit enable mask of the function startQA().

QA_GEN_0 (1 << 0)
Constant to enable Readout Waveform Generator unit 0 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_1 (1 << 1)
Constant to enable Readout Waveform Generator unit 1 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_2 (1 << 2)
Constant to enable Readout Waveform Generator unit 2 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

5.2. Measurement Functionality

169 Zurich Instruments SHFQC User Manual

Name Value Description

QA_GEN_3 (1 << 3)
Constant to enable Readout Waveform Generator unit 3 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_4 (1 << 4)
Constant to enable Readout Waveform Generator unit 4 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_5 (1 << 5)
Constant to enable Readout Waveform Generator unit 5 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_6 (1 << 6)
Constant to enable Readout Waveform Generator unit 6 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_7 (1 << 7)
Constant to enable Readout Waveform Generator unit 7 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_8 (1 << 8)
Constant to enable Readout Waveform Generator unit 8 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_9 (1 << 9)
Constant to enable Readout Waveform Generator unit 9 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_10 (1 << 10)
Constant to enable Readout Waveform Generator unit 10 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_11 (1 << 11)
Constant to enable Readout Waveform Generator unit 11 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_12 (1 << 12)
Constant to enable Readout Waveform Generator unit 12 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

5.2. Measurement Functionality

170 Zurich Instruments SHFQC User Manual

Name Value Description

QA_GEN_13 (1 << 13)
Constant to enable Readout Waveform Generator unit 13 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_14 (1 << 14)
Constant to enable Readout Waveform Generator unit 14 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_15 (1 << 15)
Constant to enable Readout Waveform Generator unit 15 in
the Readout Waveform Generator unit enable mask of the
function startQA(). To construct more elaborate masks that
enable multiple units, combine these predefined constants
using the operator

QA_GEN_ALL (1 << 16) - 1
Constant to enable all Waveform Generator units in the
waveform generator unit enable mask of the function
startQA().

Control Structures

Functions may be declared using the var keyword. Procedures may be declared using the void
keyword. Functions must return a value, which should be specified using the return keyword.
Procedures can not return values. Functions and procedures may be declared with an arbitrary
number of arguments. The return keyword may also be used without arguments to return from an
arbitrary point within the function or procedure. Functions and procedures may contain variable and
constant declarations. These declarations are local to the scope of the function or procedure.

var function_name(argument1, argument2, ...) {
 // Statements to be executed as part of the function.
 return constant-or-variable;
}
void procedure_name(argument1, argument2, ...) {
 // Statements to be executed as part of the procedure.

 // Optional return statement
 return;
}

An if-then-else structure is used to create a conditional branching point in a sequencer program.

// If-then-else statement syntax
if (expression) {
 // Statements to execute if 'expression' evaluates to 'true'.
} else {
 // Statements to execute if 'expression' evaluates to 'false'.
}

// If-then-else statement short syntax
(expression)?(statement if true):(statement if false)

// If-then-else statement example
const REQUEST_BIT = 0x0001;
const ACKNOWLEDGE_BIT = 0x0002;
const IDLE_BIT = 0x8000;

5.2. Measurement Functionality

171 Zurich Instruments SHFQC User Manual

var dio = getDIO();

if (dio & REQUEST_BIT) {
 dio = dio | ACKNOWLEDGE_BIT;
 setDIO(dio);
} else {
 dio = dio | IDLE_BIT;
 setDIO(dio);
}

A switch-case structure serves to define a conditional branching point similarly to the if-then-
else statement, but is used to split the sequencer thread into more than two branches. Unlike the
if-then-else structure, the switch statement is synchronous, which means that the execution
time is the same for all branches and determined by the execution time of the longest branch. If no
default case is provided and no case matches the condition, all cases will be skipped. The case
arguments need to be of type const.

// Switch-case statement syntax
switch (expression) {
 case const-expression:
 expression;
 ...
default:
 expression;
}
// Switch-case statement example
switch (getDIO()) {
 case 0:
 startQA(QA_GEN_0, QA_INT_0, true, 0x0, 0x0);
 case 1:
 startQA(QA_GEN_1, QA_INT_1, true, 0x0, 0x0);
 case 2:
 startQA(QA_GEN_2, QA_INT_2, true, 0x0, 0x0);
 default:
 startQA(QA_GEN_3, QA_INT_3, true, 0x0, 0x0);
}

The for loop is used to iterate through a code block several times. The initialization statement is
executed before the loop starts. The end-expression is evaluated at the start of each iteration and
determines when the loop should stop. The loop is executed as long as this expression is true. The
iteration-expression is executed at the end of each loop iteration. Depending on how the for loop is
set up, it can be either evaluated at compile time or at run time. For a run-time evaluated for loop,
use the var data type as a loop index. To ensure that a loop is evaluated at compile time, use the
cvar data type as a loop index. Furthermore, the compile-time for loop should only contain
waveform generation/editing operations and it can’t contain any variables of type var.

The following code example shows both versions of the loop.

// For loop syntax
for (initialization; end-expression; iteration-expression) {
 // Statements to execute while end-expression evaluates to true
}

// For loop example (compile-time execution)
cvar i;
wave w_pulses;
for (i = 0; i < 10; i = i + 1) {
 startQA(QA_GEN_0<<1, QA_INT_0, true, 0x0, 0x0);
}

// For loop example (run-time execution)
var k;
var j;
for (j = 9; j >= 0; j = j - 1) {
 startQA(QA_GEN_0, QA_INT_0, true, 0x0, 0x0);

5.2. Measurement Functionality

172 Zurich Instruments SHFQC User Manual

 k += j;
}

The while loop is a simplified version of the for loop. The end-expression is evaluated at the start of
each loop iteration. The contents of the loop are executed as long as this expression is true. Like
the for loop, this loop comes in a compile-time version (if the end-expression involves only cvar and
const) and in a run-time version (if the end-expression involves also var data types).

// While loop syntax
while (end-expression) {
 // Statements to execute while end-expression evaluates to true
}

// While loop example
const STOP_BIT = 0x8000;
var run = 1;
var i = 0;
var dio = 0;
while (run) {
 dio = getDIO();
 run = dio & STOP_BIT;
 dio = dio | (i & 0xff);
 setDIO(dio);
 i = i + 1;
}

The repeat loop is a simplified version of the for loop. It repeats the contents of the loop a fixed
number of times. In contrast to the for loop, the repetition number of the repeat loop must be
known at compile time, i.e., const-expression can only depend on constants and not on variables.
Unlike the for and the while loop, this loop comes only in a run-time version. Thus, no cvar data
types may be modified in the loop body.

// Repeat loop syntax
repeat (constant-expression) {
 // Statements to execute
}

// Repeat loop example
repeat (100) {
 setDIO(0x1);
 wait(10);
 setDIO(0x0);
 wait(10);
}

Waveform Memory

The Waveform Memory stores the different complex-valued arbitrary waveforms that are used to
readout the qubits. They can be accessed through /dev..../qachannels/n/generator/
waveforms/n/wave and have a maximal length of 4096 samples and a vertical range between -1 and
1 relative to the full scale of the Output Range.

Functional Elements

Table 5.29: SHFQC Readout Pulse Generator: Control sub-tab

Control/Tool Option/
Range

Description

Start ON/OFF Run the Generator Sequencer.

Rerun ON/OFF Puts the Sequencer into single-shot mode or rerun mode.

Status Display compiler errors and warnings.

5.2. Measurement Functionality

173 Zurich Instruments SHFQC User Manual

Control/Tool Option/
Range

Description

Compile Status grey/green/
yellow/red

Sequence program compilation status. Grey: No compilation
started yet. Green: Compilation successful. Yellow: Compiler
warnings (see status field). Red: Compilation failed (see status
field).

Upload Progress 0% to 100% The percentage of the sequencer program already uploaded to
the device.

Upload Status grey/yellow/
green

Indicates the upload status of the compiled sequence. Grey:
Nothing has been uploaded. Yellow: Upload in progress. Green:
Compiled sequence has been uploaded.

Register
Selector

1 to 16 Select the number of the user register value to be edited.

Register 0 to Integer user register value. The sequencer has reading and writing
access to the user register values during run time.

Input File External source code file to be compiled.

Example File Load pre-installed example sequence program.

New Create a new sequence program.

Revert Undo the changes made to the current program and go back to
the contents of the original file.

Save (Ctrl+S) Compile and save the current program displayed in the Sequence
Editor. Overwrites the original file.

Save As...
(Ctrl+Shift+S)

Compile and save the current program displayed in the Sequence
Editor under a new name.

Automatic
Upload

ON / OFF If enabled, the sequence program is automatically uploaded to
the device after clicking Save and if the compilation was
successful.

To Device Sequence program will be compiled and, if the compilation was
successful, uploaded to the device.

Table 5.30: SHFQC Readout Pulse Generator: Trigger sub-tab

Control/
Tool

Option/Range Description

Status grey/green/
yellow/red

Displays the status of the sequence on the Instrument. Off: Ready,
not running. Green: Running, not waiting for any trigger event.
Yellow: Running, waiting for a trigger event. Red: Not Ready.

Digital
Trigger

1 or 2 Choose Digital Trigger 1 or Digital Trigger 2

Signal Selects Digital Trigger source signal. Navigate through the tree
view that appears and click on the required signal.

Valid Index Selects the index n of the DIO interface bit (notation DIO[n] in the
Specification chapter of the User Manual) to be used as a VALID
signal input, i.e. a qualifier indicating that a valid codeword is
available on the DIO interface.

Valid
Polarity

Polarity of the VALID bit that indicates that a codeword is available
on the DIO interface.

Low VALID bit must
be logical low.

High VALID bit must
be logical high.

Both VALID bit may be
logical high or
logical low.

None VALID bit is
ignored.

2322^{32}232

5.2. Measurement Functionality

174 Zurich Instruments SHFQC User Manual

Table 5.31: SHFQC Readout Pulse Generator: Advanced sub-tab

Control/
Tool

Option/
Range

Description

Assembly string Displays the current sequence program in compiled form. Every line
corresponds to one hardware instruction and requires one clock cycle
(4 ns) for execution.

Status running/
idle/waiting

Displays the status of the sequencer on the Instrument. Off: Ready, not
running. Green: Running, not waiting for any trigger event. Yellow:
Running, waiting for a trigger event. Red: Not ready (e.g., pending elf
download, no elf downloaded)

Mem
Usage

0% to 100% Size of the current sequence program relative to the device cache
memory. The cache memory provides space for a maximum of 16384
instructions.

5.2.5. Digital Modulation Tab

The Digital Modulation tab can be used to configure the digital oscillators, as well as the settings
used to modulate pulse sequences and generate sinusoidal signals. It is available on all SHFSG
instruments.

Features

 Sine generator configuration: frequency, oscillator select, harmonic, phase, amplitude
 Gain settings for upper- or lower-sideband modulation
 Enable pulse modulation or continuous signal output

Description

Table 5.32: App icon and short description

Control/Tool Option/Range Description

Mod Access to all the settings of the digital modulation.

The Digital Modulation tab (see Figure 5.28) is divided into three sections: Oscillators, Sine
Generators, and Waveform Generators.

Figure 5.28: LabOne UI: Digital Modulation tab

The purpose of the Digital Modulation tab is to configure the digital sine generator of each SHFSG
channel, to enable the modulation (i.e. multiplication) or addition of sinusoidal and AWG signals. The
tabular layout of the tab provides a quick overview of the status of the different channels of the
instrument.

Conceptually, the tab is laid out as follows: The Oscillators section contains the frequencies of the
eight digital oscillators for each channel. The Sine Generators section contains settings such as
phase and harmonic for the sine generator of each channel, as well as settings for generating
sinusoidal signal outputs. The Waveform Generators section configures how the sine generator is
used to modulate the AWG signals. The signal on a given output can be a multiplication, or addition,
or both, of AWG and sinusoidal signals, depending which modulation modes are enabled.

The individual sinusoidal and AWG signals are configured in the Sine Generators and Waveform
Generators sections, respectively. For an example of how to generate a continuous, sinusoidal signal

5.2. Measurement Functionality

175 Zurich Instruments SHFQC User Manual

on a given channel, the see Basic Sine Generation Tutorial. For an example of how to use the sine
generator to modulate a pulse sequence from the AWG, see the Digital Modulation Tutorial.

The gain settings in the Waveform Generators and the Sine Generators sections are graphically
grouped in pairs, and each pair is associated with an I or Q input to the DAC. For the Sine Generators
section, the I and Q pairs are further separated into Sin and Cos terms. In the Waveform Generators
section, the I and Q pairs of gain settings. In both cases, the default settings are chosen to generate
an upper sideband signal when using a positive oscillator frequency. For a more detailed explanation
of how these gain settings are used in generating signals, see the Digital Modulation Tutorial.

Functional Elements

Table 5.33: MOD tab

Control/
Tool

Option/
Range

Description

SG Channels Select SG Channel to display corresponding set of oscillator
frequencies.

Frequency
(Hz)

Oscillator frequency.

Oscillator
Select

Selection of the oscillator used for the generated sine signal.

Harmonic Multiplies the oscillator's reference frequency with the integer factor
defined by this field.

Frequency
(Hz)

Frequency of the selected oscillator.

Phase Shift
(deg)

Sets the phase of the sine signal.

I Sin
Amplitude

Sets the amplitude of the sine signal sent to the I input of the digital
mixer.

I Cos
Amplitude

Sets the amplitude of the cosine signal sent to the I input of the digital
mixer.

I Enable ON / OFF Enables the I input of the digital mixer.

Q Sin
Amplitude

Sets the amplitude of the sine signal sent to the Q input of the digital
mixer.

Q Cos
Amplitude

Sets the amplitude of the cosine signal sent to the Q input of the digital
mixer.

Q Enable ON / OFF Enables the Q input of the digital mixer.

Run/Stop Runs the AWG sequencer.

Sequencer
Status

grey/
green/red

Displays the status of the sequencer on the instrument. Off: Ready, not
running. Green: Running, not waiting for any trigger event. Yellow:
Running, waiting for a trigger event. Red: Not ready (e.g., pending elf
download, no elf download).

Modulation
Enable

ON / OFF Enables digital modulation of the waveforms generated by the AWG.

AWG Output
Amplitude

Sets the amplitude of the AWG output.

Hold ON / OFF Keep the last sample (constant) on the outputs even after the
waveform program finishes. It is recommended to use only AWG
waveforms with lengths equal to a multiple of 16 together with this
functionality. Waveforms with other lengths are automatically padded
with zeros at the end by the AWG compiler. The status of the hold node
is checked only when the AWG is enabled. If hold is disabled after
enabling the AWG or when the AWG is not running, AWG output values
will still be held.

AWG Output
Gain
Amplitude

Sets the amplitude scaling factor of the given AWG channel. The
amplitude is a dimensionless scaling factor applied to the digital signal.

5.2. Measurement Functionality

176 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/
Range

Description

AWG Output
Gain Enable

ON / OFF Indicates the routing of the AWG signal (row) to the digital mixer inputs
(column).

5.2.6. AWG Tab

The AWG tab is available on all SHFQC Qubit Controller instruments.

Features

 4- or 8-channel arbitrary waveform generator
 98 kSa waveform memory per channel
 Sequence branching
 Digital modulation
 Cross-domain trigger engine
 Sequence Editor with code highlighting and auto completion
 High-level programming language with waveform generation and editing toolset
 Waveform viewer

Description

The AWG tab gives access to the arbitrary waveform generator functionality. Whenever the tab is
closed or an additional one of the same type is needed, clicking the following icon will open a new
instance of the tab.

Table 5.34: App icon and short description

Control/
Tool

Option/
Range

Description

AWG Generate arbitrary signals using sequencing and sample-by-sample
definition of waveforms.

The AWG tab (see Figure 5.29) consists of a settings section on the right side and the Sequence and
Waveform Viewer sub-tabs on the left side. The settings section is further divided into Control,
Waveform, Trigger, and Advanced sub-tabs. The Sequence sub-tab is used for displaying, editing
and compiling a LabOne sequence program. The sequence program defines which waveforms are
played and in which order. The Sequence Editor is the main tool for operating the AWG.

Figure 5.29: LabOne UI: AWG tab

A number of sequence programming examples are available through a drop-down menu at the top
of the Sequence Editor, and additional ones can be found in Tutorials . The LabOne sequence
programming language is specified in detail in LabOne Sequence Programming. The language comes
with a number of predefined waveforms, such as Gaussian, Blackman, sine, or square functions. By
combining those predefined waveforms using the waveform editing tools (add, multiply, cut,
concatenate, etc), signals with a high level of complexity can be generated directly from the
Sequence Editor window. Sample-by-sample definition of the output signal is possible by using
comma-separated value (CSV) files specified by the user .

5.2. Measurement Functionality

177 Zurich Instruments SHFQC User Manual

The AWG features a compiler which translates the high-level sequence program into machine
instructions and waveform data to be stored in the instrument memory as shown in Figure 5.30. The
sequence program is written using high-level control structures and syntax that are inspired by
human language, whereas machine instructions reflect exactly what happens on the hardware level.
Writing the sequence program using a high-level language represents a more natural and efficient
way of working in comparison to writing lists of machine instructions, which is the traditional way of
programming AWGs. Concretely, the improvements rely on features such as:

 combination of waveform generation, editing, and playback sequence in a single script
 easily readable syntax and naming for run-time variables and constants
 optimized waveform memory management, reduced transfers upon waveform changes
 definition of user functions and procedures for advanced structuring
 syntax validation

By design, there is no one-to-one link between the list of statements in the high-level language and
the list of instructions executed by the Sequencer. In order to understand the execution timing, it’s
helpful to consider the internal architecture of the AWG, consisting of the Sequencer itself, the
Waveform Player, and the Waveform Memory.

Figure 5.30: AWG sequence program compilation process

The Sequence Editor provides the editing, compilation, and transfer functionality for sequence
programs. A program typed into the Editor is compiled upon clicking . If the compilation is
successful and Automatic Upload is enabled, the program including all necessary waveform data is
transferred to the device. If the compilation fails, the Status field will display debug messages.
Clicking on allows you to choose a new name for the program. The name of the program
that is currently edited is displayed at the top of the editor. External program files as well as
waveform data files can be transferred to the right location easily using the file drag-and-drop zone
in the Config Tab so they become accessible from the user interface. The files can be managed in
the File Manager Tab and their location in the directory structure is shown in Table 5.35. The
program name is displayed in a drop-down box. The box allows quick access to all programs in the
standard sequence program location. It is possible to quickly switch between programs using the
box. Changes made in one program will be preserved when switching to a different program. The file
name of a program will be postfixed by an asterisk in case there are unsaved changes in the source
file. Note that switching programs in the editor is not sufficient to also update the program in the
instrument. In order to send a newly selected program to the instrument, the button must
be clicked.

Table 5.35: Sequence program and waveform file location

File type Location

Waveform files
(Windows)

C:\Users\<user name>\Documents\Zurich
Instruments\LabOne\WebServer\awg\waves

Sequence programs
(Windows)

C:\Users\<user name>\Documents\Zurich
Instruments\LabOne\WebServer\awg\src

Waveform files (Linux) ~/Zurich Instruments/LabOne/WebServer/awg/waves

Sequence programs
(Linux)

~/Zurich Instruments/LabOne/WebServer/awg/src

In the Control sub-tab the user configures signal parameters and controls the execution of the
AWG. The AWG can be started in by clicking on . When enabling the Rerun button, the
Sequencer will be restarted automatically when its program completes. The continuous mode is a
simple way to create an infinite loop, but it results in a considerable timing jitter. To avoid this jitter, it
is recommended to specify infinite loops directly in the sequence program.

The Sampling Rate field is used to control the default playback sampling rate of the AWG. The
sampling rate is dynamic, i.e., can be specified for each waveform by using an optional argument in
the waveform playback instructions in the sequence program. This allows for considerably reducing
waveform upload time for signals that contain both fast and slow components.

5.2. Measurement Functionality

178 Zurich Instruments SHFQC User Manual

The Waveform sub-tab displays information about the waveforms that are used by the current
sequence program, such as their length and channel number. Together with the Waveform viewer
sub-tab, it is a useful tool to visualize the waveforms used in the sequence program.

On the Trigger sub-tab you can configure the trigger inputs of the AWG. Each AWG core has two
internal trigger input channels which can be configured to probe any of the Trig inputs on the
instrument front panel. The Advanced sub-tab displays the compiled list of sequencer instructions
and the current state of the sequencer on the instrument. This can help an advanced user in
debugging a sequence program and understanding its execution.

Sequence Editor Keyboard Shortcuts

The tables below list a number of helpful keyboard shortcuts that are applicable in the LabOne
Sequence Editor.

Table 5.36: Line Operations

Shortcut Action

Ctrl+D Remove line

Alt+Shift+Down Copy lines down

Alt+Shift+Up Copy lines up

Alt+Down Move lines down

Alt+Up Move lines up

Alt+Del Remove to line end

Alt+Backspace Remove to line start

Ctrl+Backspace Remove word left

Ctrl+Del Remove word right

Table 5.37: Selection

Shortcut Action

Ctrl+A Select all

Shift+Left Select left

Shift+Right Select right

Ctrl+Shift+Left Select word left

Ctrl+Shift+Right Select word right

Shift+Home Select line start

Shift+End Select line end

Alt+Shift+Right Select to line end

Alt+Shift+Left Select to line start

Shift+Up Select up

Shift+Down Select down

Shift+Page Up Select page up

Shift+Page Down Select page down

Ctrl+Shift+Home Select to start

Ctrl+Shift+End Select to end

Ctrl+Shift+D Duplicate selection

5.2. Measurement Functionality

179 Zurich Instruments SHFQC User Manual

Shortcut Action

Ctrl+Shift+P Select to matching bracket

Table 5.38: Go to

Shortcut Action

Left Go to left

Right Go to right

Ctrl+Left Go to word left

Ctrl+Right Go to word right

Up Go line up

Down Go line down

Alt+Left, Home Go to line start

Alt+Right, End Go to line end

Page Up Go to page up

Page Down Go to page down

Ctrl+Home Go to start

Ctrl+End Go to end

Ctrl+L Go to line

Ctrl+Down Scroll line down

Ctrl+Up Scroll line up

Ctrl+P Go to matching bracket

Table 5.39: Find/Replace

Shortcut Action

Ctrl+F Find

Ctrl+H Replace

Ctrl+K Find next

Ctrl+Shift+K Find previous

Table 5.40: Folding

Shortcut Action

Alt+L Fold selection

Alt+Shift+L Unfold

Table 5.41: Other

Shortcut Action

Tab Indent

Shift+Tab Outdent

Ctrl+Z Undo

Ctrl+Shift+Z, Ctrl+Y Redo

Ctrl+/ Toggle comment

Ctrl+Shift+U Change to lower case

5.2. Measurement Functionality

180 Zurich Instruments SHFQC User Manual

Shortcut Action

Ctrl+U Change to upper case

Ins Overwrite

Ctrl+Shift+E Macros replay

Ctrl+Alt+E Macros recording

Del Delete

LabOne Sequence Programming

A Simple Example

The syntax of the LabOne AWG Sequencer programming language is based on C, but with a few
simplifications. Each statement is concluded with a semicolon, several statements can be grouped
with curly brackets, and comment lines are identified with a double slash. The following example
shows some of the fundamental functionalities: waveform generation, repeated playback, triggering,
and single/dual-channel waveform playback. See Tutorials for a step-by-step introduction with more
examples.

// Define an integer constant
const N = 4096;
// Create two Gaussian pulses with length N points,
// amplitude +1.0 (-1.0), center at N/2, and a width of N/8
wave gauss_pos = 1.0*gauss(N, N/2, N/8);
wave gauss_neg = -1.0*gauss(N, N/2, N/8);
// execute playback sequence 100 times
repeat (100) {
 // Play pulse on AWG channel 1
 playWave(gauss_pos);
 // Play pulses simultaneously on both AWG channels
 playWave(gauss_pos, gauss_neg);
}

Keywords and Comments

The following table lists the keywords used in the LabOne AWG Sequencer language.

Table 5.42: Programming keywords

Keyword Description

const Constant declaration

var Integer variable declaration

cvar Compile-time variable declaration

string Constant string declaration

true Boolean true constant

false Boolean false constant

for For-loop declaration

while While-loop declaration

repeat Repeat-loop declaration

if If-statement

5.2. Measurement Functionality

181 Zurich Instruments SHFQC User Manual

Keyword Description

else Else-part of an if-statement

switch Switch-statement

case Case-statement within a switch

default Default-statement within a switch

return Return from function or procedure, optionally with a return value

The following code example shows how to use comments.

const a = 10; // This is a line comment. Everything between the double
 // slash and the end of the line will be ignored.

/* This is a block comment. Everything between the start-of-block-comment
and end-of-block-comment markers is ignored.

For example, the following statement will be ignored by the compiler.
const b = 100;
*/

Constants and Variables

Constants may be used to make the program more readable. They may be of integer or floating-
point type. It must be possible for the compiler to compute the value of a constant at compile time,
i.e., on the host computer. Constants are declared using the const keyword.

Compile-time variables may be used in computations and loop iterations during compile time, e.g.
to create large numbers of waveforms in a loop. They may be of integer or floating-point type. They
are used in a similar way as constants, except that they can change their value during compile time
operations. Compile-time variables are declared using the cvar keyword.

Variables may be used for making simple computations during run time, i.e., on the instrument. The
Sequencer supports integer variables, addition, and subtraction. Not supported are floating-point
variables, multiplication, and division. Typical uses of variables are to step waiting times or to tag
digital measurement data with a numerical identifier. Variables are declared using the var keyword.

The following code example shows how to use variables.

var b = 100; // Create and initialize a variable

// Repeat the following block of statements 100 times
repeat (100) {
 b = b + 1; // Increment b
 wait(b); // Wait 'b' cycles
}

The following table shows the predefined constants. These constants are intended to be used as
arguments in certain run-time evaluated functions that encode device parameters with integer
numbers. For example, the AWG Sampling Rate is specified as an integer exponent n in the

expression (baseSamplingClock)/2n. The AWG rates constants are specified for the sampling clock
of 2.0 GHz of the SHFSG.

Table 5.43: Predefined Constants

Name Value Description

commandTableEntries {4096}

AWG_RATE_2000MHZ 0 Constant to set Sampling Rate to 2.0
GHz.

AWG_RATE_1000MHZ 1 Constant to set Sampling Rate to 1.0
GHz.

5.2. Measurement Functionality

182 Zurich Instruments SHFQC User Manual

Name Value Description

AWG_RATE_500MHZ 2 Constant to set Sampling Rate to 500
MHz.

AWG_RATE_250MHZ 3 Constant to set Sampling Rate to 250
MHz.

AWG_RATE_125MHZ 4 Constant to set Sampling Rate to 125
MHz.

AWG_RATE_62P5MHZ 5 Constant to set Sampling Rate to
62.5 MHz.

AWG_RATE_31P25MHZ 6 Constant to set Sampling Rate to
31.25 MHz.

AWG_RATE_15P63MHZ 7 Constant to set Sampling Rate to
15.63 MHz.

AWG_RATE_7P81MHZ 8 Constant to set Sampling Rate to 7.81
MHz.

AWG_RATE_3P9MHZ 9 Constant to set Sampling Rate to 3.9
MHz.

AWG_RATE_1P95MHZ 10 Constant to set Sampling Rate to 1.95
MHz.

AWG_RATE_976KHZ 11 Constant to set Sampling Rate to 976
kHz.

