Examples

The following Examples are available in the Examples.cs file:

Examples.cs

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Globalization;
using System.IO;
using System.Linq;
using zhinst;

namespace ziDotNetExamples
{
  /// <summary>
  /// This exception is used to notify that the example could not be executed.
  ///
  /// <param name="msg">The reason why the example was ot executed</param>
  /// </summary>
  public class SkipException : Exception
  {
    public SkipException(string msg) : base(msg) { }
  }

  public class Examples
  {
    const string DEFAULT_DEVICE = "dev8047";

    // The resetDeviceToDefault will reset the device settings
    // to factory default. The call is quite expensive
    // in runtime. Never use it inside loops!
    private static void resetDeviceToDefault(ziDotNET daq, string dev)
    {
      if (isDeviceFamily(daq, dev, "HDAWG"))
      {
        // The HDAWG device does currently not support presets
        return;
      }
      if (isDeviceFamily(daq, dev, "HF2"))
      {
        // The HF2 devices do not support the preset functionality.
        daq.setDouble(String.Format("/{0}/demods/*/rate", dev), 250);
        return;
      }

      daq.setInt(String.Format("/{0}/system/preset/index", dev), 0);
      daq.setInt(String.Format("/{0}/system/preset/load", dev), 1);
      while (daq.getInt(String.Format("/{0}/system/preset/busy", dev)) != 0)
      {
        System.Threading.Thread.Sleep(100);
      }
      System.Threading.Thread.Sleep(1000);
    }

    // The isDeviceFamily checks for a specific device family.
    // Currently available families: "HF2", "UHF", "MF"
    private static bool isDeviceFamily(ziDotNET daq, string dev, String family)
    {
      String path = String.Format("/{0}/features/devtype", dev);
      String devType = daq.getByte(path);
      return devType.StartsWith(family);
    }

    // The hasOption function checks if the device
    // does support a specific functionality, thus
    // has installed the option.
    private static bool hasOption(ziDotNET daq, string dev, String option)
    {
      String path = String.Format("/{0}/features/options", dev);
      String options = daq.getByte(path);
      return options.Contains(option);
    }

    public static void SkipRequiresOption(ziDotNET daq, string dev, string option)
    {
      if (hasOption(daq, dev, option))
      {
        return;
      }
      daq.disconnect();
      Skip($"Required a device with option {option}.");
    }

    public static void SkipForDeviceFamily(ziDotNET daq, string dev, string family)
    {
      if (isDeviceFamily(daq, dev, family))
      {
        Skip($"This example may not be run on a device of familiy {family}.");
        daq.disconnect();
      }
    }

    public static void SkipForDeviceFamilyAndOption(ziDotNET daq, string dev, string family, string option)
    {
      if (isDeviceFamily(daq, dev, family))
      {
        SkipRequiresOption(daq, dev, option);
      }
    }

    // Please handle version mismatches depending on your
    // application requirements. Version mismatches often relate
    // to functionality changes of some nodes. The API interface is still
    // identical. We strongly recommend to keep the version of the
    // API and data server identical. Following approaches are possible:
    // - Convert version mismatch to a warning for the user to upgrade / downgrade
    // - Convert version mismatch to an error to enforce full matching
    // - Do an automatic upgrade / downgrade
    private static void apiServerVersionCheck(ziDotNET daq)
    {
      String serverVersion = daq.getByte("/zi/about/version");
      String apiVersion = daq.version();

      AssertEqual(serverVersion, apiVersion,
             "Version mismatch between LabOne API and Data Server.");
    }

    // Connect initializes a session on the server.
    private static ziDotNET connect(string dev)
    {
      ziDotNET daq = new ziDotNET();
      String id = daq.discoveryFind(dev);
      String iface = daq.discoveryGetValueS(dev, "connected");
      if (string.IsNullOrWhiteSpace(iface))
      {
        // Device is not connected to the server
        String ifacesList = daq.discoveryGetValueS(dev, "interfaces");
        // Select the first available interface and use it to connect
        string[] ifaces = ifacesList.Split('\n');
        if (ifaces.Length > 0)
        {
          iface = ifaces[0];
        }
      }
      String host = daq.discoveryGetValueS(dev, "serveraddress");
      long port = daq.discoveryGetValueI(dev, "serverport");
      long api = daq.discoveryGetValueI(dev, "apilevel");
      System.Diagnostics.Trace.WriteLine(
        String.Format("Connecting to server {0}:{1} wich API level {2}",
        host, port, api));
      daq.init(host, Convert.ToUInt16(port), (ZIAPIVersion_enum)api);
      // Ensure that LabOne API and LabOne Data Server are from
      // the same release version.
      apiServerVersionCheck(daq);
      // If device is not yet connected a reconnect
      // will not harm.
      System.Diagnostics.Trace.WriteLine(
        String.Format("Connecting to {0} on inteface {1}", dev, iface));
      daq.connectDevice(dev, iface, "");

      return daq;
    }

    private static void Skip(string msg)
    {
      throw new SkipException($"SKIP: {msg}");
    }

    private static void Fail(string msg = null)
    {
      if (msg == null)
      {
        throw new Exception("FAILED!");
      }
      throw new SkipException($"FAILED: {msg}!");
    }

    private static void AssertNotEqual<T>(T expected, T actual, string msg = null) where T : IComparable<T>
    {
      if (msg != null)
      {
        Debug.Assert(!expected.Equals(actual));
        return;
      }
      Debug.Assert(!expected.Equals(actual));
    }

    private static void AssertEqual<T>(T expected, T actual, string msg = null) where T : IComparable<T>
    {
      if (msg != null)
      {
        Debug.Assert(expected.Equals(actual), msg);
        return;
      }
      Debug.Assert(expected.Equals(actual));
    }