AWG_RATE_488KHZ 12 Constant to set Sampling Rate to 488
kHz.

AWG_RATE_244KHZ 13 Constant to set Sampling Rate to 244
kHz.

DEVICE_SAMPLE_RATE <actual device sample
rate>

ZSYNC_DATA_RAW commandTableEntries
+ 0 Constant to use as argument to

getZSyncData/getFeedback. Return
the data received on the ZSync as-is
without parsing.

ZSYNC_DATA_PQSC_REGISTER commandTableEntries
+ 1 Constant to use as argument to

getZSyncData/getFeedback. Get last
readout register forwarded by the
PQSC.

ZSYNC_DATA_PQSC_DECODER commandTableEntries
+ 2 Constant to use as argument to

getZSyncData/getFeedback. Get last
output of the decoder received from
the PQSC.

QA_DATA_RAW commandTableEntries
+ 3 Constant to use as argument to

getFeedback. Return the data
received from the QA channel as is

QA_DATA_PROCESSED commandTableEntries
+ 4 Constant to use as argument to

getFeedback. Return the processed
data received from the QA channel

AWG_CHAN1 1 Constant to select channel 1.

AWG_CHAN2 2 Constant to select channel 2.

AWG_MARKER1 1 Constant to select marker 1.

AWG_MARKER2 2 Constant to select marker 2.

AWG_OSC_PHASE_START 1 Constant to trigger the oscillator
phase on the positive edge.

5.2. Measurement Functionality

183 Zurich Instruments SHFQC User Manual

Name Value Description

AWG_OSC_PHASE_MIDDLE 0 Constant to trigger the oscillator
phase on the negative edge.

AWG_USERREG_SWEEP_COUNT0 35 Constant for the sweep count
register 0.

AWG_USERREG_SWEEP_COUNT1 36 Constant for the sweep count
register 1.

Numbers can be expressed using either of the following formatting.

const a = 10; // Integer notation
const b = -10; // Negative number
const h = 0xdeadbeef; // Hexadecimal integer
const bin = 0b10101; // Binary integer
const f = 0.1e-3; // Floating point number.
const not_float = 10e3; // Not a floating point number

Booleans are specified with the keywords true and false. Furthermore, all numbers that evaluate
to a nonzero value are considered true. All numbers that evaluate to zero are considered false.

Strings are delimited using "" and are interpreted as constants. Strings may be concatenated using
the + operator.

string AWG_PATH = "awgs/0/";
string AWG_GAIN_PATH = AWG_PATH + "gains/0";

Waveform Generation and Editing

The following table contains the definition of functions for waveform generation.

wave zeros(const samples)

Constant amplitude of 0 over the defined number of samples.

Args:

 samples: Number of samples in the waveform

Returns:

resulting waveform

wave ones(const samples)

Constant amplitude of 1 over the defined number of samples.

Args:

 samples: Number of samples in the waveform

Returns:

resulting waveform

[h(x)=0] [h(x) = 0] [h(x) = 0]

[h(x)=1] [h(x) = 1] [h(x) = 1]

5.2. Measurement Functionality

184 Zurich Instruments SHFQC User Manual

wave sine(const samples, const amplitude=1.0, const phaseOffset, const
nrOfPeriods)

Sine function with arbitrary amplitude (a), phase offset in radians (p), number of periods (f) and
number of samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 nrOfPeriods: Number of Periods within the defined number of samples
 phaseOffset: Phase offset of the signal in radians
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave cosine(const samples, const amplitude=1.0, const phaseOffset, const
nrOfPeriods)

Cosine function with arbitrary amplitude (a), phase offset in radians (p), number of periods (f) and
number of samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 nrOfPeriods: Number of Periods within the defined number of samples
 phaseOffset: Phase offset of the signal in radians
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave sinc(const samples, const amplitude=1.0, const position, const beta)

Normalized sinc function with control of peak position (p), amplitude (a), width (\beta) and number of
samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 beta: Width of the function
 position: Peak position of the function
 samples: Number of samples in the waveform

Returns:

resulting waveform

[h(x)=a⋅sin(2πfxN+p)] [h(x) = a\cdot\sin(2\pi f \frac{x}{N}+p)] [h(x) = a ⋅ sin(2πf +
N
x

p)]

[h(x)=a⋅cos(2πfxN+p)] [h(x) = a\cdot\cos(2\pi f \frac{x}{N}+p)] [h(x) = a ⋅ cos(2πf +
N
x

p)]

[h(x)={aif x=p a⋅sin(2π⋅beta⋅x−pN)2π⋅beta⋅x−pNelse] [h(x) = \begin{cases} a & \quad \text{if } x = p \ a \cdot \frac{\sin(2\pi\cdot beta\cdot \frac{x-p}{N})}{2\pi\cdot beta\cdot \frac{x-p}{N}} & \quad \text{else} \ \end{cases}] [h(x) =]{a if x = p a ⋅
2π⋅beta⋅ N

x−p
sin(2π⋅beta⋅)N

x−p

else

5.2. Measurement Functionality

185 Zurich Instruments SHFQC User Manual

wave ramp(const samples, const startLevel, const endLevel)

Linear ramp from the start (s) to the end level (e) over the number of samples (N).

Args:

 endLevel: level at the last sample of the waveform
 samples: Number of samples in the waveform
 startLevel: level at the first sample of the waveform

Returns:

resulting waveform

wave sawtooth(const samples, const amplitude=1.0, const phaseOffset,
const nrOfPeriods)

Sawtooth function with arbitrary amplitude, phase in radians and number of periods.

Args:

 amplitude: Amplitude of the signal
 nrOfPeriods: Number of Periods within the defined number of samples
 phaseOffset: Phase offset of the signal in radians
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave triangle(const samples, const amplitude=1.0, const phaseOffset, const
nrOfPeriods)

Triangle function with arbitrary amplitude, phase in radians and number of periods.

Args:

 amplitude: Amplitude of the signal
 nrOfPeriods: Number of Periods within the defined number of samples
 phaseOffset: Phase offset of the signal in radians
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave gauss(const samples, const amplitude=1.0, const position, const width)

Gaussian pulse with arbitrary amplitude (a), position (p), width (w) and number of samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 position: Peak position of the pulse
 samples: Number of samples in the waveform
 width: Width of the pulse

Returns:

resulting waveform

[h(x)=s+x(e−s)N−1] [h(x) = s + \frac{x(e-s)}{N-1}] [h(x) = s+]
N − 1
x(e− s)

[h(x)=a⋅e−(x−p)22⋅w2] [h(x) = a \cdot e^{-\frac{(x-p)^2}{2 \cdot w^2}}] [h(x) = a ⋅ e]−
2⋅w2

(x−p)2

5.2. Measurement Functionality

186 Zurich Instruments SHFQC User Manual

wave drag(const samples, const amplitude=1.0, const position, const width)

Derivative of Gaussian pulse with arbitrary amplitude (a), position (p), width (w) and number of
samples (N) normalized to a maximum amplitude of 1.

Args:

 amplitude: Amplitude of the signal (optional)
 position: Center point position of the pulse
 samples: Number of samples in the waveform
 width: Width of the pulse

Returns:

resulting waveform

wave blackman(const samples, const amplitude=1.0, const alpha)

Blackman window function with arbitrary amplitude (a), alpha parameter and number of samples (N).

Args:

 alpha: Width of the function
 amplitude: Amplitude of the signal (optional)
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave hamming(const samples, const amplitude=1.0)

Hamming window function with arbitrary amplitude (a) and number of samples (N).

Args:

 amplitude: Amplitude of the signal (optional)
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave hann(const samples, const amplitude=1.0)

Hann window function with arbitrary amplitude (a) and number of samples (N).

Args:

 amplitude: Amplitude of the signal
 samples: Number of samples in the waveform

Returns:

resulting waveform

[h(x)=a⋅e(p−x)w⋅e−(x−p)22⋅w2] [h(x) = a \cdot \frac{\sqrt{e}(p-x)}{w} \cdot e^{-\frac{(x-p)^2}{2 \cdot w^2}}] [h(x) = a ⋅ ⋅
w

(p− x)e
e]−

2⋅w2
(x−p)2

h(x)=a⋅(α0−α1cos(2πxN−1) +α2cos(4πxN−1)) α0=1−α2;α1=12;α2=α2;(28) \begin{align} h(x) =& a \cdot (\alpha_0 - \alpha_1 \cos(\frac{2\pi x}{N-1}) \ &+ \alpha_2\cos(\frac{4\pi x}{N-1})) \ \alpha_0 =& \frac{1-\alpha}{2}; \quad \alpha_1 = \frac{1}{2}; \quad \alpha_2 = \frac{\alpha}{2}; \end{align} h(x) =a ⋅ (α − α cos()0 1 N − 1
2πx

+α cos()) α =2 N − 1
4πx

0 ; α = ; α = ;
2

1 − α
1 2

1
2 2

α
(1)

h(x)=a⋅(α−βcos(2πxN−1)) with α=0.54 and β=0.46(29) \begin{align} h(x) = a \cdot (\alpha - \beta \cos(\frac{2\pi x}{N-1})) \ \text{with }\alpha = 0.54 \text{ and } \beta = 0.46 \end{align} h(x) = a ⋅ (α− β cos()) with α = 0.54 and β = 0.46
N − 1
2πx

(2)

[h(x)=a⋅0.5⋅(1−cos(2πxN−1))] [h(x) = a \cdot 0.5 \cdot (1 - \cos(\frac{2\pi x}{N-1}))] [h(x) = a ⋅ 0.5 ⋅ (1 − cos())]
N − 1
2πx

5.2. Measurement Functionality

187 Zurich Instruments SHFQC User Manual

wave rect(const samples, const amplitude)

Rectangle function, constants amplitude (a) over the defined number of samples.

Args:

 amplitude: Amplitude of the signal
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave marker(const samples, const markerValue)

Generate a waveform with marker bits set to the specified value. The analog part of the waveform is
zero.

Args:

 markerValue: Value of the marker bits
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave rand(const samples, const amplitude=1.0, const mean, const stdDev)

White noise with arbitrary amplitude, power and standard deviation.

Args:

 amplitude: Amplitude of the signal
 mean: Average signal level
 samples: Number of samples in the waveform
 stdDev: Standard deviation of the noise signal

Returns:

resulting waveform

wave randomGauss(const samples, const amplitude=1.0, const mean, const
stdDev)

White noise with arbitrary amplitude, power and standard deviation.

Args:

 amplitude: Amplitude of the signal
 mean: Average signal level
 samples: Number of samples in the waveform
 stdDev: Standard deviation of the noise signal

Returns:

resulting waveform

[h(x)=a] [h(x) = \text{a}] [h(x) = a]

5.2. Measurement Functionality

188 Zurich Instruments SHFQC User Manual

wave randomUniform(const samples, const amplitude=1.0)

Random waveform with uniform distribution.

Args:

 amplitude: Amplitude of the signal
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave lfsrGaloisMarker(const samples, const markerBit, const polynomial,
const initial)

Generate a waveform with specified marker bit set to the Galois LFSR (linear-feedback shift register)
generated sequence. The analog part of the waveform is zero. The LFSR characteristic polynomial is
a member of the Galois Field of two elements and represented in binary form. See wikipedia entries
for "Finite field arithmetic" and "Linear-feedback shift register (Galois LFSR)".

Args:

 initial: LFSR initial state, any nonzero value will work, usually 0x1
 markerBit: Marker bit to set (1 or 2)
 polynomial: LFSR characteristic polynomial in binary representation (max shift length 32), use

0x90000 for QRSS / PRBS-20
 samples: Number of samples in the waveform

Returns:

resulting waveform

wave chirp(const samples, const amplitude=1.0, const startFreq, const
stopFreq, const phase=0)

Frequency chirp function with arbitrary amplitude, start and stop frequency, initial phase in radians
and number of samples. Start and stop frequency are expressed in units of the AWG Sampling Rate.
The amplitude can only be defined if the initial phase is defined as well.

Args:

 amplitude: Amplitude of the signal (optional)
 phase: Initial phase of the signal (optional)
 samples: Number of samples in the waveform
 startFreq: Start frequency of the signal
 stopFreq: Stop Frequency of the signal

Returns:

resulting waveform

5.2. Measurement Functionality

189 Zurich Instruments SHFQC User Manual

wave rrc(const samples, const amplitude=1.0, const position, const beta,
const width)

Root raised cosine function with arbitrary amplitude (a), position (p), roll-off factor (\beta) and width
(w) and number of samples (N).

Args:

 amplitude: Amplitude of the signal
 beta: Roll-off factor
 position: Center point position of the pulse
 samples: Number of samples in the waveform
 width: Width of the pulse

Returns:

Resulting waveform

wave vect(const value,...)

Specify a waveform sample by sample. Each sample is defined by one of an arbitrary number of
input arguments. Only recommended for short waveforms that consist of less than 100 samples.
Larger waveforms may be defined in a CSV file.

Args:

 value: Waveform amplitude at the respective sample

Returns:

resulting waveform

wave placeholder(const samples, const marker0=false, const marker1=false)

Creates space for a single-channel waveform, optionally with markers, without actually generating
any waveform data when compiling the sequence program. Actual waveform data needs to be
uploaded separately via the "<dev>/AWGS/<n>/WAVEFORM/WAVES/<index>" API nodes after the
sequence compilation and upload. The waveform index can be explicitly assigned to the generated
placeholder wave using the assignWaveIndex instruction.

Args:

 marker0: true if marker bit 0 must be used (default false)
 marker1: true if marker bit 1 must be used (default false)
 samples: Number of samples in the waveform

Returns:

waveform object

The following table contains the definition of functions for waveform editing.

h(y)=asin(yπ(1−β))+4yβcos(yπ(1+β))yπ(1−(4yβ)2) with y(x)=2wx−pN(30) \begin{align} h(y) = a \frac{\sin(y \pi(1-\beta)) + 4 y \beta\cos(y \pi(1+\beta))}{y \pi(1-(4 y \beta)^2)} \ \text{with } y(x) = 2 w \frac{x - p}{N} \end{align} h(y) = a with y(x) = 2w
yπ(1 − (4yβ))2

sin(yπ(1 − β)) + 4yβ cos(yπ(1 + β))
N

x− p
(3)

5.2. Measurement Functionality

190 Zurich Instruments SHFQC User Manual

wave join(wave wave1, wave wave2, const interpolLength=0)

Connect two or more waveforms with optional linear interpolation between the waveforms.

Args:

 interpolLength: Number of samples to interpolate between waveforms (optional, default 0)
 wave1: Input waveform
 wave2: Input waveform

Returns:

joined waveform

wave join(wave wave1, wave wave2,...)

Connect two or more waveforms.

Args:

 wave1: Input waveform
 wave2: Input waveform

Returns:

joined waveform

wave interleave(wave wave1, wave wave2,...)

Interleave two or more waveforms sample by sample.

Args:

 wave1: Input waveform
 wave2: Input waveform

Returns:

interleaved waveform

wave add(wave wave1, wave wave2,...)

Add two or more waveforms sample by sample. Alternatively, the "+" operator may be used for
waveform addition.

Args:

 wave1: Input waveform
 wave2: Input waveform

Returns:

sum waveform

wave multiply(wave wave1, wave wave2,...)

Multiply two or more waveforms sample by sample. Alternatively, the "*" operator may be used for
waveform multiplication.

Args:

 wave1: Input waveform
 wave2: Input waveform

Returns:

product waveform

5.2. Measurement Functionality

191 Zurich Instruments SHFQC User Manual

wave scale(wave waveform, const factor)

Scale the input waveform with the factor and return the scaled waveform. The input waveform
remains unchanged.

Args:

 factor: Scaling factor
 waveform: Input waveform

Returns:

scaled waveform

wave flip(wave waveform)

Flip the input waveform back to front and return the flipped waveform. The input waveform remains
unchanged.

Args:

 waveform: Input waveform

Returns:

flipped waveform

wave cut(wave waveform, const from, const to)

Cuts a segment out of the input waveform and returns it. The input waveform remains unchanged.
The segment is flipped in case that "from" is larger than "to".

Args:

 from: First sample of the cut waveform
 to: Last sample of the cut waveform
 waveform: Input waveform

Returns:

cut waveform

wave filter(wave b, wave a, wave x)

Filter generates a rational transfer function with the waveforms a and b as numerator and
denominator coefficients. The transfer function is normalized by the first element of a, which has to
be non-zero. The filter is applied to the input waveform x and returns the filtered waveform.

Args:

 a: Denominator coefficients
 b: Numerator coefficients
 x: Input waveform

Returns:

filtered waveform

y(n)=1a0(!∑i=0Mbixn−i−∑i=1Naiyn−i!) with M=length(b)−1 and N=length(a)−1(31) \begin{align} y(n) = \frac{1}{a_0}\left(!\sum_{i=0}^{M}b_i x_{n-i} - \sum_{i=1}^{N}a_i y_{n-i}!\right) \ \text{with } M = \text{length}(b)-1 \ \text{ and } N = \text{length}(a)-1 \end{align}
y(n) = ! b x − a y ! with M = length(b) − 1 and N = length(a) − 1

a0

1
(

i=0

∑
M

i n−i

i=1

∑
N

i n−i) (4)

5.2. Measurement Functionality

192 Zurich Instruments SHFQC User Manual

wave circshift(wave a, const n)

Circularly shifts a 1D waveform and returns it.

Args:

 n: Number of elements to shift
 waveform: Input waveform

Returns:

circularly shifted waveform

Waveform Playback and Predefined Functions

The following table contains the definition of functions for waveform playback and other purposes.

void setDIO(var value)

Writes the value as a 32-bit value to the DIO bus.

The value can be either a const or a var value. Configure the Mode setting in the DIO tab when using
this command. The DIO interface speed of 50 MHz limits the rate at which the DIO output value is
updated.

Args:

 value: The value to write to the DIO (const or var)

var getDIO()

Reads a 32-bit value from the DIO bus.

Returns:

var containing the read value

var getDIOTriggered()

Reads a 32-bit value from the DIO bus as recorded at the last DIO trigger position.

Returns:

var containing the read value

void setTrigger(var value)

Sets the AWG Trigger output signals.

The state of all four AWG Trigger output signals is represented by the bits in the binary
representation of the integer value. Binary notation of the form 0b0000 is recommended for
readability.

Args:

 value: to be written to the trigger output lines

5.2. Measurement Functionality

193 Zurich Instruments SHFQC User Manual

void wait(var cycles)

Waits for the given number of Sequencer clock cycles (4 ns per cycle). The execution of the
instruction adds an offset of 2 clock cycles, i.e., the statement wait(3) leads to a waiting time of 5 * 4
ns = 20 ns.

Note: the minimum waiting time amounts to 3 cycles, which means that wait(0) and wait(1) will both
result in a waiting time of 3 * 4 ns = 12 ns.

Args:

 cycles: number of cycles to wait

void waitTrigger(const mask, const value)

Waits until the masked trigger input is equal to the given value.

Args:

 mask: mask to be applied to the input signal
 value: value to be compared with the trigger input

void waitDIOTrigger()

Waits until the DIO interface trigger is active. The trigger is specified by the Strobe Index and Strobe
Slope settings in the AWG Sequencer tab.

var getDigTrigger(const index)

Gets the state of the indexed Digital Trigger input (1 or 2).

The physical signal connected to the AWG Digital Trigger input is to be configured in the Trigger sub-
tab of the AWG tab.

Args:

 index: index of the Digital Trigger input to be read; can be either 1 or 2

Returns:

trigger state, either 0 or 1

void error(string msg,...)

Throws the given error message when reached.

Args:

 msg: Message to be displayed

void info(string msg,...)

Returns the specified message when reached.

Args:

 msg: Message to be displayed

void waitWave()

Waits until the AWG is done playing the current waveform.

5.2. Measurement Functionality

194 Zurich Instruments SHFQC User Manual

void setRate(const rate)

Overwrites the default Sampling Rate for the following playWave commands.

Args:

 rate: New default sampling rate

void randomSeed()

Generate a new seed for the subsequent random vector commands.

void assignWaveIndex(const output, wave waveform, const index)

void assignWaveIndex(wave waveform, const index)

void playWave(const output, wave waveform, const
rate=AWG_RATE_DEFAULT)

Starts to play the given waveforms on the defined output channels. The playback begins as soon as
the previous waveform playback is finished.

Args:

 output: defines on which output the following waveform is played
 rate: sample rate with which the AWG plays the waveforms (default set in the user interface).
 waveform: waveform to be played

void playWave(const output, wave waveform,...)

Starts to play the given waveforms on the defined output channels. It can contain multiple
waveforms with an output definition. The playback begins as soon as the previous waveform
playback is finished.

Args:

 output: defines on which output the following waveform is played
 waveform: waveform to be played

void playWave(wave waveform, const rate=AWG_RATE_DEFAULT)

Starts to play the given waveforms, output channels are assigned automatically depending on the
number of input waveforms. The playback begins as soon as the previous waveform playback is
finished.

Args:

 rate: sample rate with which the AWG plays the waveforms (default set in the user interface).
 waveform: waveform to be played

void playWave(wave waveform,...)

Starts to play the given waveforms, output channels are assigned automatically depending on the
number of input waveforms. The playback begins as soon as the previous waveform playback is
finished.

Args:

 waveform: waveform to be played

5.2. Measurement Functionality

195 Zurich Instruments SHFQC User Manual

void setUserReg(const register, var value)

Writes a value to one of the User Registers (indexed 0 to 15).

The User Registers may be used for communicating information to the LabOne User Interface or a
running API program.

Args:

 register: The register index (0 to 15) to be written to
 value: The integer value to be written

var getUserReg(const register)

Reads the value from one of the User Registers (indexed 0 to 15). The User Registers may be used for
communicating information to the LabOne User Interface or a running API program.

Args:

 register: The register to be read (0 to 15)

Returns:

current register value

void playZero(var samples)

Starts to play zeros on all channels for the specified number of samples. Behaves as if same length
all-zeros waveform is played using playWave, but without consuming waveform memory.

Args:

 samples: Number of samples to be played. The same min length and granularity applies as for
regular waveforms.

void playZero(var samples, const rate)

Starts to play zeros on all channels for the specified number of samples. Behaves as if same length
all-zeros waveform is played using playWave, but without consuming waveform memory.

Args:

 rate: Sample rate with which the AWG plays zeros (default set in the user interface).
 samples: Number of samples to be played. The same min length and granularity applies as for

regular waveforms.

void waitDigTrigger(const index)

Waits for the reception of a trigger signal on the indexed Digital Trigger (index 1 or 2). The physical
signals connected to the two AWG Digital Triggers are to be configured in the Trigger sub-tab of the
AWG Sequencer tab. The Digital Triggers are configured separately for each AWG Core.

Args:

 index: Index of the digital trigger input; can be either 1 or 2.

5.2. Measurement Functionality

196 Zurich Instruments SHFQC User Manual

void executeTableEntry(var index)

Execute the entry of the AWG command/waveform table with the given index. An entry of the
command/waveform table contains a waveform playback instruction as well as additional space for
instructions for real-time setting of Sine Generator phases and AWG amplitude. The entries of the
command/waveform table can be specified by direct upload of a JSON string to the "<dev>/
SGCHANNELS/<n>/AWG/COMMANDTABLE/DATA" API node.

Args:

 data_type: ZSYNC_DATA_RAW: The raw ZSYNC data is the table entry to execute
ZSYNC_DATA_PQSC_REGISTER: The last readout register forwarded by the PQSC is the table
entry to execute ZSYNC_DATA_PQSC_DECODER: The last output of the decoder received from
the PQSC is the table entry to execute QA_DATA_PROCESSED: The last internal feedback data
received from the QA channel is the table entry to execute

 index: table entry that shall be executed
 wait_cycles: Wait for the specified number of cycles after the most recent waitZSyncTrigger()

or waitDigTrigger() instruction

void setPRNGSeed(var value)

Sets the seed for the linear-shift feedback register lsfr of the pseudo random number generator
(PRNG).

The seed is a 16 bit int32_t value. Zero is invalid as seed.

Args:

 value: seed value to be configured

var getPRNGValue()

Returns a random value from the pseudo-random number generator (PRNG). The PRNG is
implemented as a Galois linear-shift feedback register according to the pseudo code below. The
feedback register lsfr is initialized to a seed value using the function setPRNGSeed. The values lower
and upper are set using the function setPRNGRange. The feedback register lsfr is stored from one
call of the function getPRNGValue to the next, which renders the pseudo code recursive. In the
pseudo code, XOR and AND are bitwise logical operators, and >> is the right bit shift operator.
Pseudo code: lsb = lsfr AND 1; lsfr = lsfr >> 1; if (lsb == 1) then: lsfr = 0xb400 XOR lsfr; rand = ((lsfr *
(upper-lower+1) >> 16) + lower) AND 0xffff;.

Returns:

Random value rand

void setPRNGRange(var lower, var upper)

Configures the range of the pseudo random number generator (PRNG) to generate output in range
[lower, upper].

Args:

 lower: lower bound of range, 0 ... 2**16-1
 upper: upper bound of range, 0 ... 2**16-1

void setSinePhase(const phase)

Set the phase in units of degree of the sine generator of the AWG core in use. The phase is reset to 0
after execution of the sequence program.

Args:

 phase: Phase value [degree]

5.2. Measurement Functionality

197 Zurich Instruments SHFQC User Manual

void incrementSinePhase(const phase)

Increment the phase in units of degree of the sine generator of the AWG core in use.

Args:

 phase: Phase value [degree]

void resetOscPhase(const mask)

Reset the phase of the oscillators specified by the binary mask argument. Each AWG core can
access the oscillators of its SGCHANNEL.

Args:

 mask: one-hot encoding to reset phase of individual oscillators

void resetOscPhase()

Reset the phase of all oscillators controllable by the AWG core.

void playHold(var samples)

Hold the last played value for the specified number of samples samples. Behaves as if same length
constant waveform is played using playWave, but without consuming waveform memory.

Args:

 samples: Number of samples to be played. The same min length and granularity applies as for
regular waveforms.

void playHold(var samples, const rate)

Hold the last played value for the specified number of samples samples. Behaves as if same length
constant waveform is played using playWave, but without consuming waveform memory.

Args:

 rate: Sample rate with which the AWG plays zeros (default set in the user interface).
 samples: Number of samples to be played. The same min length and granularity applies as for

regular waveforms.

void playWaveDIO()

Starts to play a waveform from the table defined by the setWaveDIO instruction. The waveform is
selected according to the integer codeword currently read on the DIO interface. The codeword is
specified by the Codeword Mask and Codeword Shift settings in the AWG Sequencer tab.

void waitSineOscPhase()

Waits until the oscillator phase of the sine generator reaches a zero crossing (negative -> positive,
start of sine period) of I component.

void configFreqSweep(const oscillator_index, const freq_start, const
freq_increment)

Configures a frequency sweep.

Args:

 freq_increment: Specify how much to increment the frequency for each step of the sweep [Hz]
 freq_start: Specify the start frequency value for the sweep [Hz]
 oscillator_index: Index of the oscillator that will be used for the sweep

5.2. Measurement Functionality

198 Zurich Instruments SHFQC User Manual

void setSweepStep(const oscillator_index, var sweep_index)

Executes a step within a frequency sweep.

Args:

 oscillator_index: Index of the oscillator that will be used for the sweep
 sweep_index: Sets the step index, from which the frequency is set

void setOscFreq(const oscillator_index, const freq)

Configures the frequency of an oscillator.