    // ExamplePollDemodSample connects to the device,
    // subscribes to a demodulator, polls the data for 0.1 s
    // and returns the data.
    public static void ExamplePollDemodSample(string dev = DEFAULT_DEVICE)
    {
      ziDotNET daq = connect(dev);
      SkipForDeviceFamily(daq, dev, "HDAWG");

      resetDeviceToDefault(daq, dev);
      String path = String.Format("/{0}/demods/0/sample", dev);
      daq.subscribe(path);
      // After the subscribe the poll can be executed
      // continuously within a loop
      Lookup lookup = daq.poll(0.1, 100, 0, 1);
      Dictionary<String, Chunk[]> nodes = lookup.nodes;  // Iterable nodes
      Chunk[] chunks = lookup[path];  // Iterable chunks
      Chunk chunk = lookup[path][0];  // Single chunk
                                      // Vector of samples
      ZIDemodSample[] demodSamples = lookup[path][0].demodSamples;
      // Single sample
      ZIDemodSample demodSample0 = lookup[path][0].demodSamples[0];
      daq.disconnect();

      Debug.Assert(0 != demodSample0.timeStamp);
    }

    // ExamplePollImpedanceSample connects to the device,
    // subscribes to a impedance stream, polls the data for 0.1 s
    // and returns the data.
    public static void ExamplePollImpedanceSample(string dev = DEFAULT_DEVICE)
    {
      ziDotNET daq = connect(dev);
      // This example only works for devices with installed
      // Impedance Analyzer (IA) option.
      if (!hasOption(daq, dev, "IA"))
      {
        daq.disconnect();
        Skip("Not supported by device.");
      }
      resetDeviceToDefault(daq, dev);
      // Enable impedance control
      daq.setInt(String.Format("/{0}/imps/0/enable", dev), 1);
      // Return R and Cp
      daq.setInt(String.Format("/{0}/imps/0/model", dev), 0);
      // Enable user compensation
      daq.setInt(String.Format("/{0}/imps/0/calib/user/enable", dev), 1);
      // Wait until auto ranging has settled
      System.Threading.Thread.Sleep(4000);
      // Subscribe to the impedance data stream
      String path = String.Format("/{0}/imps/0/sample", dev);
      daq.subscribe(path);
      // After the subscribe the poll can be executed
      // continuously within a loop
      Lookup lookup = daq.poll(0.1, 100, 0, 1);
      Dictionary<String, Chunk[]> nodes = lookup.nodes;  // Iterable nodes
      Chunk[] chunks = lookup[path];  // Iterable chunks
      Chunk chunk = lookup[path][0];  // Single chunk
                                      // Vector of samples
      ZIImpedanceSample[] impedanceSamples = lookup[path][0].impedanceSamples;
      // Single sample
      ZIImpedanceSample impedanceSample0 = lookup[path][0].impedanceSamples[0];
      // Extract the R||C representation values
      System.Diagnostics.Trace.WriteLine(
              String.Format("Impedance Resistor value: {0} Ohm.", impedanceSample0.param0));
      System.Diagnostics.Trace.WriteLine(
              String.Format("Impedance Capacitor value: {0} F.", impedanceSample0.param1));
      daq.disconnect();

      AssertNotEqual(0ul, impedanceSample0.timeStamp);
    }

    // ExamplePollDoubleData is similar to ExamplePollDemodSample,
    // but it subscribes and polls floating point data.
    public static void ExamplePollDoubleData(string dev = DEFAULT_DEVICE)
    {
      ziDotNET daq = connect(dev);
      String path = String.Format("/{0}/oscs/0/freq", dev);
      daq.getAsEvent(path);
      daq.subscribe(path);
      Lookup lookup = daq.poll(1, 100, 0, 1);
      Dictionary<String, Chunk[]> nodes = lookup.nodes;  // Iterable nodes
      Chunk[] chunks = lookup[path];  // Iterable chunks
      Chunk chunk = lookup[path][0];  // Single chunk
      ZIDoubleData[] doubleData = lookup[path][0].doubleData;  // Vector of samples
      ZIDoubleData doubleData0 = lookup[path][0].doubleData[0];  // Single sample
      daq.disconnect();

      AssertNotEqual(0ul, doubleData0.timeStamp);
    }

    // ExamplePollPwaData is similar to ExamplePollDemodSample,
    // but it subscribes and polls periodic waveform analyzer
    // data from a device with the Boxcar option.
    public static void ExamplePollPwaData(string dev = DEFAULT_DEVICE) // Timeout(10000)
    {
      ziDotNET daq = connect(dev);
      // The PWA example only works for devices with installed Boxcar (BOX) option
      if (hasOption(daq, dev, "BOX"))
      {
        String enablePath = String.Format("/{0}/inputpwas/0/enable", dev);
        daq.setInt(enablePath, 1);
        String path = String.Format("/{0}/inputpwas/0/wave", dev);
        daq.subscribe(path);
        Lookup lookup = daq.poll(1, 100, 0, 1);
        UInt64 timeStamp = lookup[path][0].pwaWaves[0].timeStamp;
        UInt64 sampleCount = lookup[path][0].pwaWaves[0].sampleCount;
        UInt32 inputSelect = lookup[path][0].pwaWaves[0].inputSelect;
        UInt32 oscSelect = lookup[path][0].pwaWaves[0].oscSelect;
        UInt32 harmonic = lookup[path][0].pwaWaves[0].harmonic;
        Double frequency = lookup[path][0].pwaWaves[0].frequency;
        Byte type = lookup[path][0].pwaWaves[0].type;
        Byte mode = lookup[path][0].pwaWaves[0].mode;
        Byte overflow = lookup[path][0].pwaWaves[0].overflow;
        Byte commensurable = lookup[path][0].pwaWaves[0].commensurable;
        double[] grid = lookup[path][0].pwaWaves[0].binPhase;
        double[] x = lookup[path][0].pwaWaves[0].x;
        double[] y = lookup[path][0].pwaWaves[0].y;
        String fileName = Environment.CurrentDirectory + "/pwa.txt";
        System.IO.StreamWriter file = new System.IO.StreamWriter(fileName);
        file.WriteLine("TimeStamp: {0}", timeStamp);
        file.WriteLine("Sample Count: {0}", sampleCount);
        file.WriteLine("Input Select: {0}", inputSelect);
        file.WriteLine("Osc Select: {0}", oscSelect);
        file.WriteLine("Frequency: {0}", frequency);
        for (int i = 0; i < grid.Length; ++i)
        {
          file.WriteLine("{0} {1} {2}", grid[i], x[i], y[i]);
        }
        file.Close();

        AssertNotEqual(0ul, timeStamp);
        AssertNotEqual(0ul, sampleCount);
        AssertNotEqual(0, grid.Length);
      }
      daq.disconnect();
    }

    // ExamplePollScopeData is similar to ExamplePollDemodSample,
    // but it subscribes and polls scope data.
    public static void ExamplePollScopeData(string dev = DEFAULT_DEVICE)
    {
      ziDotNET daq = connect(dev);
      SkipForDeviceFamily(daq, dev, "HDAWG");

      resetDeviceToDefault(daq, dev);

      String enablePath = String.Format("/{0}/scopes/0/enable", dev);
      daq.setInt(enablePath, 1);
      String path = String.Format("/{0}/scopes/0/wave", dev);
      daq.subscribe(path);
      Lookup lookup = daq.poll(1, 100, 0, 1);
      UInt64 timeStamp = lookup[path][0].scopeWaves[0].header.timeStamp;
      UInt64 sampleCount = lookup[path][0].scopeWaves[0].header.totalSamples;
      daq.disconnect();

      AssertNotEqual(0ul, timeStamp);
      AssertNotEqual(0ul, sampleCount);
    }

    // ExamplePollVectorData connects to the device, requests data from
    // vector nodes, and polls until data is received.
    public static void ExamplePollVectorData(string dev = DEFAULT_DEVICE)
    {
      ziDotNET daq = connect(dev);

      // This example only works for devices with the AWG option
      if (hasOption(daq, dev, "AWG") || isDeviceFamily(daq, dev, "UHFQA") || isDeviceFamily(daq, dev, "UHFAWG") || isDeviceFamily(daq, dev, "HDAWG"))
      {
        resetDeviceToDefault(daq, dev);

        // Request vector node from device
        String path = String.Format("/{0}/awgs/0/waveform/waves/0", dev);
        daq.getAsEvent(path);

        // Poll until the node path is found in the result data
        double timeout = 20;
        double poll_time = 0.1;
        Lookup lookup = null;
        for (double time = 0; ; time += poll_time)
        {
          lookup = daq.poll(poll_time, 100, 0, 1);
          if (lookup.nodes.ContainsKey(path))
            break;
          if (time > timeout)
            Fail("Vector node data not received within timeout");
        }

        Chunk[] chunks = lookup[path]; // Iterable chunks
        Chunk chunk = chunks[0];       // Single chunk
        ZIVectorData vectorData = chunk.vectorData[0];

        // The vector attribute of a ZIVectorData object holds a ZIVector object,
        // which can contain a String or arrays of the following types:
        // byte, UInt16, Uint32, Uint64, float, double

        // Waveform vector data is stored as 32-bit unsigned integer
        if (vectorData.vector != null)  // Check for empty container
        {
          UInt32[] vector = vectorData.vector.data as UInt32[];
        }

        AssertNotEqual(0ul, vectorData.timeStamp);
      }
      daq.disconnect();
    }

    // ExampleGetDemodSample reads the demodulator sample value of the specified node.
    public static void ExampleGetDemodSample(string dev = DEFAULT_DEVICE)
    {
      ziDotNET daq = connect(dev);
      SkipForDeviceFamily(daq, dev, "HDAWG");

      resetDeviceToDefault(daq, dev);
      String path = String.Format("/{0}/demods/0/sample", dev);
      ZIDemodSample sample = daq.getDemodSample(path);
      System.Diagnostics.Trace.WriteLine(sample.frequency, "Sample frequency");
      daq.disconnect();