Args:

 freq: Frequency to be set [Hz]
 oscillator_index: Index of oscillator

var getFeedback(const data_type)

Read the last received feedback message. The argument specify which data the function should
return.

Args:

 data_type: Specifies which data the function should return: ZSYNC_DATA_RAW: Return the
data received on the ZSync as-is without parsing. The structure of the message can change
across different LabOne releases. ZSYNC_DATA_PQSC_REGISTER: Get last readout register
forwarded by the PQSC ZSYNC_DATA_PQSC_DECODER: Get last output of the decoder received
from the PQSC. QA_DATA_RAW: Return the last readout data received from the QA as-is
QA_DATA_PROCESSED: Return the last readout data received from the QA, after processing

Returns:

var containing the read value

var getFeedback(const data_type, var wait_cycles)

Read the last received feedback message. The argument specify which data the function should
return.

Args:

 data_type: Specifies which data the function should return: ZSYNC_DATA_RAW: Return the
data received on the ZSync as-is without parsing. The structure of the message can change
across different LabOne releases. ZSYNC_DATA_PQSC_REGISTER: Get last readout register
forwarded by the PQSC ZSYNC_DATA_PQSC_DECODER: Get last output of the decoder received
from the PQSC. QA_DATA_RAW: Return the last readout data received from the QA as-is
QA_DATA_PROCESSED: Return the last readout data received from the QA, after processing

 wait_cycles: Wait for the specified number of cycles after the most recent waitZSyncTrigger()
or waitDigTrigger() instruction

Returns:

var containing the read value

void waitZSyncTrigger()

Waits for a trigger over ZSync.

void resetRTLoggerTimestamp()

Reset the timestamp counter of the Real-Time Logger.

5.2. Measurement Functionality

199 Zurich Instruments SHFQC User Manual

Expressions

Expressions may be used for making computations based on mathematical functions and
operators. There are two kinds of expressions: those evaluated at compile time (the moment of
clicking "Save" or "Save as..." in the user interface), and those evaluated at run time (after clicking
"Run/Stop" or "Start"). Compile-time evaluated expressions only involve constants (const) or
compile-time variables (cvar) and can be computed at compile time by the host computer. Such
expressions can make use of standard mathematical functions and floating point arithmetic. Run-
time evaluated expressions involve variables (var) and are evaluated by the Sequencer on the
instrument. Due to the limited computational capabilities of the Sequencer, these expressions may
only operate on integer numbers and there are less operators available than at compile time.

The following table contains the list of mathematical functions supported at compile time.

Table 5.44: Mathematical Functions

Function Description

const abs(const c) absolute value

const acos(const c) inverse cosine

const acosh(const c) hyperbolic inverse cosine

const asin(const c) inverse sine

const asinh(const c) hyperbolic inverse sine

const atan(const c) inverse tangent

const atanh(const c) hyperbolic inverse tangent

const cos(const c) cosine

const cosh(const c) hyperbolic cosine

const exp(const c) exponential function

const ln(const c) logarithm to base e (2.71828...)

const log(const c) logarithm to the base 10

const log2(const c) logarithm to the base 2

const log10(const c) logarithm to the base 10

const sign(const c) sign function -1 if x<0; 1 if x>0

const sin(const c) sine

const sinh(const c) hyperbolic sine

const sqrt(const c) square root

const tan(const c) tangent

const tanh(const c) hyperbolic tangent

const ceil(const c) smallest integer value not less than the argument

const round(const c) round to nearest integer

const floor(const c) largest integer value not greater than the argument

const avg(const c1, const c2,...) mean value of all arguments

const max(const c1, const c2,...) maximum of all arguments

const min(const c1, const c2,...) minimum of all arguments

const pow(const base, const exp) first argument raised to the power of second argument

const sum(const c1, const c2,...) sum of all arguments

The following table contains the list of predefined mathematical constants. These can be used for
convenience in compile-time evaluated expressions.

Table 5.45: Predefined Constants

5.2. Measurement Functionality

200 Zurich Instruments SHFQC User Manual

Name Value Description

M_E 2.71828182845904523536028747135266250 e

M_LOG2E 1.44269504088896340735992468100189214 log2(e)

M_LOG10E 0.434294481903251827651128918916605082 log10(e)

M_LN2 0.693147180559945309417232121458176568 loge(2)

M_LN10 2.30258509299404568401799145468436421 loge(10)

M_PI 3.14159265358979323846264338327950288 pi

M_PI_2 1.57079632679489661923132169163975144 pi/2

M_PI_4 0.785398163397448309615660845819875721 pi/4

M_1_PI 0.318309886183790671537767526745028724 1/pi

M_2_PI 0.636619772367581343075535053490057448 2/pi

M_2_SQRTPI 1.12837916709551257389615890312154517 2/sqrt(pi)

M_SQRT2 1.41421356237309504880168872420969808 sqrt(2)

M_SQRT1_2 0.707106781186547524400844362104849039 1/sqrt(2)

Table 5.46: Operators supported at compile time

Operator Description Priority

= assignment -1

+=, -=, *=, /=, %=,
&=, |=, <<=, >>=

assignment by sum, difference, product, quotient,
remainder, AND, OR, left shift, and right shift

-1

|| logical OR 1

&& logical AND 2

| bit-wise logical OR 3

& bit-wise logical AND 4

!= not equal 5

== equal 5

<= less or equal 6

>= greater or equal 6

> greater than 6

< less than 6

<< arithmetic left bit shift 7

>> arithmetic right bit shift 7

+ addition 8

- subtraction 8

* multiplication 9

/ division 9

~ bit-wise logical negation 10

Table 5.47: Operators supported at run time

Operator Description Priority

= assignment -1

+=, -=, *=, /=, %=,
&=, |=, <<=, >>=

assignment by sum, difference, product, quotient,
remainder, AND, OR, left shift, and right shift

-1

|| logical OR 1

5.2. Measurement Functionality

201 Zurich Instruments SHFQC User Manual

Operator Description Priority

&& logical AND 2

| bit-wise logical OR 3

& bit-wise logical AND 4

== equal 5

!= not equal 5

<= less or equal 6

>= greater or equal 6

> greater than 6

< less than 6

<< left bit shift 7

>> right bit shift 7

+ addition 8

- subtraction 8

~ bit-wise logical negation 9

Control Structures

Functions may be declared using the var keyword. Procedures may be declared using the void
keyword. Functions must return a value, which should be specified using the return keyword.
Procedures can not return values. Functions and procedures may be declared with an arbitrary
number of arguments. The return keyword may also be used without arguments to return from an
arbitrary point within the function or procedure. Functions and procedures may contain variable and
constant declarations. These declarations are local to the scope of the function or procedure.

var function_name(argument1, argument2, ...) {
 // Statements to be executed as part of the function.
 return constant-or-variable;
}

void procedure_name(argument1, argument2, ...) {
 // Statements to be executed as part of the procedure.
 // Optional return statement
 return;
}

An if-then-else structure is used to create a conditional branching point in a sequencer program.

// If-then-else statement syntax
if (expression) {
 // Statements to execute if 'expression' evaluates to 'true'.
} else {
 // Statements to execute if 'expression' evaluates to 'false'.
}

// If-then-else statement short syntax
(expression)?(statement if true):(statement if false)

// If-then-else statement example
const REQUEST_BIT = 0x0001;
const ACKNOWLEDGE_BIT = 0x0002;
const IDLE_BIT = 0x8000;
var dio = getDIO();
if (dio & REQUEST_BIT) {

5.2. Measurement Functionality

202 Zurich Instruments SHFQC User Manual

 dio = dio | ACKNOWLEDGE_BIT;
 setDIO(dio);
} else {
 dio = dio | IDLE_BIT;
 setDIO(dio);
}

A switch-case structure serves to define a conditional branching point similarly to the if-then-
else statement, but is used to split the sequencer thread into more than two branches. Unlike the
if-then-else structure, the switch statement is synchronous, which means that the execution
time is the same for all branches and determined by the execution time of the longest branch. If no
default case is provided and no case matches the condition, all cases will be skipped. The case
arguments need to be of type const.

// Switch-case statement syntax
switch (expression) {
 case const-expression:
 expression;
 ...
 default:
 expression;
}

// Switch-case statement example
switch (getDIO()) {
 case 0:
 playWave(gauss(1024,1.0,512,64));
 case 1:
 playWave(gauss(1024,1.0,512,128));
 case 2:
 playWave(drag(1024,1.0,512,64));
 default:
 playWave(drag(1024,1.0,512,128));
}

The for loop is used to iterate through a code block several times. The initialization statement
is executed before the loop starts. The end-expression is evaluated at the start of each iteration
and determines when the loop should stop. The loop is executed as long as this expression is true.
The iteration-expression is executed at the end of each loop iteration.

Depending on how the for loop is set up, it can be either evaluated at compile time or at run time.
Run-time evaluation is typically used to play series of waveforms. Compile-time evaluation is
typically used for advanced waveform generation, e.g. to generate a series of waveforms with varying
amplitude. For a run-time evaluated for loop, use the var data type as a loop index. To ensure that a
loop is evaluated at compile time, use the cvar data type as a loop index. Furthermore, the compile-
time for loop should only contain waveform generation/editing operations and it can’t contain any
variables of type var. The following code example shows both versions of the loop.

// For loop syntax
for (initialization; end-expression; iteration-expression) {
 // Statements to execute while end-expression evaluates to true
}

// FOR loop example to assemble a train of pulses into
// a single waveform (compile-time execution)
cvar gain_factor; // CVAR: integer or float values allowed
wave w_pulse_series;
for (gain_factor = 0; gain_factor < 1.0; gain_factor = gain_factor + 0.1) {
 w_pulse_series = join(w_pulse_series, gain_factor*gauss(1008, 504, 100));
}

// Playback of waveform defined using compile-time FOR loop
playWave(w_pulse_series);

// FOR loop example to vary waiting time between
// waveform playbacks (run-time execution)

5.2. Measurement Functionality

203 Zurich Instruments SHFQC User Manual

var i; // VAR: integer values allowed
for (i = 0; i < 1000; i = i + 100) {
 playWave(gauss(1008, 504, 100));
 waitWave();
 wait(i);
}

The while loop is a simplified version of the for loop. The end-expression is evaluated at the start
of each loop iteration. The contents of the loop are executed as long as this expression is true. Like
the for loop, this loop comes in a compile-time version (if the end-expression involves only cvar and
const) and in a run-time version (if the end-expression involves also var data types).

// While loop syntax
while (end-expression) {
 // Statements to execute while end-expression evaluates to true
}

// While loop example
const STOP_BIT = 0x8000;
var run = 1;
var i = 0;
var dio = 0;
while (run) {
 dio = getDIO();
 run = dio & STOP_BIT;

 dio = dio | (i & 0xff);
 setDIO(dio);
 i = i + 1;
}

The repeat loop is a simplified version of the for loop. It repeats the contents of the loop a fixed
number of times. In contrast to the for loop, the repetition number of the repeat loop must be
known at compile time, i.e., const-expression can only depend on constants and not on variables.
Unlike the for and the while loop, this loop comes only in a run-time version. Thus, no cvar data
types may be modified in the loop body.

// Repeat loop syntax
repeat (constant-expression) {
 // Statements to execute
}

// Repeat loop example
repeat (100) {
 setDIO(0x1);
 wait(10);
 setDIO(0x0);
 wait(10);
}

Usage of playZero and playHold commands

The functionalities of playHold and playZero are both available either through sequencer
commands or through the command table. To use within a sequence, only the length in samples
must be specified, as in playHold(32) or playZero(128). The sequencer commands also accept a
sampling rate as a second optional argument, which reduces the sampling rate only for the duration
of the command. For example, playZero(128, AWG_RATE_1000MHZ) will play 128 samples of zeros
at a sampling rate of 1.0 GSa/s, corresponding to 128 ns.

To use playZero or playHold within the command table, a command table entry must be made. See
Pulse-level Sequencing with the Command Table for more information on using playZero within the
command table. Similar syntax applies for using playHold within the command table. The table
entries can be used within a sequence by adding the appropriate executeTableEntry command to
the sequencer code.

5.2. Measurement Functionality

204 Zurich Instruments SHFQC User Manual

Depending on the experiment being performed, it can make sense to use the playZero sequencer
command in some cases and the command table version in other cases (and similarly for playHold).
Generally speaking, the sequencer commands should be used when the length is variable, when the
length is 2^20 - 1 or fewer samples, or when the optional sampling rate argument is used. When using
a variable argument, such as when performing a sweep of the evolution time between two pulses
with playZero or of the length of a pulse with playHold, the sequencer command must be used, as
the playZero and playHold functionality within the command table cannot support variable
arguments. A similar restriction applies to the optional sampling rate argument.

When the length is 2^20 - 1 or fewer samples, the sequencer commands map to a single assembly
instruction. Once the length is more than or equal to 2^20 samples, however, the sequencer
commands map to at least two assembly instructions instead. Additionally, when using the optional
sampling rate divider argument of the sequencer commands, playZero and playHold always map
to at least three assembly instructions, regardless of the length in samples. When using the
command table to perform playZero or playHold functionality, the corresponding
executeTableEntry command always maps to a single assembly instruction, regardless of the
length of the playZero or playHold, at the cost of using a command table entry.

Using Qubit Feedback Data in a Sequence

The AWG can make decisions depending on the feedback data received over ZSync or internal
feedback. There are two primary ways to use the feedback data received: by using the command
getFeedback and storing the result in a variable, or by using the feedback data directly as the
argument of executeTableEntry. To directly make decisions about which pulse to play, it is
recommended to use the feedback arguments of the executeTableEntry. For example, active reset
in which the qubit data is passed to an SG Channel over a ZSync connection to a PQSC could involve
a snippet of code like the following:

waitZSyncTrigger();
executeTableEntry(ZSYNC_DATA_PQSC_REGISTER, feedback_time);

The first argument determines which command table entry should be played, and the second
argument accounts for the time between when the ZSync trigger is received and when the updated
qubit readout data is available for use. The exact value of feedback_time (specified in number of
sequencer clock cycles) depends on the combination of equipment being used as well as the
experiment being performed and must be characterized by the user. For this example, the command
table has been defined to play no pulse if the appropriate bit of ZSYNC_DATA_PQSC_REGISTER is 0 or
to play a pi-pulse if the appropriate bit of ZSYNC_DATA_RAW is 1:

Qubit was in state 0
table[0].waveform.playZero = True
table[0].waveform.length = PI_PULSE_LENGTH

Qubit was in state 1
table[1].waveform.index = 0
table[1].amplitude00.value = PI_AMPLITUDE
table[1].amplitude01.value = -PI_AMPLITUDE
table[1].amplitude10.value = PI_AMPLITUDE
table[1].amplitude11.value = PI_AMPLITUDE

To use ZSYNC_DATA_PQSC_REGISTER, it is additionally necessary to configure the appropriate shift,
mask, and offset values of the corresponding SG Channel sequencer.

In other cases, storing the results of getFeedback in a variable is the recommended route. For
example, repeat until success requires repeated checking of the qubit readout data, but does not
require a pulse to be played until the success criterion is met. Such an experiment might include
sequencer code snippet like the following:

waitZSyncTrigger();

do {
 // preceding code
 failure = getFeedback(ZSYNC_DATA_PQSC_DECODER, feedback_time); // check for
failure
 // following code
} while (failure)

5.2. Measurement Functionality

205 Zurich Instruments SHFQC User Manual

// Success pulse
playWave(1, 2, w_success);

The success pulse is played only once the success condition has been met, and the type of pulse
played does not directly depend on the feedback data received.

When testing a new sequence, it can also be useful to store the , as the value of the variable can be
monitored by writing to a user register:

waitZSyncTrigger();
feedback_data = getFeedback(ZSYNC_DATA_PQSC_REGISTER, feedback_time);
setUserReg(0, feedback_data);

The above code will write the feedback data available at feedback_time sequencer clock cycles
after the ZSync trigger is received. The data is written to user register 0.

To use internal feedback data from the QA channel of the {dev_class_abbrev}, the terms
QA_DATA_RAW and QA_DATA_PROCESSED can be used as arguments of the getFeedback.
Alternatively, QA_DATA_PROCESSED can be used as an argument of the executeTableEntry
commands. This functionality is analogous to the corresponding terms for qubit readout data
received over ZSync (ZSYNC_DATA_PQSC_RAW and ZSYNC_DATA_PQSC_REGISTER).

Synchronizing Multiple AWG Cores

In many cases, using a common start trigger at an appropriate point in the sequence is enough to
ensure that the start of the output signals of the AWG cores are aligned in time. In some cases,
however, actions with non-deterministic timing can cause the AWG cores to become out of sync with
each other. To ensure that the AWG cores start their waveform playback in sync, even in the
presence of actions with non-deterministic timing, it is possible to enable a synchronization check
between the different AWG cores. Each SG channel has its own synchronization node (/device/
sgchannels/[SG_CHAN_INDEX]/synchronization/enable, see Node Documentation). If the
synchronization node of a channel is enabled (i.e. set to 1), the AWG core of that channel will
participate in a synchronization check, which can be useful when executing actions with a non-
deterministic timing such as loading of new sequences. This check is performed after the prefetch
step of a sequence (i.e. after the sequencer instruction data, command table data, and waveform
data have been transferred from the external to the internal memory of the AWG module but before
the first sequencer instruction is executed), and each participating AWG core will wait until all of the
participants in the synchronization check have returned a “ready” status. It is possible to even
synchronize an entire QCCS setup in this way by setting the node /device/system/
synchronization/source to external (numerical value of 1). When the source is external, the
instrument will report its ready status to the PQSC to which the instrument is connected, and the
PQSC will wait for all instruments connected to it to report a ready status. If the source is set to
internal (i.e. a numerical value of 0), then only the AWG cores on the instrument that have
synchronization enabled participate in the synchronization check. Also note that if the source of the
SHFSG is set to internal, the PQSC will not consider the instrument as participating in the
synchronization check and will ignore the ready status of that instrument. Finally, to ensure that
trigger generation is coordinated with the synchronization check of the AWG cores, it is possible to
have the internal trigger unit participate in the synchronization check by setting the node /device/
system/internaltrigger/synchronization/enable to True (i.e. to 1). A similar node is available
on the PQSC. When the trigger synchronization is enabled, the same number of trigger events with
the same holdoff time will be generated between subsequent synchronization checks.

Functional Elements

Table 5.48: AWG tab: Control sub-tab

Control/Tool Option/
Range

Description

Start Runs the AWG.

Sampling Rate AWG sampling rate. This value is used by default and can be
overridden in the Sequence program. The numeric values are
rounded for display purposes. The exact values are equal to the
base sampling rate divided by 2^n, where n is an integer between 0
and 13.

5.2. Measurement Functionality

206 Zurich Instruments SHFQC User Manual

Control/Tool Option/
Range

Description

Round oscillator
frequencies.

Round oscillator frequencies to nearest commensurable with 225
MHz.

Status Display compiler errors and warnings.

Compile Status grey/green/
yellow/red

Sequence program compilation status. Grey: No compilation
started yet. Green: Compilation successful. Yellow: Compiler
warnings (see status field). Red: Compilation failed (see status
field).

Upload Progress 0% to 100% The percentage of the sequencer program already uploaded to the
device.

Upload Status grey/
yellow/
green

Indicates the upload status of the compiled AWG sequence. Grey:
Nothing has been uploaded. Yellow: Upload in progress. Green:
Compiled sequence has been uploaded.

Register
selector

Select the number of the user register value to be edited.

Register 0 to 2^32 Integer user register value. The sequencer has reading and writing
access to the user register values during run time.

Input File External source code file to be compiled.

Example File Load pre-installed example sequence program.

New Create a new sequence program.

Revert Undo the changes made to the current program and go back to
the contents of the original file.

Save (Ctrl+S) Compile and save the current program displayed in the Sequence
Editor. Overwrites the original file.

Save as...
(Ctrl+Shift+S)

Compile and save the current program displayed in the Sequence
Editor under a new name.

Automatic
upload

ON / OFF If enabled, the sequence program is automatically uploaded to the
device after clicking Save and if the compilation was successful.

To Device Sequence program will be compiled and, if the compilation was
successful, uploaded to the device.

Multi-Device ON / OFF Compile the program for use with multiple devices. If enabled, the
program will be compiled for and uploaded to the devices
currently synchronized in the Multi-Device Sync tab.

Sync Status grey/green/
yellow

Sequence program synchronization status. Grey: No program
loaded on device. Green: Program in sync with device. Yellow:
Sequence program in editor differs from the one running on the
device.

Table 5.49: AWG tab: Waveform sub-tab

Control/
Tool

Option/
Range

Description

Wave
Selection

Select wave for display in the waveform viewer. If greyed out, the
corresponding wave is too long for display.

Waveforms Lists all waveforms used by the current sequence program.

Mem Usage
(%)

0 to 100 Amount of the used waveform data relative to the device cache
memory. The cache memory provides space for 64 kSa of waveform
data per AWG core.

Table 5.50: AWG tab: Trigger sub-tab

Control/Tool Option/
Range

Description

Trigger State grey/green State of the Trigger. Grey: No trigger detected. Green: Trigger
detected.

5.2. Measurement Functionality

207 Zurich Instruments SHFQC User Manual

Control/Tool Option/
Range

Description

Slope Select the signal edge that should activate the trigger. The
trigger will be level sensitive when the Level option is selected.

Level (V) numeric
value

Defines the analog trigger level.

Auxiliary Trigger
State

grey/green State of the Auxiliary Trigger. Grey: No trigger detected. Green:
Trigger detected.

Signal Selects the digital trigger source signal.

DIO/Zsync
Trigger state

grey/green Indicates that triggers are generated from the DIO or ZSync
interface to the AWG.

Read DIO/ZSync Each AWG can be configured to either receive DIO data or ZSync
data.

Valid Index 16 to 31 Selects the index n of the DIO interface bit (notation DIO[n] in
the Specification chapter of the User Manual) to be used as a
VALID signal input, i.e. a qualifier indicating that a valid codeword
is available on the DIO interface.

Valid Polarity Polarity of the VALID bit that indicates that a codeword is
available on the DIO interface.

None VALID bit is ignored.

Low VALID bit must be logical low.

High VALID bit must be logical high.

Both VALID bit may be logical high or logical low.

Codeword Mask 0 to 1023 10-bit value to select the bits of the DIO interface input state
(notation DIO[n] in the Specification chapter of the User Manual)
to be used as a codeword in connection with the playWaveDIO
sequencer instruction. The Codeword Mask is combined with
the DIO interface input state by a bitwise AND operation after
applying the Codeword Shift.

Codeword Shift 0 to 31 Defines the integer bit shift to be applied to the input state of
the DIO interface (notation DIO[n] in the Specification chapter of
the User Manual) to be used as a codeword for waveform
selection in connection with the playWaveDIO sequencer
instruction.

High bits 32-bit value indicating which bits on the DIO interface are
detected as logic high.

Low bits 32-bit value indicating which bits on the DIO interface are
detected as logic low.

Timing Error grey/red Indicates a timing error. A timing error is defined as an event
where either the VALID or any of the data bits on the DIO
interface change value at the same time as the STROBE bit.

Synchronization
Enable

Enable multi-channel synchronization for this channel. The
program will only execute once all channels with enabled
synchronization are ready.

Display Format Select PQSC Register and Decoder view format.

Hexadecimal ZSync parameters view format is hexadecimal.

Decimal ZSync parameters view format is decimal.

Binary ZSync parameters view format is binary.

PQSC Register
Shift

The bit shift applied to the message received on ZSync interface
coming from the PQSC readout registers.

PQSC Register
Mask

4-bit value to select the bits of the message received on ZSync
interface coming from the PQSC readout registers.

PQSC Register
Offset

The additive offset applied to the message received on ZSync
interface coming from the PQSC readout registers.

5.2. Measurement Functionality

208 Zurich Instruments SHFQC User Manual

Control/Tool Option/
Range

Description

PQSC Decoder
Shift

The bit shift applied to the message received on ZSync interface
coming from the PQSC error decoder.

PQSC Decoder
Mask

8-bit value to select the bits of the message received on ZSync
interface coming from the PQSC error decoder.

PQSC Decoder
Offset

The additive offset applied to the message received on ZSync
interface coming from the PQSC error decoder.

Display Format Select view format.

Hexadecimal Internal feedback parameters view format is hexadecimal.

Decimal Internal feedback parameters view format is decimal.

Binary Internal feedback parameters view format is binary.

Internal
Feedback Shift

The bit shift applied to the readout data received from the QA
channel.

Internal
Feedback Mask

16-bit value to select the bits of the shifted readout data
received from the QA channel.

Internal
Feedback Offset

The additive offset applied to the shifted and masked readout
data received from the QA channel.

Table 5.51: AWG tab: Advanced sub-tab

Control/
Tool

Option/
Range

Description

Sequence
Editor

Display and edit the sequence program.

Assembly Text display Displays the current sequence program in compiled form. Every line
corresponds to one hardware instruction.

Counter Current position in the list of sequence instructions during execution.

Status Running,
Idle, Waiting

Displays the status of the sequencer on the instrument. Off: Ready, not
running. Green: Running, not waiting for any trigger event. Yellow:
Running, waiting for a trigger event. Red: Not ready (e.g., pending elf
download, no elf downloaded)

Rerun ON / OFF Reruns the Sequencer program continuously. This way of looping a
program results in timing jitter. For a jitter free signal implement a loop
directly in the sequence program.

Mem
Usage (%)

0 to 100 Size of the current sequence program relative to the device cache
memory. The cache memory provides space for a maximum of 16384
instructions.

Clear Clears the command table description for the selected AWG Core.

Status grey/green/
red

Displays the status of the command table of the selected AWG Core.
Grey: no table description uploaded, Green: table description
successfully uploaded, Red: Error occurred during uploading of the
table description.

5.2.7. Scope Tab

The Scope is a powerful time domain and frequency domain measurement tool as introduced in
Unique Set of Analysis Tools and is available on all SHFQA Instruments.

Features

 Display complex signal in time domain
 2 or 4 input channels with total memory of 260 kSa
 14 bit nominal resolution
 Fast Fourier Transform (FFT) of complex signal: +/-500 MHz, spectral density and power

conversion, choice of window functions

5.2. Measurement Functionality

209 Zurich Instruments SHFQC User Manual

 Segments Hardware Averaging up to 65536
 Segmented memory for up to 1024 scope shots
 Access internal triggers

Description

The Scope tab serves as the graphical display for time domain data. Whenever the tab is closed or
an additional one of the same type is needed, clicking the following icon will open a new instance of
the tab.

Table 5.52: App icon and short description

Control/
Tool

Option/
Range

Description

Scope Displays shots of data samples in time and frequency domain
(FFT) representation.

The Scope tab consists of a plot section on the left and a configuration section on the right. The
configuration section is further divided into a number of sub-tabs. It gives access to a single-
channel oscilloscope that can be used to monitor a choice of signals in the time or frequency
domain. Hence the X axis of the plot area is time (for time domain display, Figure 5.31) or frequency
(for frequency domain display, Figure 5.32). It is possible to display the time trace and the associated
FFT simultaneously by opening a second instance of the Scope tab.

Figure 5.31: The overview Scope tab time domain of the GUI

Figure 5.32: The overview Scope tab Freq FFT of the GUI

The raw complex data recorded by the Scope with a sampling rate of 2.0 GSa/s is from frequency
down-conversion of the input signal, the Center Frequency is set in the Inputs/Outputs Tab. In the
time-domain, the complex data is decomposed into 2 traces representing the real and imaginary
components, respectively. With LF path, the imaginary components of the raw data is 0. For detailed
data processing, please refer to Quantum Analyzer Setup Tab. The signal displayed in the FFT mode
is calculated as , where is the real component of the complex data, and is the
imaginary component. The frequency of input signal can be read as , where is the
center frequency of the channel, and is the offset frequency in the FFT plot. When using LF
path, the FFT of input signal shows 2 sidebands around since the input signal has real
components only.