      AssertNotEqual(0ul, sample.timeStamp);
    }

    // ExampleSweeper instantiates a sweeper module and executes a sweep
    // over 100 data points from 1kHz to 100kHz and writes the result into a file.
    public static void ExampleSweeper(string dev = DEFAULT_DEVICE) // Timeout(40000)
    {
      ziDotNET daq = connect(dev);
      SkipForDeviceFamily(daq, dev, "HDAWG");

      resetDeviceToDefault(daq, dev);
      ziModule sweep = daq.sweeper();
      sweep.setByte("device", dev);
      sweep.setDouble("start", 1e3);
      sweep.setDouble("stop", 1e5);
      sweep.setDouble("samplecount", 100);
      String path = String.Format("/{0}/demods/0/sample", dev);
      sweep.subscribe(path);
      sweep.execute();
      while (!sweep.finished())
      {
        System.Threading.Thread.Sleep(100);
        double progress = sweep.progress() * 100;
        System.Diagnostics.Trace.WriteLine(progress, "Progress");
      }
      Lookup lookup = sweep.read();
      double[] grid = lookup[path][0].sweeperDemodWaves[0].grid;
      double[] x = lookup[path][0].sweeperDemodWaves[0].x;
      double[] y = lookup[path][0].sweeperDemodWaves[0].y;
      String fileName = Environment.CurrentDirectory + "/sweep.txt";
      System.IO.StreamWriter file = new System.IO.StreamWriter(fileName);
      ZIChunkHeader header = lookup[path][0].header;
      // Raw system time is the number of microseconds since linux epoch
      file.WriteLine("Raw System Time: {0}", header.systemTime);
      // Use the utility function ziSystemTimeToDateTime to convert to DateTime of .NET
      file.WriteLine("Converted System Time: {0}", ziUtility.ziSystemTimeToDateTime(lookup[path][0].header.systemTime));
      file.WriteLine("Created Timestamp: {0}", header.createdTimeStamp);
      file.WriteLine("Changed Timestamp: {0}", header.changedTimeStamp);
      for (int i = 0; i < grid.Length; ++i)
      {
        file.WriteLine("{0} {1} {2}", grid[i], x[i], y[i]);
      }
      file.Close();

      AssertEqual(1.0, sweep.progress());
      AssertNotEqual(0, grid.Length);

      sweep.clear();  // Release module resources. Especially important if modules are created
                      // inside a loop to prevent excessive resource consumption.
      daq.disconnect();
    }

    // ExampleImpedanceSweeper instantiates a sweeper module and prepares
    // all settings for an impedance sweep over 30 data points.
    // The results are written to a file.
    public static void ExampleImpedanceSweeper(string dev = DEFAULT_DEVICE) // Timeout(40000)
    {
      ziDotNET daq = connect(dev);
      // This example only works for devices with installed
      // Impedance Analyzer (IA) option.
      if (!hasOption(daq, dev, "IA"))
      {
        daq.disconnect();
        Skip("Not supported by device.");
      }

      resetDeviceToDefault(daq, dev);
      // Enable impedance control
      daq.setInt(String.Format("/{0}/imps/0/enable", dev), 1);
      // Return D and Cs
      daq.setInt(String.Format("/{0}/imps/0/model", dev), 4);
      // Enable user compensation
      daq.setInt(String.Format("/{0}/imps/0/calib/user/enable", dev), 1);

      // ensure correct settings of order and oscselect
      daq.setInt(String.Format("/{0}/imps/0/demod/order", dev), 8);
      daq.setInt(String.Format("/{0}/imps/0/demod/oscselect", dev), 0);
      daq.sync();

      ziModule sweep = daq.sweeper();
      // Sweeper settings
      sweep.setByte("device", dev);
      sweep.setDouble("start", 1e3);
      sweep.setDouble("stop", 5e6);
      sweep.setDouble("samplecount", 30);
      sweep.setDouble("order", 8);
      sweep.setDouble("settling/inaccuracy", 0.0100000);
      sweep.setDouble("bandwidthcontrol", 2);
      sweep.setDouble("maxbandwidth", 10.0);
      sweep.setDouble("bandwidthoverlap", 1);
      sweep.setDouble("xmapping", 1);
      sweep.setDouble("omegasuppression", 100.0);
      sweep.setDouble("averaging/sample", 200);
      sweep.setDouble("averaging/time", 0.100);
      sweep.setDouble("averaging/tc", 20.0);
      String path = String.Format("/{0}/imps/0/sample", dev);
      sweep.subscribe(path);
      sweep.execute();
      while (!sweep.finished())
      {
        System.Threading.Thread.Sleep(100);
        double progress = sweep.progress() * 100;
        System.Diagnostics.Trace.WriteLine(progress, "Progress");
      }
      Lookup lookup = sweep.read();
      double[] grid = lookup[path][0].sweeperImpedanceWaves[0].grid;
      double[] x = lookup[path][0].sweeperImpedanceWaves[0].realz;
      double[] y = lookup[path][0].sweeperImpedanceWaves[0].imagz;
      double[] param0 = lookup[path][0].sweeperImpedanceWaves[0].param0;
      double[] param1 = lookup[path][0].sweeperImpedanceWaves[0].param1;
      UInt64[] flags = lookup[path][0].sweeperImpedanceWaves[0].flags;
      // Save measurement data to file
      String fileName = Environment.CurrentDirectory + "/impedance.txt";
      System.IO.StreamWriter file = new System.IO.StreamWriter(fileName);
      ZIChunkHeader header = lookup[path][0].header;
      // Raw system time is the number of microseconds since linux epoch
      file.WriteLine("Raw System Time: {0}", header.systemTime);
      // Use the utility function ziSystemTimeToDateTime to convert to DateTime of .NET
      file.WriteLine("Converted System Time: {0}", ziUtility.ziSystemTimeToDateTime(lookup[path][0].header.systemTime));
      file.WriteLine("Created Timestamp: {0}", header.createdTimeStamp);
      file.WriteLine("Changed Timestamp: {0}", header.changedTimeStamp);
      for (int i = 0; i < grid.Length; ++i)
      {
        file.WriteLine("{0} {1} {2} {3} {4} {5}",
          grid[i],
          x[i],
          y[i],
          param0[i],
          param1[i],
          flags[i]);
      }
      file.Close();

      AssertEqual(1.0, sweep.progress());
      AssertNotEqual(0, grid.Length);

      sweep.clear();  // Release module resources. Especially important if modules are created
                      // inside a loop to prevent excessive resource consumption.
      daq.disconnect();
    }

    // ExampleImpedanceCompensation does a user compensation
    // of the impedance analyser.
    public static void ExampleImpedanceCompensation(string dev = DEFAULT_DEVICE) // Timeout(30000)
    {
      ziDotNET daq = connect(dev);
      // This example only works for devices with installed
      // Impedance Analyzer (IA) option.
      if (!hasOption(daq, dev, "IA"))
      {
        daq.disconnect();
        Skip("Not supported by device.");
      }

      resetDeviceToDefault(daq, dev);

      // Enable impedance control
      daq.setInt(String.Format("/{0}/imps/0/enable", dev), 1);
      ziModule calib = daq.impedanceModule();
      calib.execute();
      calib.setByte("device", dev);
      System.Threading.Thread.Sleep(200);
      calib.setInt("mode", 4);
      calib.setDouble("loads/2/r", 1000.0);
      calib.setDouble("loads/2/c", 0.0);
      calib.setDouble("freq/start", 100.0);
      calib.setDouble("freq/stop", 500e3);
      calib.setDouble("freq/samplecount", 21);

      daq.setInt(String.Format("/{0}/imps/0/demod/order", dev), 8);
      daq.setInt(String.Format("/{0}/imps/0/demod/oscselect", dev), 0);
      daq.sync();


      calib.setInt("step", 2);
      calib.setInt("calibrate", 1);
      while (true)
      {
        System.Threading.Thread.Sleep(100);
        double progress = calib.progress() * 100;
        System.Diagnostics.Trace.WriteLine(progress, "Progress");
        Int64 calibrate = calib.getInt("calibrate");
        if (calibrate == 0)
        {
          break;
        }
      }
      String message = calib.getString("message");
      System.Diagnostics.Trace.WriteLine(message, "Message");
      AssertNotEqual(0, calib.progress());

      calib.clear();  // Release module resources. Especially important if modules are created
                      // inside a loop to prevent excessive resource consumption.
      daq.disconnect();
    }

    // ExampleSpectrum instantiates the spectrum module,
    // reads the data and writes the result in to a file.
    public static void ExampleSpectrum(string dev = DEFAULT_DEVICE) // Timeout(20000)
    {
      ziDotNET daq = connect(dev);
      SkipForDeviceFamily(daq, dev, "HDAWG");
      resetDeviceToDefault(daq, dev);
      ziModule spectrum = daq.spectrum();
      spectrum.setByte("device", dev);
      spectrum.setInt("bit", 10);
      String path = String.Format("/{0}/demods/0/sample", dev);
      spectrum.subscribe(path);
      spectrum.execute();
      while (!spectrum.finished())
      {
        System.Threading.Thread.Sleep(100);
        double progress = spectrum.progress() * 100;
        System.Diagnostics.Trace.WriteLine(progress, "Progress");
      }
      Lookup lookup = spectrum.read();
      double[] grid = lookup[path][0].spectrumWaves[0].grid;
      double[] x = lookup[path][0].spectrumWaves[0].x;
      double[] y = lookup[path][0].spectrumWaves[0].y;
      String fileName = Environment.CurrentDirectory + "/spectrum.txt";
      System.IO.StreamWriter file = new System.IO.StreamWriter(fileName);
      for (int i = 0; i < grid.Length; ++i)
      {
        file.WriteLine("{0} {1} {2}", grid[i], x[i], y[i]);
      }
      file.Close();

      AssertEqual(1.0, spectrum.progress());
      AssertNotEqual(0, grid.Length);

      spectrum.clear();  // Release module resources. Especially important if modules are created
                         // inside a loop to prevent excessive resource consumption.
      daq.disconnect();
    }

    // ExampleSwTrigger uses the software trigger to record data
    // and writes the result in to a file.
    public static void ExampleSwTrigger(string dev = DEFAULT_DEVICE) // Timeout(20000)
    {
      ziDotNET daq = connect(dev);
      SkipForDeviceFamily(daq, dev, "HDAWG");
      SkipForDeviceFamilyAndOption(daq, dev, "MF", "MD");
      SkipForDeviceFamilyAndOption(daq, dev, "HF2", "HF2");