The Averaging function of the Scope mode is performed in the hardware level. This means if the
number of averages is , the recorded raw data is the data after the averaging, i.e. in the time-
domain, the result is , in FFT mode, the result is .

∣FFT(I+iQ)∣|FFT(I+iQ)|∣FFT (I + iQ)∣ III QQQ
f0+foffsetf_0 + f_{\mathrm{offset}}f +0 foffset f0f_0f0

foffsetf_{\mathrm{offset}}foffset

±foffset\pm f_{\mathrm{offset}}±foffset f0=0f_0 = 0f =0 0

>1\gt1> 1
⟨I+iQ⟩
\
l
a
n
g

⟨I + iQ⟩ ∣FFT(⟨I+iQ⟩)∣|FFT(\langle I+iQ \rangle)|∣FFT (⟨I + iQ⟩)∣

5.2. Measurement Functionality

210 Zurich Instruments SHFQC User Manual

Functional Elements

Table 5.53: Scope tab functional elements

Control/
Tool

Option/
Range

Description

Run/Stop Runs the scope/FFT with a default internal trigger (200 ms) if
Trigger mode is disabled, or a configured trigger if Trigger mode is
enabled.

Single Acquires a single shot of samples.

Horizontal
Mode

Time Domain /
Freq Domain
(FFT)

Switches between time and frequency domain display.

Shown
Trigger

grey/green/
yellow

When flashing, indicates that new scope shots are being captured
and displayed in the plot area. The Trigger must not necessarily be
enabled for this indicator to flash. A disabled trigger is equivalent
to continuous acquisition. Scope shots with data loss are
indicated by yellow. Such an invalid scope shot is not processed.

Length
Mode &
Value

Switches
between length
and duration
display.

Length (pts)
16 to / /

 Sa for 1 / 2
/ 3 or 4
channels;

The scope shot length is defined in number of samples. The
duration is given by the number of samples divided by the
sampling rate 2.0 GSa/s. The granularity is 16 Samples.

Duration (s)
8 ns to 131 / 65
/ 32 s for 1 / 2
/ 3 or 4
channels;

The scope shot length is defined as a duration. The number of
samples is given by the duration times the sampling rate 2.0 GSa/
s. The resolution is 8 ns.

Channel N Signal Input m
(m is 1 to 2 or 1
to 4)

Select input source of the Scope channels.

Enable ON / OFF Activates the display of the corresponding scope channel.

Enable
Hardware
Averaging

ON / OFF Enable hardware averaging where results are available and
displayed only once all necessary shots have been acquired. As
opposed to the EMA filter, the source data for hardware averaging
is always the time trace before any postprocessing such as FFT.

Averages
(HW)

1 to 65536 Number of shots to average on the Instrument before returning
the data

Enable
Average
Filter

ON / OFF Enable Exponential Moving Average (EMA) filter that is applied
when the average of several scope shots is computed and
displayed. Depending on the mode, the source data for averaging
is either the Time or the Freq FFT trace.

Averages
(EMA)

Integer from 1 Number of shots required to reach 63% setting. Twice the number
of shots yields 86% setting.

Reset (EMA) Resets the averaging filter.

Scope
Display

ON / OFF Display traces in a 1D plot.

2D Display ON / OFF Display traces in a 2D plot. In segment mode, the vertical axis
shows the number of segments, the horizontal axis shows the
length/duration of the shots. It can be used together with Scope
Display.

Trends
Display

ON / OFF Display trends of monitored traces. It can be used together with
the Scope Display.

Table 5.54: Scope Tab: Trigger Sub-Tab

2182^{18}218 2172^{17}217

2162^{16}216

μ\muμ

5.2. Measurement Functionality

211 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/Range Description

Enable ON / OFF When triggering is enabled scope shots are acquired
every time the defined trigger condition is met. If
disabled, scope shots are acquired continuously
(every 200 ms).

Signal Trigger Input nA and nB,
Sequencer n Trigger Out,
Sequencer n Monitor,
Software Trigger. n is from 1 to
2 or 1 to 4

Selects the trigger source signal.

Delay (s) -4 s to 131 s Trigger position relative to reference. A positive delay
results in less data being acquired before the trigger
point, a negative delay results in more data being
acquired before the trigger point. The delay
resolution is 2 ns.

Enable
Segments

ON / OFF Enable segmented scope recording. This allows for
full bandwidth recording of scope shots with a
minimum dead time between individual shots.

Segments 1 to 1024 Specifies the number of segments to be recorded in
device memory. The maximum scope length size is
given by the available memory divided by the number
of segments.

Shown
Trigger

1 to 1024 Displays the number of triggered events since last
start.

Table 5.55: Scope Tab: Advanced Sub-Tab

Control/
Tool

Option/Range Description

FFT Window Rectangular
Hann
Hamming
Blackman Harris
Exponential (ring-
down)
Cosine (ring-down)
Cosine squared
(ring-down)

Seven different FFT windows to choose from. Each window
function results in a different trade-off between amplitude
accuracy and spectral leakage. Please check the literature to
find the window function that best suits your needs.

Resolution
(Hz)

8 / 15 / 30 kHz to 125
MHz for 1 / 2 / 3 or 4
channels

Spectral resolution defined by the reciprocal acquisition time
(sample rate, number of samples recorded).

Spectral
Density

ON / OFF Calculate and show the spectral density. If power is enabled
the power spectral density value is calculated. The spectral
density is used to analyze noise.

Power ON / OFF Calculate and show the power value. To extract power
spectral density (PSD) this button should be enabled together
with Spectral Density.

Persistence ON / OFF Keeps previous scope shots in the display. The color scheme
visualizes the number of occurrences at certain positions in
the time and amplitude by a multi-color scheme.

Table 5.56: Scope Tab: History Sub-Tab

Control/
Tool

Option/
Range

Description

History History Each entry in the list corresponds to a single trace in the history. The
number of traces displayed in the plot is limited to 20. Use the toggle
buttons to hide or show individual traces. Use the color picker to change
the color of a trace in the plot. Double click on a list entry to edit its
name.

μ\muμ μ\muμ

5.2. Measurement Functionality

212 Zurich Instruments SHFQC User Manual

Control/
Tool

Option/
Range

Description

Length 0 to
4294967295

Maximum number of records in the history. The number of entries
displayed in the list is limited to the 100 most recent ones.

Clear All Remove all records from the history list.

Clear Remove selected records from the history list.

Save Save the traces in the history to a file accessible in the File Manager tab.
The file contains the signals in the Vertical Axis Groups of the Control
sub-tab. The data that is saved depends on the selection from the pull-
down list. Save All: All traces are saved. Save Sel: The selected traces are
saved.

File Name Enter a name which is used as the head of the folder name to save the
history into. An additional three-digit counter is added as the rest of the
folder name automatically to identify consecutive files.

File
Format

Select the file format in which to save the data.

Auto Save Activate autosaving. When activated, any measurements already in the
history are saved. Each subsequent measurement is then also saved.
The autosave directory is identified by the text "autosave" in the name,
e.g. "sweep_autosave_001". If autosave is active during continuous
running of the module, each successive measurement is saved to the
same directory. For single shot operation, a new directory is created
containing all measurements in the history. Depending on the file
format, the measurements are either appended to the same file, or
saved in individual files. For HDF5 and ZView formats, measurements are
appended to the same file. For MATLAB and SXM formats, each
measurement is saved in a separate file.

Load file Load data from a file into the history. Loading does not change the data
type and range displayed in the plot, this has to be adapted manually if
data is not shown.

5.2.8. DIO Tab

The DIO tab provides access to the settings and controls of the digital inputs and outputs. It is
available on all SHFQC Instruments.

Features

 Monitor and control of 32-bit DIO port
 Configure Trigger Inputs and Marker Outputs
 Configure the Internal Trigger settings

Description

The DIO tab is the main panel to control the digital inputs and outputs as well as the trigger levels.
Whenever the tab is closed or an additional one of the same type is needed, clicking the following
icon will open a new instance of the tab.

Table 5.57: App icon and short description

Control/
Tool

Option/
Range

Description

DIO Gives access to all controls relevant for the digital inputs and outputs
including DIO, Trigger Inputs, Trigger Outputs, and Marker Outputs.

5.2. Measurement Functionality

213 Zurich Instruments SHFQC User Manual

Figure 5.33: LabOne UI: DIO tab

The QA Channels section shows the settings for the two Trig inputs on the front panel of the
Quantum Analyzer channel. The LED status indicator helps in monitoring the input signal state and
selecting the threshold. The Marker section allows users to assign internal marker bits to the Mark
outputs on the front panel. Alternatively, the outputs can be set to static high or low values. The SG
Channels section shows similar settings for the 2, 4, or 6 Signal Generator channels. Additionally, the
marker outputs of the Signal Generator channels have a configurable delay, with a resolution of 1 ns.
In the System Settings section, the number of repetitions and the holdoff time of the Internal Trigger
can be configured. The Internal Trigger is useful for synchronizing the outputs of different channels
on the same instrument.

Digital I/O

The Digital I/O has 3 operation modes: Manual means controlled manually, QA Sequencer n means
controlled by QA Sequencer n, QA there are the 32-bit DIO port is in use.

Figure 5.34 shows the architecture of the DIO port. It features 32 bits that can be configured byte-
wise as inputs or outputs by means of a drive signal. The digital output data is latched
synchronously with the falling edge of the internal clock, which is running at 50 MHz. The internal
sampling clock is available at the DOL pin of the DIO connector. Digital input data can either be
sampled by the internal clock or by an external clock provided through the CLKI pin. A decimated
version of the input clock is used to sample the input data. The Decimation unit counts the clocks to
decimation and then latches the input data. The default decimation is 5625000, corresponding to a
digital input sampling rate of 1 sample per second.

5.2. Measurement Functionality

214 Zurich Instruments SHFQC User Manual

Figure 5.34: DIO input/output architecture

In Manual mode, each DIO pin can be controlled manually according to Figure 5.34 and the DIO
interface specification is detailed in Specifications.

In QA Sequencer N mode, each DIO pin output can be controlled in the SHFQC Readout Pulse
Generator Tab Sequencer N (N indicates which Channel) by a SeqC command setDIO.

In QA Results mode, DIO pins are configured to send Readout Result after Thresholding. Table 5.58
shows the mapping between DIO pins and input/output signals available when using the DIO
connector to output qubit state measurement results. The direction is as seen from the SHFQC
Instrument. In order to use these signals, the Digital I/O Mode and Drive setting have to be chosen
accordingly.

Table 5.58: DIO signal assignment in QA Results Mode

DIOLink
signal

DIO pin Direction Description

VALID DIO[0] OUT valid bit

CW DIO[4:1] OUT one-hot encoding of Readout Channel

CW DIO[8:23] OUT quantized results for a maximum of 16 State
Discriminations

reserved DIO[24:31] IN incoming communication

5.2. Measurement Functionality

215 Zurich Instruments SHFQC User Manual

DIO Result communication belows shows an example of multiple channel readout transmissions
through DIO. Every readout is sent in a single message. A one-hot encoding of the readout channel is
sent along with the readout on dedicated bits. The valid bit is set for every valid DIO transaction.

Figure 5.35: DIO Result communication

The QA Results QCCS mode of the DIO interface provides one way of communicating discriminated
qubit states between 2 Instruments. For more than 2 Instruments, both qubit states and
synchronization becomes essential. The following section explains how the ZSync interface works
for both Instrument synchronization and feedback. Please note that ZSync settings are under the
Device Tab.

ZSync Interface

The ZSync link of the Zurich Instruments' Quantum Computing Control System (QCCS) enables
Instrument synchronization and communication on the system level through the Zurich
Instruments' PQSC Programmable Quantum System Controller. This architecture is able to support
quantum algorithms run in scalable quantum processors.

In particular, the ZSync links distribute the system clock to all Instruments and synchronize all
Instruments to sub-nanosecond levels. Besides status monitoring to ensure quality and reliability of
qubit tune-up routines, it provides a bidirectional data interface to send readout results to, or obtain
sequence instructions from the PQSC.

The ZSync links adhere to strict real-time behavior: all data transfers are predictable to single clock
cycle precision. In the SHFQC, the link is optimized for maximum data transfer bandwidth to the
central controller. For example, twice the bandwidth is reserved for results being transferred to the
PQSC with respect to the allocated bandwidth for instructions that are received from the PQSC. This
enables global feedback and error correction through centralized syndrome decoding and
synchronized actions on the global QCCS system level.

Feedback through the PQSC

Note

More information on the ZSync, and how to properly link the SHFQC with the QCCS can be found in
the user manual of the PQSC Programmable Quantum System Controller.

Using the startQA- command, the SHFQA or the Quantum Analyzer Channel of the SHFQC
generates a readout result and forwards it to the PQSC over the ZSync. Depending on the address
provided, the PQSC stores it in the register bank - the center of the feedback in the QCCS system.
After processing, the PQSC then forwards the results to other devices in the QCCS, such as the
SHFSG.

The register bank requires a readout to have an address and a mask along with the readout data.
Each component is sent in a separate ZSync message. The address is sent first, followed by the
mask, and then the data, see Figure 5.36. To reduce latency, the address and the mask are sent
during the readout, and the data is then sent as soon as the discriminated qubit results are ready.

5.2. Measurement Functionality

216 Zurich Instruments SHFQC User Manual

https://www.zhinst.com/ch/en/quantum-computing-systems/qccs
https://www.zhinst.com/ch/en/products/pqsc-programmable-quantum-system-controller

Figure 5.36: Readout Result communication via ZSync

Functional Elements

Table 5.59: Digital input and output channels, reference and trigger

Control/Tool Option/Range Description

DIO mode Select DIO mode

Manual Enables manual control of the DIO output bits.

Sequencer Enables control of DIO values by the Sequencer.

Result Sends discriminated Readout Results to the DIO.

DIO mode Select DIO mode

Manual Enables manual control of the DIO output bits.

QA Result
Overflow

grey/yellow/red Red: present overflow condition on the DIO interface
during readout. Yellow: indicates an overflow occurred in
the past. An overflow can happen if readouts are triggered
faster than the maximum possible data-rate of the DIO
interface.

DIO bits label Partitioning of the 32 bits of the DIO into 4 buses of 8 bits
each. Each bus can be used as an input or output.

DIO input numeric value in
either Hex or
Binary format

Current digital values at the DIO input port.

DIO output numeric value in
either hexadecimal
or binary format

Digital output values. Enable drive to apply the signals to
the output.

DIO drive ON / OFF When on, the corresponding 8-bit bus is in output mode.
When off, it is in input mode.

Format Select DIO view format.

Hexadecimal DIO view format is hexadecimal.

Binary DIO view format is binary.

Clock Select DIO internal or external clocking.

Interface Selects the interface standard to use on the 32-bit DIO
interface. This setting is persistent across device reboots.

LVCMOS A single-ended, 3.3V CMOS interface is used.

LVDS A differential, LVDS compatible interface is used.

Trigger level Trigger voltage level at which the trigger input toggles
between low and high. Use 50% amplitude for digital input
and consider the trigger hysteresis.

50 Ω 50 Ω/1 kΩ Trigger input impedance: When on, the trigger input
impedance is 50 Ω, when off 1 kΩ.

Trigger Input Low
status

Indicates the current low level trigger state.

Off A low state is not being triggered.

On A low state is being triggered.

Trigger Input
High status

Indicates the current high level trigger state.

Off A high state is not being triggered.

On A high state is being triggered.

5.2. Measurement Functionality

217 Zurich Instruments SHFQC User Manual

Control/Tool Option/Range Description

Marker output
signal

Select the signal assigned to the marker output.

Delay (s) This delay adds an offset that acts only on the trigger/
marker output. The total delay to the trigger/marker
output is the sum of this value and the value of the output
delay node.

Run/Stop Enable internal trigger generator.

Repetitions Number of triggers to be generated.

Holdoff Hold-off time between generated triggers.

Progress The fraction of the triggers generated so far.

Synchronization Enable synchronization. Trigger generation will only start
once all synchronization participants have reported a
ready status. Synchronization checks will be repeated
with the same trigger generation settings (holdoff and
repetitions) until synchronization is disabled.

5.2.9. Output Router and Adder

The Output Router and Adder is a software upgrade option for the SHFQC. The option can be
installed in the field.

Features

 Signals from up to three additional Digital Signal Units can be routed and added to any Output of
an SG Channel

 Independent amplitude and phase control for each routed signal
 Ability to enable each routed signal separately
 Overflow counter to indicate if the added signals saturate the DAC
 Gain access to additional Digital Signal Units for extended signal generation capabilities on some

instruments

Description

The Output Router and Adder is a feature that allows the user to flexibly route the signals generated
by different Digital Signal Units to any front panel Output of an SG Channel. The same signal can be
routed to multiple Outputs at once, and the user has completely independent amplitude and phase
control of each routed instance of a signal. This can have uses in crosstalk compensation on the RF
lines for superconducting qubits, but it can also be used to simultaneously drive multiple hyperfine
transitions in color centers, to perform state transfer protocols in quantum optics, or to perform
other experiments where frequency multiplexing is needed.

The Output Router and Adder works by introducing additional signal line connections between the
different digital signal pathways that lead to the analog upconversion chains of the Outputs. The
functional diagram below highlights how a signal could be routed from the Digital Signal Unit of SG
Channel 2 to the Output of SG Channel 1.

5.2. Measurement Functionality

218 Zurich Instruments SHFQC User Manual

Figure 5.37: Diagram showing how the digital signals are routed between SGChannels.
The default signal pathways are shown in black, whereas the additional pathways and

controls are highlighted in light blue.

In this case, the digital signal generated by AWG 2 and modulated by the Digital Modulation settings
of SG Channel 2 is routed to the digital signal line that leads to the analog upconversion chain of SG
Channel Output 1, with the routed signal indicated by the light blue connections leading from SG
Channel 2 to SG Channel 1. The user has the ability to add an additional amplitude scaling factor and
phase shift to the routed signal, indicated by and in the diagram. The signal that is
generated at SG Channel Output 1 will therefore be a linear combination of the signal normally
generated from AWG core 1, as well as an amplitude-scaled and phase-shifted version of the signal
generated by AWG core 2 and Digital Modulation settings of SGChannel 2. For detailed information
on how the signals from the Digital Signal Units are generated and how the Digital Modulation
settings are applied, please refer to the Digital Modulation Tutorial. Similarly, for more information on
how the DAC and the Frequency Upconversion Chain convert the digital signals into the final analog
signal at the desired RF center frequency, please refer to the In/Out Tab.

Note

It is not possible to route marker or trigger output data between Channels: Only waveform
information is routed.

Each SG Channel has three routes, corresponding to the three additional digital signals that can be
added to the default signal pathway of that channel. Each route has its own enable/disable switch,
source (to select which channel the signal should be drawn from), amplitude scaling factor, and
phase shift. All of the signal routing, signal addition, amplitude scaling, and phase shifting happens
digitally, before the digital-to-analog conversion and associated analog upconversion chain. The
node device.sgchannels[n].outputrouter.overflowcount() can be queried to determine
whether the total signal, comprising the default signal for that SG Channel Output as well as all
routed signals that are added to it, has produced an overflow at the DAC, indicating that the signal
was clipped. If the Output Router and Adder has detected an overflow in the past, it automatically
clamps the signal to be within the range [-1, 1], possibly distorting the signal. Both the amplitude
scaling factor and the phase shift of each routed signal are floating numbers that are serialized to 16
bits before being written to the FPGA. The table below summarizes each of the different node
settings that are part of the Output Router and Adder.

Table 5.60: Output Router and Adder node settings

A11A_{11}A11 ϕ11\phi_{11}ϕ11

5.2. Measurement Functionality

219 Zurich Instruments SHFQC User Manual

Name Node Description

Channel n
Output
Router
Enable

device.sgchannels[n].outputrouter.enable() Enables (1) or disables (0) the Output Router and Adder of Channel n

Channel n
Output
Router
Overflow
Indicator

device.sgchannels[n].outputrouter.overflowcount() Indicates the number of overflow events that have occurred

Channel n
Route m
Enable

device.sgchannels[n].outputrouter.routes[m].enable() Enables (1) or disables (0) Route m (0-2) of the Output Router and
Adder of Channel n

Channel n
Route m
Source

device.sgchannels[n].outputrouter.routes[m].source() Index of the Channel from which Route m accepts the additional
digital signal. Note that it is not possible to use the same Channel
index on different Routes on the same Channel at the same time (e.g.
it is not possible to have both
device.sgchannels[0].outputrouter.routes[0].source(1) and
device.sgchannels[0].outputrouter.routes[1].source(1)
simultaneously). Similarly, the Output Router of a Channel does not
accept its own index as a Source (e.g. it is not allowed to set
device.sgchannels[n].outputrouter.routes[m].source(n))

Channel n
Route m
Amplitude

device.sgchannels[n].outputrouter.routes[m].amplitude() Amplitude scaling factor (between 0 and 1, serialized into 16 bits)
applied to the routed signal. Indicated by in diagrams and
equations.

Channel n
Route m
Phase

device.sgchannels[n].outputrouter.routes[m].phase() Phase shift (any real value, serialized into 16 bits) applied to the
routed signal. Indicated by in diagrams and equations.

Based on the figure and table above, we can write down the total I and Q signals that are present on
SG Channel 1. Before reaching the Output Router and Adder, SG Channels 1 and 2 create the
following I and Q signals:

where all of the symbols are as defined in the Digital Modulation Tutorial, and the subscript
indicates from which SG Channel the signal or setting originates. At this stage, these are digital I and
Q signals, not analog voltages, that will be sent to the double-superheterodyne upconversion
scheme explained in the In/Out Tab. It is these digitally modulated I and Q signals that are routed
between channels. In this case, we are using the default signal of SG Channel 1 as well as the first
route of the Output Router and Adder, with SG Channel 2 as the source for that route. The total I and
Q signals that are sent to the DAC and Output of SG Channel 1 are therefore given by the following
equation:

where and stand for the node settings
device.sgchannels[0].outputrouter.routes[0].amplitude() and
device.sgchannels[0].outputrouter.routes[0].phase(), as described in the table above.
Because all of the signal routing and adding happens digitally, all frequency components of the total
signal should lie within the 1 GHz bandwidth of the analog upconversion chain, or there is a risk of
attenuating parts of the generated RF signal. For use cases in which frequency multiplexing in a
bandwidth exceeding 1 GHz is needed, it is recommended to combine the desired RF signals
external to the instrument. This also means that all channels between which crosstalk
compensation is being performed must share the same RF center frequency, such that the
compensation pulse appears at the correct frequency at the Output.

Note that enabling the Output Router on a given channel increases the output latency by 26 ns (52
samples), as the signal pathway is extended to include additional signal addition stages. It is highly
recommended to enable the Output Router on all channels that are sharing signals in any way, to
ensure that the signals at the SG Outputs on the front panel remain synchronized. For example, if
AWG core 2 is generating a signal that is routed to SG Output 1, it is recommended to enable the

AnmA_{nm}Anm

ϕnm\phi_{nm}ϕnm

VI,Ch1(t)=Gain00Ch1×wI,Ch1(t)cos(2πfOsc,Ch1t+ϕCh1)+Gain01Ch1×wQ,Ch1(t)sin(2πfOsc,Ch1t+ϕCh1) VQ,Ch1(t)=Gain10Ch1×wI,Ch1(t)sin(2πfOsc,Ch1t+ϕCh1)+Gain11Ch1×wQ,Ch1(t)cos(2πfOsc,Ch1t+ϕCh1) VI,Ch2(t)=Gain00Ch2×wI,Ch2(t)cos(2πfOsc,Ch2t+ϕCh2)+Gain01Ch2×wQ,Ch2(t)sin(2πfOsc,Ch2t+ϕCh2) VQ,Ch2(t)=Gain10Ch2×wI,Ch2(t)sin(2πfOsc,Ch2t+ϕCh2)+Gain11Ch2×wQ,Ch2(t)cos(2πfOsc,Ch2t+ϕCh2) V_{I,\mathrm{Ch1}}(t) = \mathrm{Gain00_{\mathrm{Ch1}}} \times w_{I,\mathrm{Ch1}} (t) \cos(2 \pi f_{\mathrm{Osc,\mathrm{Ch1}}} t + \phi_\mathrm{Ch1}) + \mathrm{Gain01_{\mathrm{Ch1}}} \times w_{Q,\mathrm{Ch1}} (t) \sin(2 \pi f_{\mathrm{Osc,\mathrm{Ch1}}} t + \phi_\mathrm{Ch1}) \ \newline V_{Q,\mathrm{Ch1}}(t) = \mathrm{Gain10_{\mathrm{Ch1}}} \times w_{I,\mathrm{Ch1}} (t) \sin(2 \pi f_{\mathrm{Osc,\mathrm{Ch1}}} t + \phi_\mathrm{Ch1}) + \mathrm{Gain11_{\mathrm{Ch1}}} \times w_{Q,\mathrm{Ch1}} (t) \cos(2 \pi f_{\mathrm{Osc,\mathrm{Ch1}}} t + \phi_\mathrm{Ch1}) \ \newline V_{I,\mathrm{Ch2}}(t) = \mathrm{Gain00_{\mathrm{Ch2}}} \times w_{I,\mathrm{Ch2}} (t) \cos(2 \pi f_{\mathrm{Osc,\mathrm{Ch2}}} t + \phi_\mathrm{Ch2}) + \mathrm{Gain01_{\mathrm{Ch2}}} \times w_{Q,\mathrm{Ch2}} (t) \sin(2 \pi f_{\mathrm{Osc,\mathrm{Ch2}}} t + \phi_\mathrm{Ch2}) \ \newline V_{Q,\mathrm{Ch2}}(t) = \mathrm{Gain10_{\mathrm{Ch2}}} \times w_{I,\mathrm{Ch2}} (t) \sin(2 \pi f_{\mathrm{Osc,\mathrm{Ch2}}} t + \phi_\mathrm{Ch2}) + \mathrm{Gain11_{\mathrm{Ch2}}} \times w_{Q,\mathrm{Ch2}} (t) \cos(2 \pi f_{\mathrm{Osc,\mathrm{Ch2}}} t + \phi_\mathrm{Ch2}) V (t) =I,Ch1 Gain00 ×Ch1 w (t) cos(2πf t+I,Ch1 Osc,Ch1 ϕ) +Ch1 Gain01 ×Ch1 w (t) sin(2πf t+Q,Ch1 Osc,Ch1 ϕ)Ch1

V (t) =Q,Ch1 Gain10 ×Ch1 w (t) sin(2πf t+I,Ch1 Osc,Ch1 ϕ) +Ch1 Gain11 ×Ch1 w (t) cos(2πf t+Q,Ch1 Osc,Ch1 ϕ)Ch1

V (t) =I,Ch2 Gain00 ×Ch2 w (t) cos(2πf t+I,Ch2 Osc,Ch2 ϕ) +Ch2 Gain01 ×Ch2 w (t) sin(2πf t+Q,Ch2 Osc,Ch2 ϕ)Ch2

V (t) =Q,Ch2 Gain10 ×Ch2 w (t) sin(2πf t+I,Ch2 Osc,Ch2 ϕ) +Ch2 Gain11 ×Ch2 w (t) cos(2πf t+Q,Ch2 Osc,Ch2 ϕ)Ch2

Chn\mathrm{Ch}nChn

VI,Ch1,Total(t)=VI,Ch1(t)+A00(VI,Ch2(t)cos(ϕ00)−VQ,Ch2(t)sin(ϕ00)) VQ,Ch1,Total(t)=VQ,Ch1(t)+A00(VI,Ch2(t)sin(ϕ00)+VQ,Ch2(t)cos(ϕ00)) V_{I,\mathrm{Ch1},\mathrm{Total}}(t) = V_{I,\mathrm{Ch1}}(t) + A_{00} \left(V_{I,\mathrm{Ch2}}(t) \cos(\phi_{00}) - V_{Q,\mathrm{Ch2}}(t) \sin(\phi_{00}) \right) \ \newline V_{Q,\mathrm{Ch1},\mathrm{Total}}(t) = V_{Q,\mathrm{Ch1}}(t) + A_{00} \left(V_{I,\mathrm{Ch2}}(t) \sin(\phi_{00}) + V_{Q,\mathrm{Ch2}}(t) \cos(\phi_{00}) \right) V (t) =I,Ch1,Total V (t) +I,Ch1 A V (t) cos(ϕ) − V (t) sin(ϕ)00 (I,Ch2 00 Q,Ch2 00)
V (t) =Q,Ch1,Total V (t) +Q,Ch1 A V (t) sin(ϕ) + V (t) cos(ϕ)00 (I,Ch2 00 Q,Ch2 00)

A00A_{00}A00 ϕ00\phi_{00}ϕ00

5.2. Measurement Functionality

220 Zurich Instruments SHFQC User Manual

Output Router on SG Channel 2 as well, even though it is not adding signals from other channels to
its own output. This is to ensure that the relative timing of the signal from SG Channel 2 played on
SG Channel Output 2 lines up with the SG Channel 2 signal played on SG Output 1.