      resetDeviceToDefault(daq, dev);
      daq.setInt(String.Format("/{0}/demods/0/oscselect", dev), 0);
      daq.setInt(String.Format("/{0}/demods/1/oscselect", dev), 1);
      daq.setDouble(String.Format("/{0}/oscs/0/freq", dev), 2e6);
      daq.setDouble(String.Format("/{0}/oscs/1/freq", dev), 2.0001e6);
      daq.setInt(String.Format("/{0}/sigouts/0/enables/*", dev), 0);
      daq.setInt(String.Format("/{0}/sigouts/0/enables/0", dev), 1);
      daq.setInt(String.Format("/{0}/sigouts/0/enables/1", dev), 1);
      daq.setInt(String.Format("/{0}/sigouts/0/on", dev), 1);
      daq.setDouble(String.Format("/{0}/sigouts/0/amplitudes/0", dev), 0.2);
      daq.setDouble(String.Format("/{0}/sigouts/0/amplitudes/1", dev), 0.2);
      ziModule trigger = daq.swTrigger();
      trigger.setByte("device", dev);
      trigger.setInt("/0/type", 1);
      trigger.setDouble("/0/level", 0.1);
      trigger.setDouble("/0/hysteresis", 0.01);
      trigger.setDouble("/0/bandwidth", 0.0);
      String path = String.Format("/{0}/demods/0/sample", dev);
      trigger.subscribe(path);
      String triggerPath = String.Format("/{0}/demods/0/sample.R", dev);
      trigger.setByte("/0/triggernode", triggerPath);
      trigger.execute();
      while (!trigger.finished())
      {
        System.Threading.Thread.Sleep(100);
        double progress = trigger.progress() * 100;
        System.Diagnostics.Trace.WriteLine(progress, "Progress");
      }
      Lookup lookup = trigger.read();
      ZIDemodSample[] demodSample = lookup[path][0].demodSamples;
      String fileName = Environment.CurrentDirectory + "/swtrigger.txt";
      System.IO.StreamWriter file = new System.IO.StreamWriter(fileName);
      ZIChunkHeader header = lookup[path][0].header;
      // Raw system time is the number of microseconds since linux epoch
      file.WriteLine("Raw System Time: {0}", header.systemTime);
      // Use the utility function ziSystemTimeToDateTime to convert to DateTime of .NET
      file.WriteLine("Converted System Time: {0}", ziUtility.ziSystemTimeToDateTime(lookup[path][0].header.systemTime));
      file.WriteLine("Created Timestamp: {0}", header.createdTimeStamp);
      file.WriteLine("Changed Timestamp: {0}", header.changedTimeStamp);
      file.WriteLine("Flags: {0}", header.flags);
      file.WriteLine("Name: {0}", header.name);
      file.WriteLine("Status: {0}", header.status);
      file.WriteLine("Group Index: {0}", header.groupIndex);
      file.WriteLine("Color: {0}", header.color);
      file.WriteLine("Active Row: {0}", header.activeRow);
      file.WriteLine("Trigger Number: {0}", header.triggerNumber);
      file.WriteLine("Grid Rows: {0}", header.gridRows);
      file.WriteLine("Grid Cols: {0}", header.gridCols);
      file.WriteLine("Grid Mode: {0}", header.gridMode);
      file.WriteLine("Grid Operation: {0}", header.gridOperation);
      file.WriteLine("Grid Direction: {0}", header.gridDirection);
      file.WriteLine("Grid Repetitions: {0}", header.gridRepetitions);
      file.WriteLine("Grid Col Delta: {0}", header.gridColDelta);
      file.WriteLine("Grid Col Offset: {0}", header.gridColOffset);
      file.WriteLine("Bandwidth: {0}", header.bandwidth);
      file.WriteLine("Center: {0}", header.center);
      file.WriteLine("NENBW: {0}", header.nenbw);
      for (int i = 0; i < demodSample.Length; ++i)
      {
        file.WriteLine("{0} {1} {2}",
          demodSample[i].frequency,
          demodSample[i].x,
          demodSample[i].y);
      }
      file.Close();

      AssertEqual(1, trigger.progress());
      AssertNotEqual(0, demodSample.Length);

      trigger.clear();  // Release module resources. Especially important if modules are created
                        // inside a loop to prevent excessive resource consumption.
      daq.disconnect();
    }

    // ExampleScopeModule instantiates a scope module.
    public static void ExampleScopeModule(string dev = DEFAULT_DEVICE) // Timeout(20000)
    {
      ziDotNET daq = connect(dev);
      if (isDeviceFamily(daq, dev, "HDAWG"))
      {
        daq.disconnect();
        Skip("Not supported by device.");
      }
      resetDeviceToDefault(daq, dev);
      ziModule scopeModule = daq.scopeModule();
      String path = String.Format("/{0}/scopes/0/wave", dev);
      scopeModule.subscribe(path);
      scopeModule.execute();
      // The HF2 devices do not have a single event functionality.
      if (!isDeviceFamily(daq, dev, "HF2"))
      {
        daq.setInt(String.Format("/{0}/scopes/0/single", dev), 1);
        daq.setInt(String.Format("/{0}/scopes/0/trigenable", dev), 0);
      }
      daq.setInt(String.Format("/{0}/scopes/0/enable", dev), 1);

      Lookup lookup;
      bool allSegments = false;
      do
      {
        System.Threading.Thread.Sleep(100);
        double progress = scopeModule.progress() * 100;
        System.Diagnostics.Trace.WriteLine(progress, "Progress");
        lookup = scopeModule.read();
        if (lookup.nodes.ContainsKey(path))
        {
          ZIScopeWave[] scopeWaves = lookup[path][0].scopeWaves;
          UInt64 totalSegments = scopeWaves[0].header.totalSegments;
          UInt64 segmentNumber = scopeWaves[0].header.segmentNumber;
          allSegments = (totalSegments == 0) ||
                        (segmentNumber >= totalSegments - 1);
        }
      } while (!allSegments);
      ZIScopeWave[] scopeWaves1 = lookup[path][0].scopeWaves;
      float[,] wave = SimpleValue.getFloatVec2D(scopeWaves1[0].wave);
      // ...
      System.Diagnostics.Trace.WriteLine(wave.Length, "Wave Size");
      AssertNotEqual(0, wave.Length);

      scopeModule.clear();  // Release module resources. Especially important if modules are created
                            // inside a loop to prevent excessive resource consumption.
      daq.disconnect();
    }

    // ExampleDeviceSettings instantiates a deviceSettings module and performs a save
    // and load of device settings. The LabOne UI uses this module to save and
    // load the device settings.
    public static void ExampleDeviceSettings(string dev = DEFAULT_DEVICE) // Timeout(15000)
    {
      ziDotNET daq = connect(dev);
      resetDeviceToDefault(daq, dev);
      ziModule settings = daq.deviceSettings();
      // First save the current device settings
      settings.setString("device", dev);
      settings.setString("command", "save");
      settings.setString("filename", "test_settings");
      settings.setString("path", Environment.CurrentDirectory);
      settings.execute();
      while (!settings.finished())
      {
        System.Threading.Thread.Sleep(100);
      }
      // Remember the current device parameter for later comparison
      String path = String.Format("/{0}/oscs/0/freq", dev);
      Double originalValue = daq.getDouble(path);
      // Change the parameter
      daq.setDouble(path, 2 * originalValue);
      // Load device settings from file
      settings.setString("device", dev);
      settings.setString("command", "load");
      settings.setString("filename", "test_settings");
      settings.setString("path", Environment.CurrentDirectory);
      settings.execute();
      while (!settings.finished())
      {
        System.Threading.Thread.Sleep(100);
      }
      // Check the restored parameter
      Double newValue = daq.getDouble(path);

      AssertEqual(originalValue, newValue);

      settings.clear();  // Release module resources. Especially important if modules are created
                         // inside a loop to prevent excessive resource consumption.
      daq.disconnect();
    }

    // ExamplePidAdvisor shows the usage of the PID advisor
    public static void ExamplePidAdvisor(string dev = DEFAULT_DEVICE) // Timeout(40000)
    {
      ziDotNET daq = connect(dev);
      if (!hasOption(daq, dev, "PID"))
      {
        daq.disconnect();
        Skip("Not supported by device.");
      }

      resetDeviceToDefault(daq, dev);

      daq.setInt(String.Format("/{0}/demods/*/rate", dev), 0);
      daq.setInt(String.Format("/{0}/demods/*/trigger", dev), 0);
      daq.setInt(String.Format("/{0}/sigouts/*/enables/*", dev), 0);
      daq.setInt(String.Format("/{0}/demods/*/enable", dev), 0);
      daq.setInt(String.Format("/{0}/scopes/*/enable", dev), 0);

      // now the settings relevant to this experiment
      // PID configuration.
      double target_bw = 10e3;    // Target bandwidth (Hz).
      int pid_input = 3;          // PID input (3 = Demod phase).
      int pid_input_channel = 0;  // Demodulator number.
      double setpoint = 0.0;      // Phase setpoint.
      int phase_unwrap = 1;       //
      int pid_output = 2;         // PID output (2 = oscillator frequency).
      int pid_output_channel = 0; // The index of the oscillator controlled by PID.
      double pid_center_frequency = 500e3;  // (Hz).
      double pid_limits = 10e3;            // (Hz).


      if (!isDeviceFamily(daq, dev, "HF2"))
      {
        daq.setInt(String.Format("/{0}/pids/0/input", dev), pid_input);
        daq.setInt(String.Format("/{0}/pids/0/inputchannel", dev), pid_input_channel);
        daq.setDouble(String.Format("/{0}/pids/0/setpoint", dev), setpoint);
        daq.setInt(String.Format("/{0}/pids/0/output", dev), pid_output);
        daq.setInt(String.Format("/{0}/pids/0/outputchannel", dev), pid_output_channel);
        daq.setDouble(String.Format("/{0}/pids/0/center", dev), pid_center_frequency);
        daq.setInt(String.Format("/{0}/pids/0/enable", dev), 0);
        daq.setInt(String.Format("/{0}/pids/0/phaseunwrap", dev), phase_unwrap);
        daq.setDouble(String.Format("/{0}/pids/0/limitlower", dev), -pid_limits);
        daq.setDouble(String.Format("/{0}/pids/0/limitupper", dev), pid_limits);
      }
      // Perform a global synchronisation between the device and the data server:
      // Ensure that the settings have taken effect on the device before starting
      // the pidAdvisor.
      daq.sync();

      // set up PID Advisor
      ziModule pidAdvisor = daq.pidAdvisor();

      // Turn off auto-calc on param change. Enabled
      // auto calculation can be used to automatically
      // update response data based on user input.
      pidAdvisor.setInt("auto", 0);
      pidAdvisor.setByte("device", dev);
      pidAdvisor.setDouble("pid/targetbw", target_bw);

      // PID advising mode (bit coded)
      // bit 0: optimize/tune P
      // bit 1: optimize/tune I
      // bit 2: optimize/tune D
      // Example: mode = 7: Optimize/tune PID
      pidAdvisor.setInt("pid/mode", 7);

      // PID index to use (first PID of device: 0)
      pidAdvisor.setInt("index", 0);