For instruments that have fewer than the maximum possible number of AWG cores for the
instrument class, additional Digital Signal Units become available. This means that an SHFQC2
(SHFQC4) will have access to 6 AWG cores in total, as well as the corresponding Digital Modulation
settings and other digital signal settings, such as the digital trigger and the mask, shift, and offset
settings for processing data received over DIO or ZSync. The first 2 (4) AWG cores, with indices 0 – 1
(0 – 3), and corresponding Digital Modulation settings come with the SHFQC2 (SHFQC4) by default.
The 4 (2) additional Digital Signal Units, with indices 2 – 5 (4 – 5), grant access to both another AWG
core and Digital Modulation settings with which to modulate the AWG signals, as well as other
several other settings needed to configure the digital signal pathways. The additional Digital Signal
Units have all the same settings and abilities as the channels that come with the base version of the
instrument, but they are not associated with an SG Channel Output on the front panel by default
and therefore do not generate an output signal unless their signals are intentionally routed to an
Output using the Output Router and Adder. The table below lists the functionality that is NOT
available on the additional Digital Signal Units.

Table 5.61: Node settings that are NOT available on the additional Digital Signal Units made available
with the Output Router and Adder

Name Node

Channel n Digitalmixer Center
Frequency

device.sgchannels[n].digitalmixer.centerfreq()

Channel n Marker Source device.sgchannels[n].marker.source()

Channel n Output Center Frequency device.sgchannels[n].centerfreq()

Channel n Output Delay device.sgchannels[n].output.delay()

Channel n Output Filter device.sgchannels[n].output.filter()

Channel n Output On device.sgchannels[n].output.on()

Channel n Output Over Range Counter device.sgchannels[n].output.overrangecount()

Channel n Output Range device.sgchannels[n].output.range()

Channel n Output RFLF Path device.sgchannels[n].output.rflfpath()

Channel n Synthesizer device.sgchannels[n].synthesizer()

Channel n Trigger Delay device.sgchannels[n].trigger.delay()

Channel n Trigger Impedance (50 Ohm) device.sgchannels[n].trigger.imp50()

Channel n Trigger Level device.sgchannels[n].trigger.level()

Channel n Trigger Value device.sgchannels[n].trigger.value()

All of the above settings involve analog settings or other settings involved in the upconversion chain
that do not apply to the additional Digital Signal Units. Although the node
device.sgchannels[n].output.delay() is a digital delay, its effects are applied after the Output
Router and Adder but before the DAC and is therefore not needed for the additional Digital Signal
Units. Having the delay node implemented after the Output Router and Adder also ensures that the
delay on a given Output is common to all signals applied on that line.

How-To: Route signals between Channels 1, 2, 4, and 6

For motivation, consider a superconducting qubit chip in which SG Channels 1 – 6 (e.g. of an SHFQC6
) are connected to Qubits 1 – 6 and in which Qubit 4 experiences strong crosstalk to Qubits 1, 2, and
6. Assuming the amplitude of the crosstalk has been characterized, as has the necessary phase
shift for the compensation pulse, we can use the following node settings to enable the instrument
to automatically play compensation pulses, such that the net effect of the crosstalk at the qubit is
negated.

We assume that the instrument has already been connected to and that all of the AWGs and Digital
Modulation settings have been programmed or set up.

Define paths for Output Routers of each channel used
ch1_rtr = device.sgchannels[0].outputrouter

5.2. Measurement Functionality

221 Zurich Instruments SHFQC User Manual

ch2_rtr = device.sgchannels[1].outputrouter
ch4_rtr = device.sgchannels[3].outputrouter
ch6_rtr = device.sgchannels[5].outputrouter

with sg.set_transaction():
Signals routed to Output 1
ch1_rtr.enable(1) # allow other signals to be added to the output of this

channel
ch1_rtr.routes[0].enable(1) # enable route 1
ch1_rtr.routes[0].source(3) # for route 1, use SG channel 4 as the source
ch1_rtr.routes[0].amplitude(AMP_Q4_TO_Q1) # apply an amplitude scaling factor

of AMP_Q4_TO_Q1, corresponding to the amount of leakage from charge line 4 into
qubit 1
ch1_rtr.routes[0].phase(PHASE_Q4_TO_Q1) # apply a phase shift of

PHASE_Q4_TO_Q1 degrees to the routed signal, corresponding to the phase shift
needed to cancel out the leakage from charge line 4 into qubit 1

Signals routed to Output 2
ch2_rtr.enable(1) # allow other signals to be added to the output of this

channel
ch2_rtr.routes[0].enable(1) # enable route 1
ch2_rtr.routes[0].source(3) # for route 1, use SG channel 4 as the source
ch2_rtr.routes[0].amplitude(AMP_Q4_TO_Q2) # apply an amplitude scaling factor

of AMP_Q4_TO_Q6 to the routed signal
ch2_rtr.routes[0].phase(PHASE_Q4_TO_Q2) # apply a phase shift of PHASE_Q4_TO_Q2

Signals routed to Output 4
ch4_rtr.enable(1) # allow other signals to be added to the output of this

channel
Route 1
ch4_rtr.routes[0].enable(1) # enable route 1
ch4_rtr.routes[0].source(0) # for route 1, use SG channel 1 as the source
ch4_rtr.routes[0].amplitude(AMP_Q1_TO_Q4) # apply an amplitude scaling factor

of AMP_Q1_TO_Q4 to the routed signal
ch4_rtr.routes[0].phase(PHASE_Q1_TO_Q4) # apply a phase shift of PHASE_Q1_TO_Q4

Route 2
ch4_rtr.routes[1].enable(1) # enable route 2
ch4_rtr.routes[1].source(1) # for route 2, use SG channel 2 as the source
ch4_rtr.routes[1].amplitude(AMP_Q2_TO_Q4) # apply an amplitude scaling factor

of AMP_Q2_TO_Q4 to the routed signal
ch4_rtr.routes[0].phase(PHASE_Q2_TO_Q4) # apply a phase shift of PHASE_Q2_TO_Q4

Route 3
ch4_rtr.routes[2].enable(1) # enable route 1
ch4_rtr.routes[2].source(5) # for route 3, use SG channel 6 as the source
ch4_rtr.routes[2].amplitude(AMP_Q6_TO_Q4) # apply an amplitude scaling factor

of AMP_Q6_TO_Q4 to the routed signal
ch4_rtr.routes[2].phase(PHASE_Q6_TO_Q4) # apply a phase shift of PHASE_Q6_TO_Q4

Signals routed to Output 6
ch6_rtr.enable(1) # allow other signals to be added to the output of this

channel
ch6_rtr.routes[0].enable(1) # enable route 1
ch6_rtr.routes[0].source(3) # for route 1, use SG channel 4 as the source
ch6_rtr.routes[0].amplitude(AMP_Q4_TO_Q6) # apply an amplitude scaling factor

of AMP_Q4_TO_Q6 to the routed signal
ch6_rtr.routes[0].phase(PHASE_Q4_TO_Q6) # apply a phase shift of

PHASE_Q4_TO_Q6 degrees to the routed signal

With these settings, any sequence played on SG Channel 4 will automatically play compensation
pulses on SG Channel Outputs 1, 2, and 6. Similarly, any sequence played on SG Channels 1, 2, or 6
will automatically play a compensation pulse on SG Channel Output 4 (so long as the corresponding
AWG cores and analog Outputs are all enabled).

5.2. Measurement Functionality

222 Zurich Instruments SHFQC User Manual

Since we are adding many signals together on SG Channel Output 4, there is a risk that the total
signal could saturate the DAC at some points. To check whether this is the case, a user can query
the node device.sgchannels[3].outputrouter.overflowcount(). The result is the number of
overflows that have occurred so far, and a non-zero result means that an overflow has occurred in
the past, and the digital signals must be scaled down. This can be accomplished, for example, by
increasing the range setting of the SG Channel Output and reducing the digital amplitudes of all
signals to compensate. A result of 0 means that no overflow has occurred.

5.2. Measurement Functionality

223 Zurich Instruments SHFQC User Manual

6. Specifications

Important

Unless otherwise stated, all specifications apply after 30 minutes of instrument warm-up.

For measurements in which high gate fidelity is crucial, it is highly recommended to enable all
required outputs and inputs and wait for 2 hours after powering on the instrument.

Important

Important changes in the specification parameters are explicitly mentioned in the revision history of
this document.

6.1. General Specifications

Table 6.1: General and storage

Parameter Min Typ Max

storage temperature –25 °C - 65 °C

storage relative humidity (non-
condensing)

- - 95%

operating temperature 5 °C - 40 °C

operating relative humidity (non-
condensing)

- - 90%

specification temperature 18 °C - 28 °C

power consumption - - 300 W

operating environment IEC61010, indoor location, installation category II, pollution
degree 2

operating altitude up to 2000 meters

power inlet fuses 250 V, 2 A, fast acting, 5 x 20 mm

power supply AC line 100-240 V (±10%), 50/60 Hz

dimensions (width x depth x height) 45.0 × 39.7 × 13.2 cm (no handle), 17.7 × 15.6 × 5.2 inch, 19
inch rack compatible

weight 15 kg (33 lb)

recommended calibration interval 2 years

Table 6.2: Maximum ratings

Parameter Min Typ Max

damage threshold Out - - +30 dBm

damage threshold In
(Quantum Analyzer channel only)

- - +20 dBm

damage threshold Mark Out –0.7 V - +4 V

damage threshold Trig In (1 kΩ input impedance) –11 V - +11 V

damage threshold Trig In (50 Ω input impedance) –6 V - +6 V

damage threshold Aux In (DC) -10 V - +10 V

damage threshold Aux In (AC) - - +20 dBm

6. Specifications

224 Zurich Instruments SHFQC User Manual

Parameter Min Typ Max

damage threshold External Clk In (DC) –3 V - +3 V

damage threshold External Clk In (AC, with DC offset 0 V) - - +13.5 dBm

damage threshold External Clk Out (DC) –3 V - +3 V

MDS In / Out –0.7 V - +4 V

DIO In / Out in default configuration 3.3 V CMOS/TTL –0.7 V - +4 V

torque limit front panel SMA connectors - - 0.5 Nm

torque limit back panel SMA connectors - - 1.0 Nm

Table 6.3: Host computer requirements

Parameter Description

supported Windows operating
systems

Windows 10, 11 on x86-64

supported macOS operating
systems

macOS 10.11+ on x86-64 and ARMv8

supported Linux distributions GNU/Linux (Ubuntu 14.04+, CentOS 7+, Debian 8+) on x86-64
and ARMv8

supported processors x86-64 (Intel, AMD), ARMv8 (e.g., Raspberry Pi 4 and newer,
Apple M-series)

6.2. Analog Interface Specifications

Table 6.4: Signal Outputs (Signal Generator/Quantum Analyzer channels)

Parameter Details Min Typ Max

connectors - SMA, front panel single-ended

output impedance - - 50 Ω -

output coupling - AC

synthesizer frequency range for Quantum Analyzer channel:
synthesizer shared with Signal
Input

1-8 GHz

for Signal Generator channel:
1 synthesizer/channel pair

0.6-8 GHz

instantaneous bandwidth (–
3dB)

RF path ±500 MHz

QA channel: LF path DC - 800 MHz

total output frequency range Quantum Analyzer channel 0.5
GHz

- 8.5 GHz

Signal Generator channel 0.1 GHz - 8.5 GHz

output range into 50 Ω -30
dBm

- +10
dBm

output level accuracy into 50 Ω - ±(1 dBm of
setting)

-

output level temperature drift direct - 0.15 dB/°C -

when looped with Signal Input - 0.25 dB/°C -

D/A converter vertical
resolution

- 14 bit

D/A converter sampling rate after internal x3 interpolation 6 GSa/s

output worst harmonic
component

10 dBm, 1 GHz -800 to 800
MHz

- -40 dBc -

10 dBm, 4 GHz - -40 dBc -

6.2. Analog Interface Specifications

225 Zurich Instruments SHFQC User Manual

Parameter Details Min Typ Max

10 dBm, 6 GHz - -38 dBc -

10 dBm, 8 GHz - -36 dBc -

Table 6.5: Time Domain Output Characteristics

Parameter Details Min Typ Max

skew adjustment resolution - - 2 ns -

Table 6.6: Signal Inputs (Quantum Analyzer channel)

Parameter Details Min Typ Max

connectors - SMA, front panel single-
ended

input impedance - - 50 Ω -

input coupling - AC

synthesizer frequency
range

synthesizer shared with Signal Output of
the same Channel

1-8 GHz

input range RF path, into 50 Ω -50
dBm

- +10
dBm

input level accuracy at
carrier frequency and 23°C

≤1 V
pp
 and <4 GHz - ± 0.5 dB -

≤1 V
pp
 and <8 GHz - ± 1 dB -

>8 GHz - ± 3 dB -

input level temperature
drift

direct - 0.15 dB/C -

when looped with Signal Output - 0.25 dB/C -

A/D converter vertical
resolution

- 14 bit

A/D converter sampling rate before internal x2 decimation 4 GSa/s

input voltage noise density 10 dBm,
1 GHz

in-band noise measured with
room-temperature 50 Ω cap

- -130 dBm/
Hz (71 nV/
√Hz)

-

0 dBm,
1 GHz

- -134 dBm/
Hz (45 nV/
√Hz)

-

-10
dBm, 1
GHz

- -145 dBm/
Hz (13 nV/
√Hz)

-

-20
dBm, 1
GHz

- -142 dBm/
Hz (18 nV/
√Hz)

-

-30
dBm, 1
GHz

- -162 dBm/
Hz (1.78 nV/
√Hz)

-

-40
dBm, 1
GHz

- -165 dBm/
Hz (1.26 nV/
√Hz)

-

-50
dBm, 1
GHz

- -166 dBm/
Hz (1.12 nV/
√Hz)

-

input spurious free dynamic
range (excluding harmonics)

10 dBm signal at center frequency,
max. amplitude, -750 to 750
MHz

- 54 dBc -

0 dBm - 54 dBc -

-10 dBm - 55 dBc -

6.2. Analog Interface Specifications

226 Zurich Instruments SHFQC User Manual

Parameter Details Min Typ Max

-20
dBm

- 50 dBc -

-30
dBm

- 58 dBc -

-40
dBm

- 53 dBc -

-50
dBm

- 45 dBc -

3rd order intermodulation
distortion

10 dBm dual tone with -7 dBFS of
range with 150 MHz Splitting
from 1 GHz to 8 GHz

- 45 dBc -

0 dBm - 54 dBc -

-10 dBm - 54 dBc -

-20
dBm

- 56 dBc -

-30
dBm

- 54 dBc -

-40
dBm

- 50 dBc -

-50
dBm

- 40 dBc -

Table 6.7: Other Inputs and Outputs

Parameter Details min Typ Max

reference clock input - SMA on back panel

reference clock input
impedance

- 50 Ω, AC coupled

reference clock input
frequency

- 10 / 100 MHz

reference clock input amplitude 10
MHz

-4 dBm -

100 MHz –5 dBm - +13
dBm

reference clock output - SMA on back panel

reference clock output
impedance

- 50 Ω, AC coupled

reference clock output
amplitude

into 50 Ω 2 Vpp - 5
Vpp

reference clock output
frequency

- 10/100 MHz

reference clock output
jitter

derived from integrated phase noise
measurement (12 kHz to 20 MHz offset frequency)

- 280 fs
RMS

-

Table 6.8: Oscillator and Clocks

Parameter Details Min Typ Max

internal clock type - OCXO

internal clock long term accuracy / aging - - - ±0.3 ppm/year

internal clock short term stability (1 s) - - - ±0.05 ppm

internal clock initial accuracy - - - ±0.5 ppm

internal clock temperature stability –20°C to 70°C - - ±0.5 ppm

internal clock phase noise offset 100 Hz - –135 dBc/Hz -

offset 1 kHz - –157 dBc/Hz -

6.2. Analog Interface Specifications

227 Zurich Instruments SHFQC User Manual

6.3. Digital Waveform Generation of Signal Generator
Channel

Table 6.9: Waveform Generation

Parameter Details Specification

number of AWG cores - 1 per channel

AWG sampling rate dual-channel 2 GSa/s

waveform memory per output channel - 98 kSa

sequence length - 32768 instructions per core

waveform granularity - 16 samples

minimum waveform length - 16 samples (with command table)

sequencer clock frequency - 250 MHz

6.4. Digital Signal Processing of Quantum Analyzer
Channel

Table 6.10: Readout Pulse Generator

Parameter Details Specification

number of readout pulse
generators

- 1

waveform memory per
channel

for SHFQC base
version

32 kSa total memory,
8 memory blocks with 4 kSa for arbitrary
waveform storage,
freely configurable and triggerable

for SHFQC +
SHFQC-16W

64 kSa total memory,
16 memory blocks with 4 kSa for arbitrary
waveform storage,
freely configurable and triggerable

sequence length - 16,384

waveform granularity - 4 samples

minimum waveform length - 4 samples

sequencer clock frequency - 250 MHz

Table 6.11: Qubit Measurement Unit

Parameter Details Specification

number of Qubit Measurement Units - 1

number of integration weights of Qubit Measurement
Unit

for SHFQC base version 8

for SHFQC +
SHFQC-16W

16

integration weight time resolution - 0.5 ns

integration weight length - 4 kSa

minimum weight length - 4 samples

integration weight granularity - 4 samples

multistate discrimination - yes

number of distinguishable states - up to 4

Table 6.12: Monitor scope and Trigger Engine

6.3. Digital Waveform Generation of Signal Generator Channel

228 Zurich Instruments SHFQC User Manual

Parameter Details Specification

monitor scope memory 2^16

max. averages 2^16

6.5. Digital Interface Specifications

Table 6.13: Digital Interfaces

Parameter Description

host computer
connection

USB 3.0, 1.6 Gbit/s (1 communication, 1 maintenance)

1GbE, LAN / Ethernet, 1 Gbit/s

DIO port 4 x 8 bit, general purpose digital input/output port, 3.3 V TTL
specification

ZSync peripheral port connector for ZI proprietary bus to communicate with external
peripherals (2 times)

6.5.1. DIO Port

The DIO port is a VHDCI 68 pin connector as introduced by the SPI-3 document of the SCSI-3
specification. It is a female connector that requires a 32 mm wide male connector. The interface
standard is switchable between LVDS (low-voltage differential signalling) and LVCMOS/LVTTL. The
DIO port features 32 user-controlled bits that can all be configured byte-wise as inputs or outputs in
LVCMOS/LVTTL mode, whereas in LVDS mode, half of the bits are always configured as inputs. For
more specifics on how the user-definable pins can be set.

Figure 6.1: DIO HD 68 pin connector

Table 6.14: Electrical Specifications

Parameter Details Min Typ Max

supported DIO interface
standards

- LVCMOS/LVTTL (single-ended, 3.3 V); LVDS
(differential)

high-level input voltage VIH LVCMOS/
LVTTL

2.0 V - -

low-level input voltage VIL LVCMOS/
LVTTL

- - 0.8 V

high-level output voltage VOH LVCMOS/
LVTTL
at IOH < 12 mA

2.6 V - -

low-level output voltage VOL LVCMOS/
LVTTL
at IOL < 12 mA

- - 0.4 V

high-level output current IOH
(sourcing)

LVCMOS/
LVTTL

- - 12 mA

low-level output current IOL
(sinking)

LVCMOS/
LVTTL

- - 12 mA

6.5. Digital Interface Specifications

229 Zurich Instruments SHFQC User Manual

Parameter Details Min Typ Max

input differential voltage VID LVDS 100 mV - 600
mV

input common-mode voltage
VICM

LVDS 0.3 V - 2.35 V

output differential voltage VOD LVDS 247 mV - 454
mV

output common-mode voltage
VOCM

LVDS 1.125 V - 1.375 V

Table 6.15: DIO Pin Assignment in LVCMOS/LVTTL Mode

Pin Name Description

68 CLKI digital input

67 unused leave unconnected

66 .. 59 DIO[31:24] digital input or output byte (set by user)

58 .. 51 DIO[23:16] digital input or output byte (set by user)

50 .. 43 DIO[15:8] digital input or output byte (set by user)

42 .. 35 DIO[7:0] digital input or output byte (set by user)

34 GND digital ground

33 unused leave unconnected

32 .. 1 GND digital ground

Table 6.16: DIO Pin Assignment in LVDS Mode

Pin Name Description

68 CLKI+ digital input

67 unused leave unconnected

66 .. 59 DI+[31:24] digital input byte

58 .. 51 DI+[23:16] digital input byte

50 .. 43 DIO+[15:8] digital input or output byte (set by user)

42 .. 35 DIO+[7:0] digital input or output byte (set by user)

34 CLKI– digital input

33 unused leave unconnected

32 .. 25 DI–[31:24] digital input byte

24 .. 17 DI–[23:16] digital input byte

16 .. 9 DIO–[15:8] digital input or output byte (set by user)

8 .. 1 DIO–[7:0] digital input or output byte (set by user)

6.5. Digital Interface Specifications

230 Zurich Instruments SHFQC User Manual

7. Device Node Tree
This chapter contains reference documentation for the settings and measurement data available on
SHFQC Instruments. Whilst Functional Description describes many of these settings in terms of the
features available in the LabOne User Interface, this chapter describes them on the device level and
provides a hierarchically organized and comprehensive list of device functionality.

Since these settings and data streams may be written and read using the LabOne APIs (Application
Programming Interfaces) this chapter is of particular interest to users who would like to perform
measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

Please see:

 Introduction for an introduction of how the instrument's settings and measurement data are
organized hierarchically in the Data Server's so-called "Node Tree".

 Reference Node Documentation for a reference list of the settings and measurement data
available on SHFQC Instruments, organized by branch in the Node Tree.

7.1. Introduction

This chapter provides an overview of how an instrument's configuration and output is organized by
the Data Server.

All communication with an instrument occurs via the Data Server program the instrument is
connected to (see LabOne Software Architecture for an overview of LabOne's software
components). Although the instrument's settings are stored locally on the device, it is the Data
Server's task to ensure it maintains the values of the current settings and makes these settings (and
any subscribed data) available to all its current clients. A client may be the LabOne User Interface or
a user's own program implemented using one of the LabOne Application Programming Interfaces,
e.g., Python.

The instrument's settings and data are organized by the Data Server in a file-system-like
hierarchical structure called the node tree. When an instrument is connected to a Data Server, its
device ID becomes a top-level branch in the Data Server's node tree. The features of the instrument
are organized as branches underneath the top-level device branch and the individual instrument
settings are leaves of these branches.

For example, the auxiliary outputs of the instrument with device ID "dev1000" are located in the tree
in the branch:

/dev1000/auxouts/

In turn, each individual auxiliary output channel has its own branch underneath the "AUXOUTS"
branch.

/dev1000/auxouts/0/
/dev1000/auxouts/1/
/dev1000/auxouts/2/
/dev1000/auxouts/3/

Whilst the auxiliary outputs and other channels are labelled on the instrument's panels and the User
Interface using 1-based indexing, the Data Server's node tree uses 0-based indexing. Individual
settings (and data) of an auxiliary output are available as leaves underneath the corresponding
channel's branch:

/dev1000/auxouts/0/demodselect
/dev1000/auxouts/0/limitlower
/dev1000/auxouts/0/limitupper
/dev1000/auxouts/0/offset
/dev1000/auxouts/0/outputselect
/dev1000/auxouts/0/preoffset
/dev1000/auxouts/0/scale
/dev1000/auxouts/0/value

These are all individual node paths in the node tree; the lowest-level nodes which represent a single
instrument setting or data stream. Whether the node is an instrument setting or data-stream and

7. Device Node Tree

231 Zurich Instruments SHFQC User Manual

which type of data it contains or provides is well-defined and documented on a per-node basis in
the Reference Node Documentation section in the relevant instrument-specific user manual. The
different properties and types are explained in Node Properties and Data Types .

For instrument settings, a Data Server client modifies the node's value by specifying the appropriate
path and a value to the Data Server as a (path, value) pair. When an instrument's setting is changed
in the LabOne User Interface, the path and the value of the node that was changed are displayed in
the Status Bar in the bottom of the Window. This is described in more detail in Exploring the Node
Tree.

Module Parameters

LabOne Core Modules, such as the Sweeper, also use a similar tree-like structure to organize their
parameters. Please note, however, that module nodes are not visible in the Data Server's node tree;
they are local to the instance of the module created in a LabOne client and are not synchronized
between clients.

7.1.1. Node Properties and Data Types

A node may have one or more of the following properties:

Property Description

Read Data can be read from the node.

Write Data can be written to the node.

Setting The node corresponds to a writable instrument configuration. The data of these nodes
are persisted in snapshots of the instrument and stored in the LabOne XML settings
files.

Streaming A node with the read attribute that provides instrument data, typically at a user-
configured rate. The data is usually a more complex data type, for example
demodulator data is returned as ZIDemodSample. A full list of streaming nodes is
available in the Programming Manual in the Chapter Instrument Communication. Their
availability depends on the device class (e.g. MF) and the option set installed on the
device.

Pipelined If the sequence pipeliner mode is off the value set to the node is applied immediately.
Otherwise, it goes to the staging area of the sequence pipeliner instead. Multiple
pipelined nodes can be programmed as part of a job definition, that is finalized by
writing a one to the relevant commit node.

A node may contain data of the following types:

Integer Integer data.

Double Double precision floating point data.

String A string array.

Integer
(enumerated)

As for Integer, but the node only allows certain values.

Composite
data type

For example, ZIDemodSample. These custom data types are structures whose
fields contain the instrument output, a timestamp and other relevant instrument
settings such as the demodulator oscillator frequency. Documentation of custom
data types is available in

7.1.2. Exploring the Node Tree

In the LabOne User Interface

A convenient method to learn which node is responsible for a specific instrument setting is to check
the Command Log history in the bottom of the LabOne User Interface. The command in the Status
Bar gets updated every time a configuration change is made. Figure 7.1 shows how the equivalent

7.1. Introduction

232 Zurich Instruments SHFQC User Manual

MATLAB command is displayed after modifying the value of the auxiliary output 1's offset. The
format of the LabOne UI's command history can be configured in the Config Tab (MATLAB, Python
and .NET are available). The entire history generated in the current UI session can be viewed by
clicking the "Show Log" button.

Figure 7.1: When a device's configuration is modified in the LabOne User Interface, the
Status Bar displays the equivalent command to perform the same configuration via a
LabOne programming interface. Here, the MATLAB code to modify auxiliary output 1's
offset value is provided. When "Show Log" is clicked the entire configuration history is

displayed in a new browser tab.

In a LabOne Programming Interface

A list of nodes (under a specific branch) can be requested from the Data Server in an API client using
the listNodes command (MATLAB, Python, .NET) or ziAPIListNodes() function (C API). Please see
each API's command reference for more help using the listNodes command. To obtain a list of all
the nodes that provide data from an instrument at a high rate, so-called streaming nodes, the
streamingonly flag can be provided to listNodes. More information on data streaming and
streaming nodes is available in the LabOne Programming Manual.

The detailed descriptions of nodes that is provided in Reference Node Documentation is accessible
directly in the LabOne MATLAB or Python programming interfaces using the "help" command. The
help command is daq.help(path) in Python and ziDAQ('help', path) in MATLAB. The
command returns a description of the instrument node including access properties, data type, units
and available options. The "help" command also handles wildcards to return a detailed description
of all nodes matching the path. An example is provided below.

daq = zhinst.core.ziDAQServer('localhost', 8004, 6)
daq.help('/dev1000/auxouts/0/offset')
Out:
/dev1000/auxouts/0/OFFSET#
Add the specified offset voltage to the signal after scaling. Auxiliary

Output
Value = (Signal+Preoffset)*Scale + Offset
Properties: Read, Write, Setting
Type: Double
Unit: V

7.1.3. Data Server Nodes

The Data Server has nodes in the node tree available under the top-level /zi/ branch. These nodes
give information about the version and state of the Data Server the client is connected to. For
example, the nodes:

 /zi/about/version
 /zi/about/revision

are read-only nodes that contain information about the release version and revision of the Data
Server. The nodes under the /zi/devices/ list which devices are connected, discoverable and
visible to the Data Server.

The nodes:

 /zi/config/open
 /zi/config/port

are settings nodes that can be used to configure which port the Data Server listens to for incoming
client connections and whether it may accept connections from clients on hosts other than the
localhost.

7.1. Introduction

233 Zurich Instruments SHFQC User Manual

Nodes that are of particular use to programmers are:

 /zi/debug/logpath - the location of the Data Server's log in the PC's file system,
 /zi/debug/level - the current log-level of the Data Server (configurable; has the Write

attribute),
 /zi/debug/log - the last Data Server log entries as a string array.

The Global nodes of the LabOne Data Server are listed in the Instrument Communication chapter of
the LabOne Programming Manual

7.2. Reference Node Documentation

This section describes all the nodes in the data server’s node tree organized by branch.

7.2.1. CLOCKBASE

/dev..../clockbase

Properties: Read

Type: Double

Unit: Hz

Returns the internal clock frequency of the device.

7.2.2. DIOS

/dev..../dios/n/drive

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

When on (1), the corresponding 8-bit bus is in output mode. When off (0), it is in input mode. Bit 0
corresponds to the least significant byte. For example, the value 1 drives the least significant byte,
the value 8 drives the most significant byte.

/dev..../dios/n/input

Properties: Read

Type: Integer (64 bit)

Unit: None

Gives the value of the DIO input for those bytes where drive is disabled.

/dev..../dios/n/interface

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Selects the interface standard to use on the 32-bit DIO interface. A value of 0 means that a 3.3 V
CMOS interface is used. A value of 1 means that an LVDS compatible interface is used.

7.2. Reference Node Documentation

234 Zurich Instruments SHFQC User Manual

/dev..../dios/n/mode

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Select DIO mode

0 "manual": Enables manual control of the DIO output bits.
16 "qa_result": Sends discriminated readout results to the DIO.

32
"qachan0seq", "qachannel0_sequencer": Enables control of DIO values by the
sequencer of QA channel 1.

48
"sgchan0seq", "sgchannel0_sequencer": Enables control of DIO values by the
sequencer of SG channel 1.

49
"sgchan1seq", "sgchannel1_sequencer": Enables control of DIO values by the
sequencer of SG channel 2.

50
"sgchan2seq", "sgchannel2_sequencer": Enables control of DIO values by the
sequencer of SG channel 3.

51
"sgchan3seq", "sgchannel3_sequencer": Enables control of DIO values by the
sequencer of SG channel 4.

52
"sgchan4seq", "sgchannel4_sequencer": Enables control of DIO values by the
sequencer of SG channel 5.

53
"sgchan5seq", "sgchannel5_sequencer": Enables control of DIO values by the
sequencer of SG channel 6.

/dev..../dios/n/output

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Sets the value of the DIO output for those bytes where 'drive' is enabled.

7.2.3. FEATURES

/dev..../features/code

Properties: Write

Type: String

Unit: None

Node providing a mechanism to write feature codes.

/dev..../features/devtype

Properties: Read

Type: String

Unit: None

Returns the device type.

/dev..../features/options

Properties: Read

Type: String

Unit: None

Returns enabled options.

7.2. Reference Node Documentation

235 Zurich Instruments SHFQC User Manual

/dev..../features/serial

Properties: Read

Type: String

Unit: None

Device serial number.

7.2.4. QACHANNELS

/dev..../qachannels/n/centerfreq

Properties: Read, Write, Setting

Type: Double

Unit: Hz

The Center Frequency of the analysis band.

/dev..../qachannels/n/generator/auxtriggers/n/channel

Properties: Read, Write, Setting, Pipelined

Type: Integer (enumerated)

Unit: None

Selects the source of the digital Trigger.

0 "chan0trigin0", "channel0_trigger_input0": QA Channel 1, Trigger Input A.
1 "chan0trigin1", "channel0_trigger_input1": QA Channel 1, Trigger Input B.
2 "trigin0", "trigger_input0": SG Channel Trigger In 1.
3 "trigin1", "trigger_input1": SG Channel Trigger In 2.
4 "trigin2", "trigger_input2": SG Channel Trigger In 3.
5 "trigin3", "trigger_input3": SG Channel Trigger In 4.
6 "trigin4", "trigger_input4": SG Channel Trigger In 5.
7 "trigin5", "trigger_input5": SG Channel Trigger In 6.
8 "inttrig", "internal_trigger": Internal Trigger
32 "chan0seqtrig0", "channel0_sequencer_trigger0": Deprecated.
98 Deprecated.
99 Deprecated.
100 Deprecated.
101 Deprecated.
102 Deprecated.
103 "awg_marker0": Deprecated.
128 "chan0rod", "channel0_readout_done": Deprecated.
160 "awg_trigger0": Deprecated.
161 "awg_trigger1": Deprecated.
162 "awg_trigger2": Deprecated.
163 "awg_trigger3": Deprecated.
164 "awg_trigger4": Deprecated.
165 "awg_trigger5": Deprecated.
1024 "swtrig0", "software_trigger0": Software Trigger 1.

/dev..../qachannels/n/generator/clearwave

Properties: Read, Write, Pipelined

Type: Integer (64 bit)

Unit: None

Clears all waveforms in each slot and resets their length to 0.

7.2. Reference Node Documentation

236 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/generator/delay

Properties: Read, Write, Setting, Pipelined

Type: Double

Unit: s

Sets a common delay for the start of the playback for all Waveform Memories. The resolution is 2 ns.

/dev..../qachannels/n/generator/dio/valid/index

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Select the DIO bit to use as the VALID signal to indicate that a valid input is available.

/dev..../qachannels/n/generator/dio/valid/polarity

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Polarity of the VALID bit that indicates that a valid input is available.

0 "none": None: VALID bit is ignored.
1 "low": Low: VALID bit must be logical zero.
2 "high": High: VALID bit must be logical high.
3 "both": Both: VALID bit may be logical high or zero.

/dev..../qachannels/n/generator/elf/data

Properties: Write, Pipelined

Type: ZIVectorData

Unit: None

Accepts the data of the sequencer ELF file. If the sequence pipeliner mode is not off, the data of the
ELF file goes to the staging area of the sequence pipeliner instead.

/dev..../qachannels/n/generator/elf/length

Properties: Read, Write, Pipelined

Type: Integer (64 bit)

Unit: None

Length of the compiled ELF file.

/dev..../qachannels/n/generator/elf/name

Properties: Read, Pipelined

Type: ZIVectorData

Unit: None

Name of the uploaded ELF file.

7.2. Reference Node Documentation

237 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/generator/elf/progress

Properties: Read, Pipelined

Type: Double

Unit: %

Percentage of the Sequencer program already uploaded to the device.

/dev..../qachannels/n/generator/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enables the Sequencer.

/dev..../qachannels/n/generator/ready

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

The Sequencer has a compiled program and is ready to be enabled.

/dev..../qachannels/n/generator/reset

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Clears the configured Sequencer program and resets the state to not ready.

/dev..../qachannels/n/generator/rtlogger/clear

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Clears the logger data.

/dev..../qachannels/n/generator/rtlogger/data

Properties: Read

Type: ZIVectorData

Unit: None

Vector node with the logged events.

/dev..../qachannels/n/generator/rtlogger/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Activates the Real-time Logger.

7.2. Reference Node Documentation

238 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/generator/rtlogger/input

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Select input data of logger.

0 "dio": DIO interface will be used as input.
1 "zsync": ZSync interface will be used as input.

/dev..../qachannels/n/generator/rtlogger/mode

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Selects the operation mode.

0
"normal": Normal: Logger starts with the AWG and overwrites old values as soon
as the memory limit of 1024 entries is reached.

1

"timestamp": Timestamp-triggered: Logger starts with the AWG, waits for the
first valid trigger, and only starts recording data after the time specified by the
starttimestamp. Recording stops as soon as the memory limit of 1024 entries is
reached.

/dev..../qachannels/n/generator/rtlogger/starttimestamp

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Timestamp at which to start logging for timestamp-triggered mode.

/dev..../qachannels/n/generator/rtlogger/status

Properties: Read

Type: Integer (enumerated)

Unit: None

Operation state.

0 "idle": Idle: Logger is not running.
1 "normal": Normal: Logger is running in normal mode.

2
"ts_wait": Wait for timestamp: Logger is in timestamp-triggered mode and waits
for start timestamp.

3 "ts_active": Active: Logger is in timestamp-triggered mode and logging.

4
"ts_full": Log Full: Logger is in timestamp-triggered mode and has stopped
logging because log is full.

/dev..../qachannels/n/generator/rtlogger/timebase

Properties: Read

Type: Double

Unit: s

Minimal time difference between two timestamps. The value matches the AWG sequencer execution
rate (4 ns).

7.2. Reference Node Documentation

239 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/generator/sequencer/assembly

Properties: Read

Type: ZIVectorData

Unit: None

Displays the current sequence program in compiled form. Every line corresponds to one hardware
instruction.

/dev..../qachannels/n/generator/sequencer/memoryusage

Properties: Read

Type: Double

Unit: None

Size of the current Sequencer program relative to the available instruction memory of 16
kInstructions (16'384 instructions).

/dev..../qachannels/n/generator/sequencer/program

Properties: Read

Type: ZIVectorData

Unit: None

Displays the source code of the current Sequencer program.

/dev..../qachannels/n/generator/sequencer/status

Properties: Read

Type: Integer (64 bit)

Unit: None

Status of the Sequencer on the instrument. Bit 0: Sequencer is running; Bit 1: reserved; Bit 2:
Sequencer is waiting for a trigger to arrive; Bit 3: Sequencer has detected an error; Bit 4: sequencer
is waiting for synchronization with other channels.

/dev..../qachannels/n/generator/sequencer/triggered

Properties: Read

Type: Integer (64 bit)

Unit: None

When at value 1, indicates that the Sequencer has been triggered.

/dev..../qachannels/n/generator/single

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Puts the Sequencer into single-shot mode.

/dev..../qachannels/n/generator/userregs/n

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Integer user register value. The sequencer has read and write access to the user register values
during runtime.

7.2. Reference Node Documentation

240 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/generator/waveforms/n/length

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Length of the uploaded waveform in number of complex samples.

/dev..../qachannels/n/generator/waveforms/n/wave

Properties: Read, Write, Pipelined

Type: ZIVectorData

Unit: None

Contains the generators waveforms as a vector of complex samples

/dev..../qachannels/n/input/adcoverrangecount

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates the number of times the analog-to-digital converter (ADC) of the Signal Input was in an
overrange condition within intervals of 200 ms. Note that this condition always occurs together with
the condition of the "overrangecount" node. The overrange condition can cause potential damage of
the Signal Input processing electronics, in particular the ADC units.

/dev..../qachannels/n/input/digitalmixer/centerfreq

Properties: Read

Type: Double

Unit: Hz

The Center Frequency of the digital mixer for the Signal Input.

/dev..../qachannels/n/input/on

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enables the Signal Input.

/dev..../qachannels/n/input/overrangecount

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates the number of times the Signal Input was in an overrange condition within intervals of 200
ms. The overrange condition can cause potential damage of the Signal Input processing electronics
of the instrument.

7.2. Reference Node Documentation

241 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/input/range

Properties: Read, Write, Setting

Type: Double

Unit: dBm

Sets the maximal Range of the Signal Input power. The instrument selects the closest available
Range with a resolution of 5 dBm.

/dev..../qachannels/n/input/rflfpath

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Switch between RF and LF path for the QA channel input.

0 "lf": LF path is used.
1 "rf": RF path is used.

/dev..../qachannels/n/markers/n/source

Properties: Read, Write, Setting, Pipelined

Type: Integer (enumerated)

Unit: None

Selects the source for the marker output.

32
"chan0seqtrig0", "channel0_sequencer_trigger0": QA Channel, Sequencer
Trigger Output 1.

36
"chan0seqtrig1", "channel0_sequencer_trigger1": QA Channel, Sequencer Trigger
Output 2.

128 "chan0rod", "channel0_readout_done": QA Channel, Readout done.
1024 "swtrig0", "software_trigger0": Software Trigger 1.

/dev..../qachannels/n/mode

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Selects between Spectroscopy and Qubit Readout mode.

0
"spectroscopy": In Spectroscopy mode, the Signal Output is connected to the
Oscillator, with which also the measured signals are correlated.

1
"readout": In Qubit Readout mode, the Signal Output is connected to the
Readout Pulse Generator, and the measured signals are correlated with the
Integration Weights before state discrimination.

/dev..../qachannels/n/oscs/n/freq

Properties: Read, Write, Setting

Type: Double

Unit: Hz

Controls the frequency of each digital Oscillator.

7.2. Reference Node Documentation

242 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/oscs/n/gain

Properties: Read, Write, Setting

Type: Double

Unit: None

Controls the gain of each digital Oscillator. The gain is defined relative to the Output Range of the
Readout Channel.

/dev..../qachannels/n/output/digitalmixer/centerfreq

Properties: Read

Type: Double

Unit: Hz

The Center Frequency of the digital mixer for the Signal Output.

/dev..../qachannels/n/output/filter

Properties: Read

Type: Integer (enumerated)

Unit: None

Reads the selected analog filter before the Signal Output.

0 "lowpass_1500": Low-pass filter of 1.5 GHz.
1 "lowpass_3000": Low-pass filter of 3 GHz.
2 "bandpass_3000_6000": Band-pass filter between 3 GHz - 6 GHz
3 "bandpass_6000_10000": Band-pass filter between 6 GHz - 10 GHz

/dev..../qachannels/n/output/on

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enables the Signal Output.

/dev..../qachannels/n/output/overrangecount

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates the number of times the Signal Output was in an overrange condition within the last 200
ms. It is checked for an overrange condition every 10 ms.

/dev..../qachannels/n/output/range

Properties: Read, Write, Setting

Type: Double

Unit: dBm

Sets the maximal Range of the Signal Output power. The instrument selects the closest available
Range with a resolution of 5 dBm.

7.2. Reference Node Documentation

243 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/output/rflfinterlock

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enables the RF/LF path interlock between input and output. If enabled (1), the output path is always
configured according to the input. The default value is disabled (0).

/dev..../qachannels/n/output/rflfpath

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Switch between RF and LF path for the QA channel output.

0 "lf": LF path is used.
1 "rf": RF path is used.

/dev..../qachannels/n/pipeliner/availableslots

Properties: Read

Type: Integer (64 bit)

Unit: None

Number of free slots in the sequence pipeliner queue. Sequence upload is blocked if this node is 0.

/dev..../qachannels/n/pipeliner/commit

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Commit node data in staging area to queue of sequence pipeliner.

/dev..../qachannels/n/pipeliner/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enable execution of sequences in pipeline.

/dev..../qachannels/n/pipeliner/idcurrent

Properties: Read

Type: Integer (64 bit)

Unit: None

ID of sequence in staging area.

/dev..../qachannels/n/pipeliner/idrunning

Properties: Read

Type: Integer (64 bit)

Unit: None

ID of executed sequence.

7.2. Reference Node Documentation

244 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/pipeliner/maxslots

Properties: Read

Type: Integer (64 bit)

Unit: None

Maximum number of available slots in the sequence pipeliner queue.

/dev..../qachannels/n/pipeliner/mode

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Selects the sequence pipeliner mode: off (default), batch, or queue mode. Changing the mode will
reset both the sequence pipeliner and the normal AWG.

0 "off": Off: The sequence pipeliner is turned off.

1
"batch": Batch: The sequence pipeliner operates in batch mode. All sequences
must be committed before the pipeliner is enabled. A batch can be executed
once or multiple times.

2
"queue": Queue: The sequence pipeliner operates in queue mode. Sequences
can be committed while the pipeliner is enabled. Every sequence is executed
only once and the slot in the queue is then available for a new sequence.

/dev..../qachannels/n/pipeliner/ready

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates whether a sequence can be committed to the pipeliner.

/dev..../qachannels/n/pipeliner/repetitions/remaining

Properties: Read

Type: Integer (64 bit)

Unit: None

Number of remaining batch repetitions. This node is fixed to 1 if the sequence pipeliner is not in
batch mode.

/dev..../qachannels/n/pipeliner/repetitions/value

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Number of batch repetitions (1 to 4e6). This node is fixed to 1 if the sequence pipeliner is not in batch
mode.

/dev..../qachannels/n/pipeliner/reset

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Clears all sequences previously added to the sequence pipeliner and disables the pipeliner if it has
been running before.

7.2. Reference Node Documentation

245 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/pipeliner/status

Properties: Read

Type: Integer (enumerated)

Unit: None

Status of the sequence pipeliner (0: idle, 1: executing sequence, 2: waiting for next sequence to be
committed (queue mode only)

0 "idle": Idle: The sequence pipeliner is idle.
1 "exec": Executing sequence: The sequence pipeliner is executing a sequence.

2
"waiting": Waiting: The sequence pipeliner is waiting for the next sequence to be
committed (queue mode only).

3
"done": Done: The sequence pipeliner is still enabled but all sequences have
been executed (batch mode only).

/dev..../qachannels/n/pipeliner/timeout

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Maximal execution time per sequence in milliseconds. The execution of a sequence is aborted if the
maximal execution time is reached. A value of 0 means infinity.

/dev..../qachannels/n/readout/discriminators/n/threshold

Properties: Read, Write, Setting, Pipelined

Type: Double

Unit: None

Sets the threshold level for the 2-state discriminator on the real signal axis in Vs.

/dev..../qachannels/n/readout/integration/clearweight

Properties: Read, Write, Pipelined

Type: Integer (64 bit)

Unit: None

Clears all integration weights by setting them to 0.

/dev..../qachannels/n/readout/integration/delay

Properties: Read, Write, Setting, Pipelined

Type: Double

Unit: s

Sets a common delay for the start of the readout integration for all Integration Weights with respect
to the time when the trigger is received. The resolution is 2 ns.

/dev..../qachannels/n/readout/integration/length

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Sets the length of all Integration Weights in number of samples. A maximum of 4096 samples can be
integrated, which corresponds to 2.05 us.

7.2. Reference Node Documentation

246 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/readout/integration/weights/n/wave

Properties: Read, Write, Pipelined

Type: ZIVectorData

Unit: None

Contains the complex-valued waveform of the Integration Weight. The valid range is between -1.0 and
+1.0 for both the real and imaginary part.

/dev..../qachannels/n/readout/multistate/clear

Properties: Read, Write, Pipelined

Type: Integer (64 bit)

Unit: None

Clears all settings related to the multi-state qudit discrimination mode.

/dev..../qachannels/n/readout/multistate/dio/bits/n/source

Properties: Read, Write, Setting, Pipelined

Type: Integer (enumerated)

Unit: None

Sets qudit discrimination bit source to transmit at this DIO bit position.

0 "qudit_0_bit_0": Qudit 0, bit 0
1 "qudit_0_bit_1": Qudit 0, bit 1
2 "qudit_1_bit_0": Qudit 1, bit 0
3 "qudit_1_bit_1": Qudit 1, bit 1
4 "qudit_2_bit_0": Qudit 2, bit 0
5 "qudit_2_bit_1": Qudit 2, bit 1
6 "qudit_3_bit_0": Qudit 3, bit 0
7 "qudit_3_bit_1": Qudit 3, bit 1
8 "qudit_4_bit_0": Qudit 4, bit 0
9 "qudit_4_bit_1": Qudit 4, bit 1
10 "qudit_5_bit_0": Qudit 5, bit 0
11 "qudit_5_bit_1": Qudit 5, bit 1
12 "qudit_6_bit_0": Qudit 6, bit 0
13 "qudit_6_bit_1": Qudit 6, bit 1
14 "qudit_7_bit_0": Qudit 7, bit 0
15 "qudit_7_bit_1": Qudit 7, bit 1
16 "qudit_8_bit_0": Qudit 8, bit 0 (requires SHFQC-16W option)
17 "qudit_8_bit_1": Qudit 8, bit 1 (requires SHFQC-16W option)
18 "qudit_9_bit_0": Qudit 9, bit 0 (requires SHFQC-16W option)
19 "qudit_9_bit_1": Qudit 9, bit 1 (requires SHFQC-16W option)
20 "qudit_10_bit_0": Qudit 10, bit 0 (requires SHFQC-16W option)
21 "qudit_10_bit_1": Qudit 10, bit 1 (requires SHFQC-16W option)
22 "qudit_11_bit_0": Qudit 11, bit 0 (requires SHFQC-16W option)
23 "qudit_11_bit_1": Qudit 11, bit 1 (requires SHFQC-16W option)
24 "qudit_12_bit_0": Qudit 12, bit 0 (requires SHFQC-16W option)
25 "qudit_12_bit_1": Qudit 12, bit 1 (requires SHFQC-16W option)
26 "qudit_13_bit_0": Qudit 13, bit 0 (requires SHFQC-16W option)
27 "qudit_13_bit_1": Qudit 13, bit 1 (requires SHFQC-16W option)
28 "qudit_14_bit_0": Qudit 14, bit 0 (requires SHFQC-16W option)
29 "qudit_14_bit_1": Qudit 14, bit 1 (requires SHFQC-16W option)
30 "qudit_15_bit_0": Qudit 15, bit 0 (requires SHFQC-16W option)
31 "qudit_15_bit_1": Qudit 15, bit 1 (requires SHFQC-16W option)
32 "fixed_0": Fixed 0
34 "fixed_1": Fixed 1

7.2. Reference Node Documentation

247 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/readout/multistate/dio/packed

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Enables compact bit packing for multi-state qudit discrimination values over DIO, where DIO bits are
assigned to qudit bits by increasing qudit index using only one bit for qubits or two bits for qutrits
and ququads. The source node becomes read-only in packed mode.

/dev..../qachannels/n/readout/multistate/enable

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Enables multi-state qudit discrimination mode.

/dev..../qachannels/n/readout/multistate/integratorcount

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Number of integrators used by the current multi-state discrimination qudit configuration.

/dev..../qachannels/n/readout/multistate/integratorusage

Properties: Read, Pipelined

Type: Double

Unit: None

Percentage of integrators used by the current multi-state discrimination qudit configuration.

/dev..../qachannels/n/readout/multistate/qudits/n/assignmentvec

Properties: Read, Write, Pipelined

Type: ZIVectorData

Unit: None

Assignment matrix for qudit discrimination. The vector should contain 2^(d * (d - 1) / 2) elements,
where d is the maximum number of states for the qudit.

/dev..../qachannels/n/readout/multistate/qudits/n/available

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Indicates whether enough integrators are available to allow enabling the qudit in its current
configuration.

/dev..../qachannels/n/readout/multistate/qudits/n/enable

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Enables the multi-state qudit.

7.2. Reference Node Documentation

248 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/readout/multistate/qudits/n/integrator/indexvec

Properties: Read, Pipelined

Type: ZIVectorData

Unit: None

List of integrator indices used by the qudit.

/dev..../qachannels/n/readout/multistate/qudits/n/integrator/startindex

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Index of the first integrator used by the qudit.

/dev..../qachannels/n/readout/multistate/qudits/n/numstates

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Maximum number of states for the qudit. The value must be within the range [2, 4] (inclusive).

/dev..../qachannels/n/readout/multistate/qudits/n/thresholds/n/value

Properties: Read, Write, Setting, Pipelined

Type: Double

Unit: None

Sets the threshold used to discriminate the qudit. Only the first (d * (d - 1) / 2) thresholds will be
used, where d is the maximum number of states for the qudit.

/dev..../qachannels/n/readout/multistate/qudits/n/weights/n/wave

Properties: Read, Write, Pipelined

Type: ZIVectorData

Unit: None

Contains the complex-valued waveform of the Integration Weights for the qudit. The valid range is
between -1.0 and +1.0 for both the real and imaginary part. Only the first d - 1 waves are used, where d
is the maximum number of states for the qudit.

/dev..../qachannels/n/readout/multistate/valid

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Indicates whether the current multi-state qudit configuration allows for all qudits that are set to be
enabled to actually be enabled, i.e. whether the enabled qudits require at most the available number
of integrators.

7.2. Reference Node Documentation

249 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/readout/multistate/zsync/bits/n/source

Properties: Read, Write, Setting, Pipelined

Type: Integer (enumerated)

Unit: None

Sets qudit discrimination bit source to transmit at this ZSync bit position.

0 "qudit_0_bit_0": Qudit 0, bit 0
1 "qudit_0_bit_1": Qudit 0, bit 1
2 "qudit_1_bit_0": Qudit 1, bit 0
3 "qudit_1_bit_1": Qudit 1, bit 1
4 "qudit_2_bit_0": Qudit 2, bit 0
5 "qudit_2_bit_1": Qudit 2, bit 1
6 "qudit_3_bit_0": Qudit 3, bit 0
7 "qudit_3_bit_1": Qudit 3, bit 1
8 "qudit_4_bit_0": Qudit 4, bit 0
9 "qudit_4_bit_1": Qudit 4, bit 1
10 "qudit_5_bit_0": Qudit 5, bit 0
11 "qudit_5_bit_1": Qudit 5, bit 1
12 "qudit_6_bit_0": Qudit 6, bit 0
13 "qudit_6_bit_1": Qudit 6, bit 1
14 "qudit_7_bit_0": Qudit 7, bit 0
15 "qudit_7_bit_1": Qudit 7, bit 1
16 "qudit_8_bit_0": Qudit 8, bit 0 (requires SHFQC-16W option)
17 "qudit_8_bit_1": Qudit 8, bit 1 (requires SHFQC-16W option)
18 "qudit_9_bit_0": Qudit 9, bit 0 (requires SHFQC-16W option)
19 "qudit_9_bit_1": Qudit 9, bit 1 (requires SHFQC-16W option)
20 "qudit_10_bit_0": Qudit 10, bit 0 (requires SHFQC-16W option)
21 "qudit_10_bit_1": Qudit 10, bit 1 (requires SHFQC-16W option)
22 "qudit_11_bit_0": Qudit 11, bit 0 (requires SHFQC-16W option)
23 "qudit_11_bit_1": Qudit 11, bit 1 (requires SHFQC-16W option)
24 "qudit_12_bit_0": Qudit 12, bit 0 (requires SHFQC-16W option)
25 "qudit_12_bit_1": Qudit 12, bit 1 (requires SHFQC-16W option)
26 "qudit_13_bit_0": Qudit 13, bit 0 (requires SHFQC-16W option)
27 "qudit_13_bit_1": Qudit 13, bit 1 (requires SHFQC-16W option)
28 "qudit_14_bit_0": Qudit 14, bit 0 (requires SHFQC-16W option)
29 "qudit_14_bit_1": Qudit 14, bit 1 (requires SHFQC-16W option)
30 "qudit_15_bit_0": Qudit 15, bit 0 (requires SHFQC-16W option)
31 "qudit_15_bit_1": Qudit 15, bit 1 (requires SHFQC-16W option)

32
"fixed_0": Fixed 0. Note: this bit will not be forwarded by the PQSC since it is
marked as invalid result.

34
"fixed_1": Fixed 1. Note: this bit will not be forwarded by the PQSC since it is
marked as invalid result.

/dev..../qachannels/n/readout/multistate/zsync/packed

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Enables compact bit packing for multi-state qudit discrimination values over ZSync, where zSync
bits are assigned to qudit bits by increasing qudit index using only one bit for qubits or two bits for
qutrits and ququads. The source node becomes read-only in packed mode.

/dev..../qachannels/n/readout/result/acquired

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Indicates the index of the acquisition that will be performed on the next trigger.

7.2. Reference Node Documentation

250 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/readout/result/averages

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Number of measurements that are averaged.

/dev..../qachannels/n/readout/result/data/n/wave

Properties: Read, Pipelined

Type: ZIVectorData

Unit: None

Acquired result data. Depending on the source of the data, the data can be complex- or integer-
valued.

/dev..../qachannels/n/readout/result/enable

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Enables the acquisition of readout results.

/dev..../qachannels/n/readout/result/error/clear

Properties: Read, Write, Pipelined

Type: Integer (64 bit)

Unit: None

Writing to this node clears the hold-off error count.

/dev..../qachannels/n/readout/result/error/count

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Number of hold-off errors detected.

/dev..../qachannels/n/readout/result/error/jobidx

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Job index for which last hold-off errors were detected.

/dev..../qachannels/n/readout/result/length

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Number of data points to record. One data point corresponds to a single averaged result value of the
selected source.

7.2. Reference Node Documentation

251 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/readout/result/mode

Properties: Read, Write, Setting, Pipelined

Type: Integer (enumerated)

Unit: None

Selects the averaging order of the result.

0
"cyclic": Cyclic averaging: a sequence of multiple results is recorded first, then
averaged with the next repetition of the same sequence.

1
"sequential": Sequential averaging: each result is recorded and averaged first,
before the next result is recorded and averaged.

/dev..../qachannels/n/readout/result/overdio

Properties: Read

Type: Integer (64 bit)

Unit: None

Number of DIO interface overflows during readout. This can happen if readouts are triggered faster
than the maximum possible data-rate of the DIO interface.

/dev..../qachannels/n/readout/result/source

Properties: Read, Write, Setting, Pipelined

Type: Integer (enumerated)

Unit: None

Selects the signal source of the Result Logger.

1
"result_of_integration": Complex-valued integration results of the Weighted
Integration in Qubit Readout mode.

3 "result_of_discrimination": The results after state discrimination.

/dev..../qachannels/n/spectroscopy/delay

Properties: Read, Write, Setting, Pipelined

Type: Double

Unit: s

Sets the delay of the integration in Spectroscopy mode with respect to the Trigger signal. The
resolution is 2 ns.

/dev..../qachannels/n/spectroscopy/envelope/delay

Properties: Read, Write, Setting, Pipelined

Type: Double

Unit: s

Sets the delay of the envelope waveform in Spectroscopy mode with respect to the Trigger signal.
The resolution is 2 ns.

/dev..../qachannels/n/spectroscopy/envelope/enable

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Enables the modulation of the oscillator signal with the complex envelope waveform.

7.2. Reference Node Documentation

252 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/spectroscopy/envelope/length

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Length of the uploaded envelope waveform in number of complex samples.

/dev..../qachannels/n/spectroscopy/envelope/wave

Properties: Read, Write, Pipelined

Type: ZIVectorData

Unit: None

Contains the envelope waveform as a vector of complex samples.

/dev..../qachannels/n/spectroscopy/length

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Sets the integration length in Spectroscopy mode in number of samples. Up to 33.5 MSa (2^25
samples) can be recorded, which corresponds to 16.7 ms.

/dev..../qachannels/n/spectroscopy/psd/enable

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Enable the power spectral density mode of the spectroscopy mode.

/dev..../qachannels/n/spectroscopy/psd/error/clear

Properties: Read, Write, Pipelined

Type: Integer (64 bit)

Unit: None

Clears power spectral density error flags.

/dev..../qachannels/n/spectroscopy/psd/error/overflow

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Indicates whether overflow happened while calculating the power spectral density.

/dev..../qachannels/n/spectroscopy/result/acquired

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Indicates the index of the acquisition that will be performed on the next trigger.

7.2. Reference Node Documentation

253 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/spectroscopy/result/averages

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Number of measurements that are averaged.

/dev..../qachannels/n/spectroscopy/result/data/wave

Properties: Read, Pipelined

Type: ZIVectorData

Unit: None

Acquired complex spectroscopy result data.

/dev..../qachannels/n/spectroscopy/result/enable

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Enables the acquisition of spectroscopy results.

/dev..../qachannels/n/spectroscopy/result/error/clear

Properties: Read, Write, Pipelined

Type: Integer (64 bit)

Unit: None

Writing to this node clears the hold-off error count.

/dev..../qachannels/n/spectroscopy/result/error/count

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Number of hold-off errors detected.

/dev..../qachannels/n/spectroscopy/result/error/jobidx

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Job index for which last hold-off errors were detected.

/dev..../qachannels/n/spectroscopy/result/length

Properties: Read, Write, Setting, Pipelined

Type: Integer (64 bit)

Unit: None

Number of data points to record. One data point corresponds to a single averaged result value of the
selected source.

7.2. Reference Node Documentation

254 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/spectroscopy/result/mode

Properties: Read, Write, Setting, Pipelined

Type: Integer (enumerated)

Unit: None

Selects the averaging order of the result.

0
"cyclic": Cyclic averaging: a sequence of multiple results is recorded first, then
averaged with the next repetition of the same sequence.

1
"sequential": Sequential averaging: each result is recorded and averaged first,
before the next result is recorded and averaged.

/dev..../qachannels/n/spectroscopy/trigger/channel

Properties: Read, Write, Setting, Pipelined

Type: Integer (enumerated)

Unit: None

Selects the source of the trigger for the integration and envelope in Spectroscopy mode.

0 "chan0trigin0", "channel0_trigger_input0": Channel 1, Trigger Input A.
1 "chan0trigin1", "channel0_trigger_input1": Channel 1, Trigger Input B.
8 "inttrig", "internal_trigger": Internal Trigger

32
"chan0seqtrig0", "channel0_sequencer_trigger0": Channel 1, Sequencer Trigger
Output 1.

36
"chan0seqtrig1", "channel0_sequencer_trigger1": Channel 1, Sequencer Trigger
Output 2.

1024 "swtrig0", "software_trigger0": Software Trigger 1.

/dev..../qachannels/n/synchronization/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enable multi-channel synchronization for this channel. The program will only execute once all
channels with enabled synchronization are ready.

/dev..../qachannels/n/triggers/n/imp50

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Trigger Input impedance: When on, the Trigger Input impedance is 50 Ohm; when off, 1 kOhm.

0 "1_kOhm": OFF: 1 k Ohm
1 "50_Ohm": ON: 50 Ohm

/dev..../qachannels/n/triggers/n/level

Properties: Read, Write, Setting

Type: Double

Unit: V

Defines the analog Trigger level.

7.2. Reference Node Documentation

255 Zurich Instruments SHFQC User Manual

/dev..../qachannels/n/triggers/n/value

Properties: Read

Type: Integer (64 bit)

Unit: None

Shows the value of the digital Trigger Input. The value is integrated over a period of 100 ms. Values
are: 1: low; 2: high; 3: was low and high in the period.

7.2.5. SCOPES

/dev..../scopes/n/averaging/count

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Configures the number of Scope measurements to average.

/dev..../scopes/n/averaging/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enables averaging of Scope measurements.

/dev..../scopes/n/channels/n/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: Dependent

Enables recording for this Scope channel.

/dev..../scopes/n/channels/n/inputselect

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Selects the scope input signal.

0 "chan0sigin", "channel0_signal_input": Signal Input Channel 1.
48 "sgchan0sigout", "sgchannel0_signal_output": Signal Output SG Channel 1.
49 "sgchan1sigout", "sgchannel1_signal_output": Signal Output SG Channel 2.
50 "sgchan2sigout", "sgchannel2_signal_output": Signal Output SG Channel 3.
51 "sgchan3sigout", "sgchannel3_signal_output": Signal Output SG Channel 4.
52 "sgchan4sigout", "sgchannel4_signal_output": Signal Output SG Channel 5.
53 "sgchan5sigout", "sgchannel5_signal_output": Signal Output SG Channel 6.

/dev..../scopes/n/channels/n/wave

Properties: Read

Type: ZIVectorData

Unit: Dependent

Contains the acquired Scope measurement data.

7.2. Reference Node Documentation

256 Zurich Instruments SHFQC User Manual

/dev..../scopes/n/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enables the acquisition of Scope shots. Goes back to 0 (disabled) after the scope shot has been
acquired.

/dev..../scopes/n/length

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Defines the length of the recorded Scope shot in number of samples.

/dev..../scopes/n/segments/count

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Specifies the number of segments to be recorded in device memory. The maximum Scope shot size
is given by the available memory divided by the number of segments.

/dev..../scopes/n/segments/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enable segmented Scope recording. This allows for full bandwidth recording of Scope shots with a
minimum dead time between individual shots.

/dev..../scopes/n/single

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Puts the Scope into single shot mode.

/dev..../scopes/n/time

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Defines the time base of the Scope.

0 2 GHz

7.2. Reference Node Documentation

257 Zurich Instruments SHFQC User Manual

/dev..../scopes/n/trigger/channel

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Selects the trigger source signal.

0 "chan0trigin0", "channel0_trigger_input0": Channel 1, Trigger Input A.
1 "chan0trigin1", "channel0_trigger_input1": Channel 1, Trigger Input B.
8 "inttrig", "internal_trigger": Internal Trigger

32
"chan0seqtrig0", "channel0_sequencer_trigger0": Channel 1, Sequencer Trigger
Output 1.

36
"chan0seqtrig1", "channel0_sequencer_trigger1": Channel 1, Sequencer Trigger
Output 2.

64
"chan0seqmon0", "channel0_sequencer_monitor0": Channel 1, Sequencer
Monitor Trigger.

1024 "swtrig0", "software_trigger0": Software Trigger 1.

/dev..../scopes/n/trigger/delay

Properties: Read, Write, Setting

Type: Double

Unit: s

The delay of a Scope measurement. A negative delay results in data being acquired before the
trigger point. The resolution is 2 ns.

/dev..../scopes/n/trigger/enable

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

When triggering is enabled scope data are acquired every time the defined trigger condition is met.

0 "off": OFF: Continuous scope shot acquisition
1 "on": ON: Trigger based scope shot acquisition

7.2.6. SGCHANNELS

/dev..../sgchannels/n/awg/auxtriggers/n/channel

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Selects the digital trigger source signal.

0 "trigin0", "trigger_input0": Trigger In 1
1 "trigin1", "trigger_input1": Trigger In 2
2 "trigin2", "trigger_input2": Trigger In 3
3 "trigin3", "trigger_input3": Trigger In 4
4 "trigin4", "trigger_input4": Trigger In 5
5 "trigin5", "trigger_input5": Trigger In 6
6 "trigin6", "trigger_input6": Trigger In 7
7 "trigin7", "trigger_input7": Trigger In 8
8 "inttrig", "internal_trigger": Internal Trigger

32
"chan0seqtrig0", "channel0_sequencer_trigger0": QA Channel 1, Sequencer
Trigger Output 1.

36
"chan0seqtrig1", "channel0_sequencer_trigger1": QA Channel 1, Sequencer
Trigger Output 2.

128 "chan0rod", "channel0_readout_done": QA Channel 1, Readout done.

7.2. Reference Node Documentation

258 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/auxtriggers/n/slope

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Select the signal edge that should activate the trigger. The trigger will be level sensitive when the
Level option is selected.

0 "level_sensitive": Level sensitive trigger
1 "rising_edge": Rising edge trigger
2 "falling_edge": Falling edge trigger
3 "both_edges": Rising or falling edge trigger

/dev..../sgchannels/n/awg/auxtriggers/n/state

Properties: Read

Type: Integer (64 bit)

Unit: None

State of the Auxiliary Trigger: No trigger detected/trigger detected.

/dev..../sgchannels/n/awg/commandtable/clear

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Writing to this node clears all data previously loaded to the command table of the device. If the
sequence pipeliner mode is not off, the command table in the sequence pipeliner staging area is
cleared instead.

/dev..../sgchannels/n/awg/commandtable/data

Properties: Read, Write, Pipelined

Type: ZIVectorData

Unit: None

Data contained in the command table in JSON format.

/dev..../sgchannels/n/awg/commandtable/schema

Properties: Read

Type: ZIVectorData

Unit: None

JSON schema describing the command table JSON format (read-only).

/dev..../sgchannels/n/awg/commandtable/status

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Status of the command table on the instrument. If the sequence pipeliner mode is not off, the
status of the command table in the sequence pipeliner staging area is shown instead. Bit 0: data
uploaded to the command table; Bit 1, Bit 2: reserved; Bit 3: uploading of data to the command table
failed due to a JSON parsing error.

7.2. Reference Node Documentation

259 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/dio/error/timing

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

A 32-bit value indicating which bits on the DIO interface may have timing errors. A timing error is
defined as an event where either the VALID or any of the data bits on the DIO interface change value
at the same time as the STROBE bit.

/dev..../sgchannels/n/awg/dio/error/width

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Indicates a width (i.e. jitter) error on either the STROBE (bit 0 of the value) or VALID bit (bit 1 of the
result). A width error indicates that there was jitter detected on the given bit, meaning that an active
period was either shorter or longer than the configured expected width.

/dev..../sgchannels/n/awg/dio/highbits

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

32-bit value indicating which bits on the 32-bit interface are detected as having a logic high value.

/dev..../sgchannels/n/awg/dio/lowbits

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

32-bit value indicating which bits on the 32-bit interface are detected as having a logic low value.

/dev..../sgchannels/n/awg/dio/mask/shift

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Defines the amount of bit shifting to apply for the DIO wave selection in connection with
playWaveDIO().

/dev..../sgchannels/n/awg/dio/mask/value

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Selects the DIO bits to be used for waveform selection in connection with playWaveDIO().

/dev..../sgchannels/n/awg/dio/state

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

When asserted, indicates that triggers are generated from the DIO interface to the AWG.

7.2. Reference Node Documentation

260 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/dio/strobe/index

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Select the DIO bit to use as the STROBE signal.

/dev..../sgchannels/n/awg/dio/strobe/slope

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Select the signal edge of the STROBE signal for use in timing alignment.

0 "off": Off
1 "rising_edge": Rising edge trigger
2 "falling_edge": Falling edge trigger
3 "both_edges": Rising or falling edge trigger

/dev..../sgchannels/n/awg/dio/strobe/width

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Specifies the expected width of active pulses on the STROBE bit.

/dev..../sgchannels/n/awg/dio/valid/index

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Select the DIO bit to use as the VALID signal to indicate a valid input is available.

/dev..../sgchannels/n/awg/dio/valid/polarity

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Polarity of the VALID bit that indicates that a valid input is available.

0 "none": None: VALID bit is ignored.
1 "low": Low: VALID bit must be logical zero.
2 "high": High: VALID bit must be logical high.
3 "both": Both: VALID bit may be logical high or zero.

/dev..../sgchannels/n/awg/dio/valid/width

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Expected width of an active pulse on the VALID bit.

7.2. Reference Node Documentation

261 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/diozsyncswitch

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Defines which interface input to use with this AWG

0 "dio": DIO interface will be used as input.
1 "zsync": ZSync interface will be used as input.

/dev..../sgchannels/n/awg/elf/checksum

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Checksum of the uploaded ELF file.

/dev..../sgchannels/n/awg/elf/data

Properties: Write, Pipelined

Type: ZIVectorData

Unit: None

Accepts the data of the sequencer ELF file. If the sequence pipeliner mode is not off, the data of the
ELF file goes to the staging area of the sequence pipeliner instead.

/dev..../sgchannels/n/awg/elf/length

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

Length of the compiled ELF file.

/dev..../sgchannels/n/awg/elf/memoryusage

Properties: Read, Pipelined

Type: Double

Unit: None

Size of the uploaded ELF file relative to the size of the main memory.

/dev..../sgchannels/n/awg/elf/name

Properties: Read, Pipelined

Type: ZIVectorData

Unit: None

The name of the uploaded ELF file.

/dev..../sgchannels/n/awg/elf/progress

Properties: Read, Pipelined

Type: Double

Unit: %

The percentage of the sequencer program already uploaded to the device.

7.2. Reference Node Documentation

262 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Activates the AWG.

/dev..../sgchannels/n/awg/intfeedback/direct/mask

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

16-bit value to select the bits of the shifted readout data received from the QA channel.

/dev..../sgchannels/n/awg/intfeedback/direct/offset

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

The additive offset applied to the shifted and masked readout data received from the QA channel.

/dev..../sgchannels/n/awg/intfeedback/direct/shift

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

The bit shift applied to the readout data received from the QA channel.

/dev..../sgchannels/n/awg/modulation/enable

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Enable or disable digital modulation.

0 "off": Modulation off
1 "on": Modulation on

/dev..../sgchannels/n/awg/outputamplitude

Properties: Read, Write, Setting

Type: Double

Unit: None

Amplitude scale factor applied to both AWG outputs.

/dev..../sgchannels/n/awg/outputs/n/enables/n

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates the routing of the AWG signal (k index) to the digital mixer input (m index).

7.2. Reference Node Documentation

263 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/outputs/n/gains/n

Properties: Read, Write, Setting

Type: Double

Unit: None

Gain factor applied to the AWG Output at the given output multiplier stage. The final signal
amplitude is proportional to the Range voltage setting of the Wave signal outputs.

/dev..../sgchannels/n/awg/outputs/n/hold

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Keep the last sample (constant) on the output even after the waveform program finishes.

/dev..../sgchannels/n/awg/ready

Properties: Read, Pipelined

Type: Integer (64 bit)

Unit: None

A value of True means that the AWG has a compiled waveform and is ready to be enabled. If the
sequence pipeliner is not off, a value of True means that the sequence in the staging area is ready to
be committed to the pipeline.

/dev..../sgchannels/n/awg/reset

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Clears the configured AWG program and resets the state to not ready.

/dev..../sgchannels/n/awg/rtlogger/clear

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Clears the logger data.

/dev..../sgchannels/n/awg/rtlogger/data

Properties: Read

Type: ZIVectorData

Unit: None

Vector node with the logged events.

/dev..../sgchannels/n/awg/rtlogger/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Activates the Real-time Logger.

7.2. Reference Node Documentation

264 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/rtlogger/input

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Select input data of logger.

0 "dio": DIO interface will be used as input.
1 "zsync": ZSync interface will be used as input.

/dev..../sgchannels/n/awg/rtlogger/mode

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Selects the operation mode.

0
"normal": Normal: Logger starts with the AWG and overwrites old values as soon
as the memory limit of 1024 entries is reached.

1

"timestamp": Timestamp-triggered: Logger starts with the AWG, waits for the
first valid trigger, and only starts recording data after the time specified by the
starttimestamp. Recording stops as soon as the memory limit of 1024 entries is
reached.

/dev..../sgchannels/n/awg/rtlogger/starttimestamp

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Timestamp at which to start logging for timestamp-triggered mode.

/dev..../sgchannels/n/awg/rtlogger/status

Properties: Read

Type: Integer (enumerated)

Unit: None

Operation state.

0 "idle": Idle: Logger is not running.
1 "normal": Normal: Logger is running in normal mode.

2
"ts_wait": Wait for timestamp: Logger is in timestamp-triggered mode and waits
for start timestamp.

3 "ts_active": Active: Logger is in timestamp-triggered mode and logging.

4
"ts_full": Log Full: Logger is in timestamp-triggered mode and has stopped
logging because log is full.

/dev..../sgchannels/n/awg/rtlogger/timebase

Properties: Read

Type: Double

Unit: s

Minimal time difference between two timestamps. The value matches the AWG sequencer execution
rate (4 ns)

7.2. Reference Node Documentation

265 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/sequencer/assembly

Properties: Read

Type: ZIVectorData

Unit: None

Displays the current sequence program in compiled form. Every line corresponds to one hardware
instruction.

/dev..../sgchannels/n/awg/sequencer/continue

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Reserved for future use.

/dev..../sgchannels/n/awg/sequencer/memoryusage

Properties: Read

Type: Double

Unit: None

Size of the current Sequencer program relative to the available instruction memory of 32
kInstructions (32'768 instructions).

/dev..../sgchannels/n/awg/sequencer/next

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Reserved for future use.

/dev..../sgchannels/n/awg/sequencer/pc

Properties: Read

Type: Integer (64 bit)

Unit: None

Current position in the list of sequence instructions during execution.

/dev..../sgchannels/n/awg/sequencer/program

Properties: Read

Type: ZIVectorData

Unit: None

Displays the source code of the current sequence program.

/dev..../sgchannels/n/awg/sequencer/status

Properties: Read

Type: Integer (64 bit)

Unit: None

Status of the sequencer on the instrument. Bit 0: sequencer is running; Bit 1: reserved; Bit 2:
sequencer is waiting for a trigger to arrive; Bit 3: AWG has detected an error; Bit 4: sequencer is
waiting for synchronization with other channels.

7.2. Reference Node Documentation

266 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/sequencer/triggered

Properties: Read

Type: Integer (64 bit)

Unit: None

When 1, indicates that the AWG Sequencer has been triggered.

/dev..../sgchannels/n/awg/single

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Puts the AWG into single shot mode.

/dev..../sgchannels/n/awg/time

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

AWG sampling rate. The numeric values here are equal to the base sampling rate of 2.0 GHz divided
by 2^n, where n is the node value. This value is used by default and can be overridden in the
Sequence program.

0 2.0 GHz
1 1.0 GHz
2 500 MHz
3 250 MHz
4 125 MHz
5 62.50 MHz
6 31.25 MHz
7 15.63 MHz
8 7.81 MHz
9 3.91 MHz
10 1.95 MHz
11 976.56 kHz
12 488.28 kHz
13 244.14 kHz

/dev..../sgchannels/n/awg/userregs/n

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Integer user register value. The sequencer has reading and writing access to the user register values
during run time.

/dev..../sgchannels/n/awg/waveform/descriptors

Properties: Read

Type: ZIVectorData

Unit: None

JSON-formatted string containing a dictionary of various properties of the current waveform: name,
filename, function, channels, marker bits, length, timestamp.

7.2. Reference Node Documentation

267 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/waveform/memoryusage

Properties: Read

Type: Double

Unit: %

Amount of the used waveform data relative to the device memory. The memory provides space for
96 kSa (98'304 Sa) of dual-channel waveform data.

/dev..../sgchannels/n/awg/waveform/playing

Properties: Read

Type: Integer (64 bit)

Unit: None

When 1, indicates if a waveform is being played currently.

/dev..../sgchannels/n/awg/waveform/waves/n

Properties: Read, Write

Type: ZIVectorData

Unit: None

The waveform data in the instrument's native format for the given playWave waveform index. This
node will not work with subscribe as it does not push updates. For short vectors get may be used.
For long vectors (causing get to time out) getAsEvent and poll can be used. The index of the
waveform to be replaced can be determined using the Waveform sub-tab in the AWG tab of the
LabOne User Interface.

/dev..../sgchannels/n/awg/zsync/decoder/mask

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

8-bit value to select the bits of the message received on ZSync interface coming from the PQSC
error decoder.

/dev..../sgchannels/n/awg/zsync/decoder/offset

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

The additive offset applied to the message received on ZSync interface coming from the PQSC error
decoder.

/dev..../sgchannels/n/awg/zsync/decoder/shift

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

The bit shift applied to the message received on ZSync interface coming from the PQSC error
decoder.

7.2. Reference Node Documentation

268 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/awg/zsync/register/mask

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

4-bit value to select the bits of the message received on ZSync interface coming from the PQSC
readout registers.

/dev..../sgchannels/n/awg/zsync/register/offset

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

The additive offset applied to the message received on ZSync interface coming from the PQSC
readout registers.

/dev..../sgchannels/n/awg/zsync/register/shift

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

The bit shift applied to the message received on ZSync interface coming from the PQSC readout
registers.

/dev..../sgchannels/n/centerfreq

Properties: Read

Type: Double

Unit: Hz

The Center Frequency of signal generation band. This value is read-only. Frequency is set through
synthesizer node.

/dev..../sgchannels/n/digitalmixer/centerfreq

Properties: Read, Write, Setting

Type: Double

Unit: Hz

Set center frequency of digital mixer.

7.2. Reference Node Documentation

269 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/marker/source

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Assign a signal to a marker.

0
"awg_trigger0": Trigger output is assigned to AWG Trigger 1, controlled by AWG
sequencer commands.

1
"awg_trigger1": Trigger output is assigned to AWG Trigger 2, controlled by AWG
sequencer commands.

2
"awg_trigger2": Trigger output is assigned to AWG Trigger 3, controlled by AWG
sequencer commands.

3
"awg_trigger3": Trigger output is assigned to AWG Trigger 4, controlled by AWG
sequencer commands.

4 "output0_marker0": Output is assigned to I component Marker 1.
5 "output0_marker1": Output is assigned to I component Marker 2.
6 "output1_marker0": Output is assigned to Q component Marker 1.
7 "output1_marker1": Output is assigned to Q component Marker 2.
8 "trigin0", "trigger_input0": Output is assigned to Trigger Input 1.
9 "trigin1", "trigger_input1": Output is assigned to Trigger Input 2.
10 "trigin2", "trigger_input2": Output is assigned to Trigger Input 3.
11 "trigin3", "trigger_input3": Output is assigned to Trigger Input 4.
12 "trigin4", "trigger_input4": Output is assigned to Trigger Input 5.
13 "trigin5", "trigger_input5": Output is assigned to Trigger Input 6.
14 "trigin6", "trigger_input6": Output is assigned to Trigger Input 7.
15 "trigin7", "trigger_input7": Output is assigned to Trigger Input 8.
16 "low": Output is set to low.
17 "high": Output is set to high.

/dev..../sgchannels/n/oscs/n/freq

Properties: Read, Write, Setting

Type: Double

Unit: Hz

Frequency control for each oscillator.

/dev..../sgchannels/n/output/delay

Properties: Read, Write, Setting

Type: Double

Unit: s

This value adds a delay to both the signal and trigger/marker outputs.

/dev..../sgchannels/n/output/filter

Properties: Read

Type: Integer (enumerated)

Unit: None

Reads the selected analog filter before the Signal Output.

0 "lowpass_1500": Low-pass filter of 1.5 GHz.
1 "lowpass_3000": Low-pass filter of 3 GHz.
2 "bandpass_3000_6000": Band-pass filter between 3 GHz - 6 GHz
3 "bandpass_6000_10000": Band-pass filter between 6 GHz - 10 GHz

7.2. Reference Node Documentation

270 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/output/on

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enables the Signal Output.

/dev..../sgchannels/n/output/overrangecount

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates the number of times the Signal Output was in an overrange condition within the last 200
ms. It is checked for an overrange condition every 10 ms.

/dev..../sgchannels/n/output/range

Properties: Read, Write, Setting

Type: Double

Unit: dBm

Sets the maximal Range of the Signal Output power. The instrument selects the closest available
Range with a resolution of 5 dBm.

/dev..../sgchannels/n/output/rflfpath

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Switch between RF and LF output path.

0 "lf": LF path is used.
1 "rf": RF path is used.

/dev..../sgchannels/n/outputrouter/enable

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Enable outputrouter module

0 "off": Output-router disabled
1 "on": Output-router enabled

/dev..../sgchannels/n/outputrouter/overflowcount

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates the number of overflow events in the output-router of the corresponding channel within
intervals of 200 ms. An overflow condition results in clipping of the output signal.

7.2. Reference Node Documentation

271 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/outputrouter/routes/n/amplitude

Properties: Read, Write, Setting

Type: Double

Unit: None

Configure amplitude of route. Selected signal (source) is multiplied with amplitude and phase, and
summed with other routes on SG-channel's output.

/dev..../sgchannels/n/outputrouter/routes/n/enable

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Enable/disable route.

0 "off": OFF: Route inactive
1 "on": ON: Route active

/dev..../sgchannels/n/outputrouter/routes/n/phase

Properties: Read, Write, Setting

Type: Double

Unit: deg

Configure phase of route. Selected signal (source) is multiplied with amplitude and phase, and
summed with other routes on SG-channel's output.

/dev..../sgchannels/n/outputrouter/routes/n/source

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Select AWG channel source as input to the outputrouter.

/dev..../sgchannels/n/pipeliner/availableslots

Properties: Read

Type: Integer (64 bit)

Unit: None

Number of free slots in the sequence pipeliner queue. Sequence upload is blocked if this node is 0.

/dev..../sgchannels/n/pipeliner/commit

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Commit node data in staging area to queue of sequence pipeliner.

/dev..../sgchannels/n/pipeliner/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enable execution of sequences in pipeline.

7.2. Reference Node Documentation

272 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/pipeliner/idcurrent

Properties: Read

Type: Integer (64 bit)

Unit: None

ID of sequence in staging area.

/dev..../sgchannels/n/pipeliner/idrunning

Properties: Read

Type: Integer (64 bit)

Unit: None

ID of executed sequence.

/dev..../sgchannels/n/pipeliner/maxslots

Properties: Read

Type: Integer (64 bit)

Unit: None

Maximum number of available slots in the sequence pipeliner queue.

/dev..../sgchannels/n/pipeliner/mode

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Selects the sequence pipeliner mode: off (default), batch, or queue mode. Changing the mode will
reset both the sequence pipeliner and the normal AWG.

0 "off": Off: The sequence pipeliner is turned off.

1
"batch": Batch: The sequence pipeliner operates in batch mode. All sequences
must be committed before the pipeliner is enabled. A batch can be executed
once or multiple times.

2
"queue": Queue: The sequence pipeliner operates in queue mode. Sequences
can be committed while the pipeliner is enabled. Every sequence is executed
only once and the slot in the queue is then available for a new sequence.

/dev..../sgchannels/n/pipeliner/ready

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates whether a sequence can be committed to the pipeliner.

/dev..../sgchannels/n/pipeliner/repetitions/remaining

Properties: Read

Type: Integer (64 bit)

Unit: None

Number of remaining batch repetitions. This node is fixed to 1 if the sequence pipeliner is not in
batch mode.

7.2. Reference Node Documentation

273 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/pipeliner/repetitions/value

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Number of batch repetitions (1 to 4e6). This node is fixed to 1 if the sequence pipeliner is not in batch
mode.

/dev..../sgchannels/n/pipeliner/reset

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Clears all sequences previously added to the sequence pipeliner and disables the pipeliner if it has
been running before.

/dev..../sgchannels/n/pipeliner/status

Properties: Read

Type: Integer (enumerated)

Unit: None

Status of the sequence pipeliner (0: idle, 1: executing sequence, 2: waiting for next sequence to be
committed (queue mode only)

0 "idle": Idle: The sequence pipeliner is idle.
1 "exec": Executing sequence: The sequence pipeliner is executing a sequence.

2
"waiting": Waiting: The sequence pipeliner is waiting for the next sequence to be
committed (queue mode only).

3
"done": Done: The sequence pipeliner is still enabled but all sequences have
been executed (batch mode only).

/dev..../sgchannels/n/pipeliner/timeout

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Maximal execution time per sequence in milliseconds. The execution of a sequence is aborted if the
maximal execution time is reached. A value of 0 means infinity.

/dev..../sgchannels/n/sines/n/freq

Properties: Read

Type: Double

Unit: Hz

Indicates the frequency of the sines generator.

/dev..../sgchannels/n/sines/n/harmonic

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Multiplies the sine signals's reference frequency with the integer factor defined by this field.

7.2. Reference Node Documentation

274 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/sines/n/i/cos/amplitude

Properties: Read, Write, Setting

Type: Double

Unit: None

Sets the peak amplitude of the cosine component on the I signal path.

/dev..../sgchannels/n/sines/n/i/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enables the sine signal to the I signal path.

/dev..../sgchannels/n/sines/n/i/sin/amplitude

Properties: Read, Write, Setting

Type: Double

Unit: None

Sets the peak amplitude of the sine component on the I signal path.

/dev..../sgchannels/n/sines/n/oscselect

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Select oscillator for generation of this sine signal.

/dev..../sgchannels/n/sines/n/phaseshift

Properties: Read, Write, Setting

Type: Double

Unit: None

Phase shift applied to sine signal.

/dev..../sgchannels/n/sines/n/q/cos/amplitude

Properties: Read, Write, Setting

Type: Double

Unit: None

Sets the peak amplitude of the cosine component on the Q signal path.

/dev..../sgchannels/n/sines/n/q/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enables the sine signal to the Q signal path.

7.2. Reference Node Documentation

275 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/sines/n/q/sin/amplitude

Properties: Read, Write, Setting

Type: Double

Unit: None

Sets the peak amplitude of the sine component on the Q signal path.

/dev..../sgchannels/n/synchronization/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enable multi-channel synchronization for this channel. The program will only execute once all
channels with enabled synchronization are ready.

/dev..../sgchannels/n/synthesizer

Properties: Read

Type: Integer (64 bit)

Unit: None

Index of synthesizer mapped to this channel.

/dev..../sgchannels/n/trigger/delay

Properties: Read, Write, Setting

Type: Double

Unit: s

This delay adds an offset that acts only on the trigger/marker output. The total delay to the trigger/
marker output is the sum of this value and the value of the output delay node.

/dev..../sgchannels/n/trigger/imp50

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Trigger Input impedance: When on, the Trigger Input impedance is 50 Ohm; when off, 1 kOhm.

0 "1_kOhm": OFF: 1 k Ohm
1 "50_Ohm": ON: 50 Ohm

/dev..../sgchannels/n/trigger/level

Properties: Read, Write, Setting

Type: Double

Unit: V

Defines the analog Trigger level.

7.2. Reference Node Documentation

276 Zurich Instruments SHFQC User Manual

/dev..../sgchannels/n/trigger/value

Properties: Read

Type: Integer (64 bit)

Unit: None

Shows the value of the digital Trigger Input. The value is integrated over a period of 100 ms. Values
are: 1: low; 2: high; 3: was low and high in the period.

7.2.7. STATS

/dev..../stats/physical/currents/n

Properties: Read

Type: Double

Unit: mA

Provides internal current readings for monitoring.

/dev..../stats/physical/fanspeeds/n

Properties: Read

Type: Integer (64 bit)

Unit: RPM

Speed of the internal cooling fans for monitoring.

/dev..../stats/physical/fpga/aux

Properties: Read

Type: Double

Unit: V

Supply voltage of the FPGA.

/dev..../stats/physical/fpga/core

Properties: Read

Type: Double

Unit: V

Core voltage of the FPGA.

/dev..../stats/physical/fpga/pstemp

Properties: Read

Type: Double

Unit: °C

Internal temperature of the FPGA's processor system.

/dev..../stats/physical/fpga/temp

Properties: Read

Type: Double

Unit: °C

Internal temperature of the FPGA.

7.2. Reference Node Documentation

277 Zurich Instruments SHFQC User Manual

/dev..../stats/physical/overtemperature

Properties: Read

Type: Integer (64 bit)

Unit: None

This flag is set to a value greater than 0 when the internal temperatures are reaching critical limits.

/dev..../stats/physical/power/currents/n

Properties: Read

Type: Double

Unit: A

Currents of the main power supply.

/dev..../stats/physical/power/temperatures/n

Properties: Read

Type: Double

Unit: °C

Temperatures of the main power supply.

/dev..../stats/physical/power/voltages/n

Properties: Read

Type: Double

Unit: V

Voltages of the main power supply.

/dev..../stats/physical/sigins/n/currents/n

Properties: Read

Type: Double

Unit: A

Provides internal current readings on the Signal Input board for monitoring.

/dev..../stats/physical/sigins/n/temperatures/n

Properties: Read

Type: Double

Unit: °C

Provides internal temperature readings on the Signal Input board for monitoring.

/dev..../stats/physical/sigins/n/voltages/n

Properties: Read

Type: Double

Unit: V

Provides internal voltage measurement on the Signal Input board for monitoring.

7.2. Reference Node Documentation

278 Zurich Instruments SHFQC User Manual

/dev..../stats/physical/sigouts/n/currents/n

Properties: Read

Type: Double

Unit: A

Provides internal current readings on the Signal Output board for monitoring.

/dev..../stats/physical/sigouts/n/temperatures/n

Properties: Read

Type: Double

Unit: °C

Provides internal temperature readings on the Signal Output board for monitoring.

/dev..../stats/physical/sigouts/n/voltages/n

Properties: Read

Type: Double

Unit: V

Provides internal voltage readings on the Signal Output board for monitoring.

/dev..../stats/physical/synthesizer/currents/n

Properties: Read

Type: Double

Unit: A

Provides internal current readings on the Synthesizer board for monitoring.

/dev..../stats/physical/synthesizer/temperatures/n

Properties: Read

Type: Double

Unit: °C

Provides internal temperature readings on the Synthesizer board for monitoring.

/dev..../stats/physical/synthesizer/voltages/n

Properties: Read

Type: Double

Unit: V

Provides internal voltage readings on the Synthesizer board for monitoring.

/dev..../stats/physical/temperatures/n

Properties: Read

Type: Double

Unit: °C

Provides internal temperature readings for monitoring.

7.2. Reference Node Documentation

279 Zurich Instruments SHFQC User Manual

/dev..../stats/physical/voltages/n

Properties: Read

Type: Double

Unit: V

Provides internal voltage readings for monitoring.

7.2.8. STATUS

/dev..../status/adc0max

Properties: Read

Type: Integer (64 bit)

Unit: None

The maximum value on Signal Input 1 (ADC0) during 100 ms.

/dev..../status/adc0min

Properties: Read

Type: Integer (64 bit)

Unit: None

The minimum value on Signal Input 1 (ADC0) during 100 ms

/dev..../status/adc1max

Properties: Read

Type: Integer (64 bit)

Unit: None

The maximum value on Signal Input 2 (ADC1) during 100 ms.

/dev..../status/adc1min

Properties: Read

Type: Integer (64 bit)

Unit: None

The minimum value on Signal Input 2 (ADC1) during 100 ms

/dev..../status/flags/binary

Properties: Read

Type: Integer (64 bit)

Unit: None

A set of binary flags giving an indication of the state of various parts of the device. Reserved for
future use.

/dev..../status/time

Properties: Read

Type: Integer (64 bit)

Unit: None

The current timestamp.

7.2. Reference Node Documentation

280 Zurich Instruments SHFQC User Manual

7.2.9. SYNTHESIZERS

/dev..../synthesizers/n/centerfreq

Properties: Read, Write, Setting

Type: Double

Unit: Hz

The Center Frequency of the synthesizer.

7.2.10. SYSTEM

/dev..../system/activeinterface

Properties: Read

Type: String

Unit: None

Currently active interface of the device.

/dev..../system/boardrevisions/n

Properties: Read

Type: String

Unit: None

Hardware revision of the motherboard containing the FPGA.

/dev..../system/clocks/referenceclock/in/freq

Properties: Read

Type: Double

Unit: Hz

Indicates the frequency of the reference clock.

/dev..../system/clocks/referenceclock/in/source

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

The intended reference clock source. When the source is changed, all the instruments connected
with ZSync links will be disconnected. The connection should be re-established manually.

0
"internal": The internal clock is intended to be used as the frequency and time
base reference.

1
"external": An external clock is intended to be used as the frequency and time
base reference. Provide a clean and stable 10 MHz or 100 MHz reference to the
appropriate back panel connector.

2
"zsync": The ZSync clock is intended to be used as the frequency and time base
reference.

7.2. Reference Node Documentation

281 Zurich Instruments SHFQC User Manual

/dev..../system/clocks/referenceclock/in/sourceactual

Properties: Read

Type: Integer (enumerated)

Unit: None

The actual reference clock source.

0 "internal": The internal clock is used as the frequency and time base reference.
1 "external": An external clock is used as the frequency and time base reference.
2 "zsync": The ZSync clock is used as the frequency and time base reference.

/dev..../system/clocks/referenceclock/in/status

Properties: Read

Type: Integer (enumerated)

Unit: None

Status of the reference clock.

0 "locked": Reference clock has been locked on.
1 "error": There was an error locking onto the reference clock signal.
2 "busy": The device is busy trying to lock onto the reference clock signal.

/dev..../system/clocks/referenceclock/out/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enable clock signal on the reference clock output. When the clock output is turned on or off, all the
instruments connected with ZSync links will be disconnected. The connection should be re-
established manually.

/dev..../system/clocks/referenceclock/out/freq

Properties: Read, Write, Setting

Type: Double

Unit: Hz

Select the frequency of the output reference clock. Only 10 MHz and 100 MHz are allowed.

/dev..../system/digitalmixer/reset/all

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Writing to this node clears all digital mixer NCOs of the instrument.

7.2. Reference Node Documentation

282 Zurich Instruments SHFQC User Manual

/dev..../system/digitalmixer/reset/mode

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Configure the NCO reset mode.

0
"manual": In manual mode the instrument does not automatically reset NCOs
when switching a channel from LF to RF mode.

1
"auto": In automatic mode the instrument automatically resets the NCOs of all
channels whenever a channel is switched from LF to RF, in order to restore
alignment.

/dev..../system/digitalmixer/reset/select

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Writing a bit mask to this node triggers a digital mixer NCO reset of the selected (bit value: 1)
channels.

/dev..../system/fpgarevision

Properties: Read

Type: Integer (64 bit)

Unit: None

HDL firmware revision.

/dev..../system/fwlog

Properties: Read

Type: String

Unit: None

Returns log output of the firmware.

/dev..../system/fwlogenable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enables logging to the fwlog node.

/dev..../system/fwrevision

Properties: Read

Type: Integer (64 bit)

Unit: None

Revision of the device-internal controller software.

7.2. Reference Node Documentation

283 Zurich Instruments SHFQC User Manual

/dev..../system/identify

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Setting this node to 1 will cause all frontpanel LEDs to blink for 5 seconds, then return to their
previous state.

/dev..../system/internaltrigger/enable

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Enable internal trigger generator.

0 "off": Generator off
1 "on": Generator on

/dev..../system/internaltrigger/holdoff

Properties: Read, Write, Setting

Type: Double

Unit: s

Hold-off time between generated triggers.

/dev..../system/internaltrigger/progress

Properties: Read

Type: Double

Unit: None

The fraction of the triggers generated so far.

/dev..../system/internaltrigger/repetitions

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Number of triggers to be generated.

/dev..../system/internaltrigger/synchronization/enable

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Enable synchronization. Trigger generation will only start once all synchronization participants have
reported a ready status. Synchronization checks will be repeated with the same trigger generation
settings (holdoff and repetitions) until synchronization is disabled.

7.2. Reference Node Documentation

284 Zurich Instruments SHFQC User Manual

/dev..../system/kerneltype

Properties: Read

Type: String

Unit: None

Returns the type of the data server kernel (mdk or hpk).

/dev..../system/nics/n/defaultgateway

Properties: Read, Write

Type: String

Unit: None

Default gateway configuration for the network connection.

/dev..../system/nics/n/defaultip4

Properties: Read, Write

Type: String

Unit: None

IPv4 address of the device to use if static IP is enabled.

/dev..../system/nics/n/defaultmask

Properties: Read, Write

Type: String

Unit: None

IPv4 mask in case of static IP.

/dev..../system/nics/n/gateway

Properties: Read

Type: String

Unit: None

Current network gateway.

/dev..../system/nics/n/ip4

Properties: Read

Type: String

Unit: None

Current IPv4 of the device.

/dev..../system/nics/n/mac

Properties: Read

Type: String

Unit: None

Current MAC address of the device network interface.

7.2. Reference Node Documentation

285 Zurich Instruments SHFQC User Manual

/dev..../system/nics/n/mask

Properties: Read

Type: String

Unit: None

Current network mask.

/dev..../system/nics/n/saveip

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If written, this action will program the defined static IP address to the device.

/dev..../system/nics/n/static

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable this flag if the device is used in a network with fixed IP assignment without a DHCP server.

/dev..../system/preset/busy

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates if presets are currently loaded.

/dev..../system/preset/error

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates if the last operation was illegal. Successful: 0, Error: 1.

/dev..../system/preset/load

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Load the selected preset.

/dev..../system/properties/freqresolution

Properties: Read

Type: Integer (64 bit)

Unit: None

The number of bits used to represent a frequency.

7.2. Reference Node Documentation

286 Zurich Instruments SHFQC User Manual

/dev..../system/properties/freqscaling

Properties: Read

Type: Double

Unit: None

The scale factor to use to convert a frequency represented as a freqresolution-bit integer to a
floating point value.

/dev..../system/properties/maxfreq

Properties: Read

Type: Double

Unit: None

The maximum oscillator frequency that can be set.

/dev..../system/properties/maxtimeconstant

Properties: Read

Type: Double

Unit: s

The maximum demodulator time constant that can be set. Only relevant for lock-in amplifiers.

/dev..../system/properties/minfreq

Properties: Read

Type: Double

Unit: None

The minimum oscillator frequency that can be set.

/dev..../system/properties/mintimeconstant

Properties: Read

Type: Double

Unit: s

The minimum demodulator time constant that can be set. Only relevant for lock-in amplifiers.

/dev..../system/properties/negativefreq

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates whether negative frequencies are supported.

/dev..../system/properties/timebase

Properties: Read

Type: Double

Unit: s

Minimal time difference between two timestamps. The value is equal to 1/(maximum sampling rate).

7.2. Reference Node Documentation

287 Zurich Instruments SHFQC User Manual

/dev..../system/shutdown

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Sending a '1' to this node initiates a shutdown of the operating system on the device. It is
recommended to trigger this shutdown before switching the device off with the hardware switch at
the back side of the device.

/dev..../system/stall

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Indicates if the network connection is stalled.

/dev..../system/swtriggers/n/single

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Issues a single software trigger event.

/dev..../system/synchronization/source

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Selects the source for synchronization of channels: internal (default) or external

0
"internal": Internal: Synchronization of all channels of a device that have the
corresponding synchronization setting enabled.

1
"external": External: Same as internal plus synchronization to other devices via
ZSync.

/dev..../system/update

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Requests update of the device firmware and bitstream from the dataserver.

7.2. Reference Node Documentation

288 Zurich Instruments SHFQC User Manual

	SHFQC User Manual
	8.5 GHz Quantum Controller

	SHFQC User Manual
	Zurich Instruments AG
	Revision 24.01
	Copyright © 2008-2024 Zurich Instruments AG
	CE Declaration of Conformity
	UKCA Declaration of Conformity

	Change Log
	Release 24.01
	Release 23.10
	Release 23.06
	Release 23.02
	Release 22.08

	Getting Started
	Quick Start Guide
	Inspect the Package Contents
	Handling and Safety Instructions
	Software Installation
	Installing LabOne on Windows
	Windows LabOne Installation
	Start LabOne Manually on the Command Line
	Windows LabOne Uninstallation

	Installing LabOne on macOS
	Uninstalling LabOne on macOS
	Application Content
	Start LabOne Manually on the Command Line
	Installing LabOne on Linux
	Requirements
	Linux LabOne Installation
	Running the Software on Linux
	Uninstalling LabOne on Linux

	Connecting to the Instrument
	LabOne Software Architecture
	LabOne Data Server
	LabOne Web Server
	LabOne API Layer
	LabOne Software Start-up
	Data Server Connectivity
	Available Devices
	Saved Settings
	Special Settings Files

	Tray Icon
	Messages
	Lost Connection to the LabOne Web Server
	Reloading...
	No Device Discovered
	No Device Available

	Visibility and Connection
	Visible Instruments
	Connected Instrument

	USB Connectivity
	1GbE Connectivity
	Multicast DHCP
	Multicast Point-to-Point
	Static Device IP
	Fallback Device IP

	Software Update
	Overview
	Updating LabOne using Automatic Update Check
	Updating the Instrument Firmware

	Troubleshooting
	Common Problems
	Location of the Log Files
	Windows
	Linux and macOS

	Prevent web browsers from sleep mode
	Edge
	Chrome
	Firefox
	Opera
	Safari

	Functional Overview
	Features
	Quantum Analyzer Channel
	Super-high-frequency Signal Inputs
	Super-high-frequency Signal Outputs
	Readout Pulse Generator
	Qubit Measurement Unit
	Sweeper
	Monitor Scope

	Signal Generator Channel
	Super-high-frequency Signal Outputs
	Advanced Pulse Sequencer

	Shared Resources
	Hardware Trigger Engine
	High-speed Connectivity
	Software Features

	Front Panel Tour
	Back Panel Tour
	Ordering Guide

	Tutorials
	Signal Generator Tutorials
	Basic Sine Generation
	Goals and Requirements
	Preparation
	Generating a Sinusoidal Signal

	Basic Waveform Playback
	Goals and Requirements
	Preparation
	Waveform Generation and Playback
	Using the LF Path

	Triggering and Synchronization
	Goals and Requirements
	Preparation
	Generating and Responding to Triggers
	Generating Markers with the AWG
	Triggering the AWG
	Synchronizing outputs of different channels

	Digital Modulation
	Goals and Requirements
	Preparation
	Generating a Single Sideband Signal
	Rapid Phase Changes
	Performing Frequency Sweeps

	Using the Python API
	Goals and Requirements
	Preparation
	Connecting to to the instrument
	Uploading and running sequences

	Pulse-level Sequencing with the Command Table
	Goals and Requirements
	Preparation
	Configure the Output
	Introduction to the Command Table
	Basic command table use
	Efficient pulse incrementation
	Pulse-level sequencing with the command table
	Command table entries fields

	Quantum Analyzer Tutorials
	Continuous Resonator Spectroscopy
	Goals and Requirements
	Preparation
	Tutorial

	Pulsed Resonator Spectroscopy
	Goals and Requirements
	Preparation
	Tutorial

	Integration Weights Measurement
	Goals and Requirements
	Preparation
	Tutorial

	Multiplexed Qubit Readout
	Goals and Requirements
	Preparation
	Tutorial

	Functional Description
	Setup Functionality
	User Interface Overview
	UI Nomenclature
	Unique Set of Analysis Tools
	Plot Functionality
	Plot Area Elements
	Cursors and Math
	Tree Selector
	Vertical Axis Groups
	Trends

	Config Tab
	Features
	Description
	Functional Elements

	Device Tab
	Features
	Description
	Functional Elements

	File Manager Tab
	Features
	Description
	Functional Elements

	Saving and Loading Data
	Overview
	Saving Data from Plots
	Recording Data
	History List
	Supported File Formats
	HDF5
	MATLAB
	SXM

	Upgrade Tab
	ZI Labs Tab

	Measurement Functionality
	In/Out Tab
	Features Overview
	Description
	Signal Generator Channels
	Quantum Analyzer Channel

	Frequency Representation
	Power Representation
	In / Out Tab in the LabOne GUI
	Functional Elements

	Quantum Analyzer Setup Tab
	Features
	Description
	Spectroscopy Mode
	Readout Waveform Output In Spectroscopy Mode
	Readout Results In Spectroscopy Mode
	Power spectral density

	Readout Mode
	Readout Waveform Generation In Readout Mode
	Integration Weights
	Thresholding

	Functional Elements

	Quantum Analyzer Result Tab
	Features
	Description
	Functional Elements

	Readout Pulse Generator Tab
	Features Overview
	Description
	Sequencer Operation
	SeqC
	Keywords and Comments
	Constants and Variables
	Waveform Playback and Predefined Functions
	Expressions
	Control Structures

	Waveform Memory
	Functional Elements

	Digital Modulation Tab
	Features
	Description
	Functional Elements

	AWG Tab
	Features
	Description
	Sequence Editor Keyboard Shortcuts

	LabOne Sequence Programming
	A Simple Example
	Keywords and Comments
	Constants and Variables
	Waveform Generation and Editing
	Waveform Playback and Predefined Functions
	Expressions
	Control Structures

	Usage of playZero and playHold commands
	Using Qubit Feedback Data in a Sequence
	Synchronizing Multiple AWG Cores

	Functional Elements

	Scope Tab
	Features
	Description
	Functional Elements

	DIO Tab
	Features
	Description
	Digital I/O
	ZSync Interface
	Feedback through the PQSC

	Functional Elements

	Output Router and Adder
	Features
	Description
	How-To: Route signals between Channels 1, 2, 4, and 6

	Specifications
	General Specifications
	Analog Interface Specifications
	Digital Waveform Generation of Signal Generator Channel
	Digital Signal Processing of Quantum Analyzer Channel
	Digital Interface Specifications
	DIO Port

	Device Node Tree
	Introduction
	Node Properties and Data Types
	Exploring the Node Tree
	In the LabOne User Interface
	In a LabOne Programming Interface

	Data Server Nodes

	Reference Node Documentation
	CLOCKBASE
	DIOS
	FEATURES
	QACHANNELS
	SCOPES
	SGCHANNELS
	STATS
	STATUS
	SYNTHESIZERS
	SYSTEM