      // DUT model
      // source = 1: Lowpass first order
      // source = 2: Lowpass second order
      // source = 3: Resonator frequency
      // source = 4: Internal PLL
      // source = 5: VCO
      // source = 6: Resonator amplitude
      pidAdvisor.setInt("dut/source", 4);

      if (isDeviceFamily(daq, dev, "HF2"))
      {
        // Since the PLL and PID are 2 separate hardware units on the
        // device, we need to additionally specify that the PID
        // Advisor should model the HF2's PLL.
        pidAdvisor.setByte("pid/type", "pll");
      }

      // IO Delay of the feedback system describing the earliest response
      // for a step change. This parameter does not affect the shape of
      // the DUT transfer function
      pidAdvisor.setDouble("dut/delay", 0.0);

      // Other DUT parameters (not required for the internal PLL model)
      // pidAdvisor.setDouble('dut/gain', 1.0)
      // pidAdvisor.setDouble('dut/bw', 1000)
      // pidAdvisor.setDouble('dut/fcenter', 15e6)
      // pidAdvisor.setDouble('dut/damping', 0.1)
      // pidAdvisor.setDouble('dut/q', 10e3)

      // Start values for the PID optimization. Zero
      // values will imitate a guess. Other values can be
      // used as hints for the optimization process.
      pidAdvisor.setDouble("pid/p", 0);
      pidAdvisor.setDouble("pid/i", 0);
      pidAdvisor.setDouble("pid/d", 0);
      pidAdvisor.setInt("calculate", 0);

      // Start the module thread
      pidAdvisor.execute();
      System.Threading.Thread.Sleep(1000);

      // Advise
      pidAdvisor.setInt("calculate", 1);
      System.Diagnostics.Trace.WriteLine(
        "Starting advising. Optimization process may run up to a minute...");

      var watch = System.Diagnostics.Stopwatch.StartNew();
      while (true)
      {
        double progress = pidAdvisor.progress() * 100;
        System.Diagnostics.Trace.WriteLine(progress, "Progress");
        System.Threading.Thread.Sleep(1000);
        Int64 calc = pidAdvisor.getInt("calculate");
        if (calc == 0)
        {
          break;
        }
      }

      watch.Stop();
      var elapsedMs = watch.ElapsedMilliseconds;

      System.Diagnostics.Trace.WriteLine(
        String.Format("Advice took {0} s.", watch.ElapsedMilliseconds / 1000.0));

      // Get the advised values
      double p_adv = pidAdvisor.getDouble("pid/p");
      double i_adv = pidAdvisor.getDouble("pid/i");
      double d_adv = pidAdvisor.getDouble("pid/d");
      double dlimittimeconstant_adv =
        pidAdvisor.getDouble("pid/dlimittimeconstant");
      double rate_adv = pidAdvisor.getDouble("pid/rate");
      double bw_adv = pidAdvisor.getDouble("bw");

      System.Diagnostics.Trace.WriteLine(p_adv, "P");
      System.Diagnostics.Trace.WriteLine(i_adv, "I");
      System.Diagnostics.Trace.WriteLine(d_adv, "D");
      System.Diagnostics.Trace.WriteLine(dlimittimeconstant_adv, "D_tc");
      System.Diagnostics.Trace.WriteLine(rate_adv, "rate");
      System.Diagnostics.Trace.WriteLine(bw_adv, "bw");

      // copy the values from the Advisor to the device
      pidAdvisor.setInt("todevice", 1);

      // Get all calculated parameters.
      Lookup result = pidAdvisor.get("*");

      // extract bode plot and step response
      double[] grid = result["/bode"][0].advisorWaves[0].grid;
      double[] x = result["/bode"][0].advisorWaves[0].x;
      double[] y = result["/bode"][0].advisorWaves[0].y;
      String fileName = Environment.CurrentDirectory + "/pidAdvisor.txt";
      System.IO.StreamWriter file = new System.IO.StreamWriter(fileName);
      for (int i = 0; i < grid.Length; ++i)
      {
        file.WriteLine("{0} {1} {2}", grid[i], x[i], y[i]);
      }
      file.Close();

      AssertEqual(1.0, pidAdvisor.progress());
      AssertNotEqual(0, grid.Length);

      pidAdvisor.clear();  // Release module resources. Especially important if modules are created
                           // inside a loop to prevent excessive resource consumption.
      daq.disconnect();
    }

    static double Sinc(double x)
    {
      return x != 0.0 ? Math.Sin(Math.PI * x) / (Math.PI * x) : 1.0;
    }

    // ExampleAwgModule shows the usage of the AWG module.
    // It uses the AWG sequencer to generate a wave form.
    // The defined waveform is applied, measured and the
    // results are written to a file.
    public static void ExampleAwgModule(string dev = DEFAULT_DEVICE) // Timeout(10000)
    {
      ziDotNET daq = connect(dev);
      resetDeviceToDefault(daq, dev);

      // check device type, option
      if (!isDeviceFamily(daq, dev, "UHFAWG") && !isDeviceFamily(daq, dev, "UHFQA") && !hasOption(daq, dev, "AWG"))
      {
        Skip("Test does not support this device.");
      }

      // Create instrument configuration: disable all outputs, demods and scopes.
      daq.setInt(String.Format("/{0}/demods/*/enable", dev), 0);
      daq.setInt(String.Format("/{0}/demods/*/trigger", dev), 0);
      daq.setInt(String.Format("/{0}/sigouts/*/enables/*", dev), 0);
      daq.setInt(String.Format("/{0}/scopes/*/enable", dev), 0);
      if (hasOption(daq, dev, "IA"))
      {
        daq.setInt(String.Format("/{0}/imps/*/enable", dev), 0);
      }
      daq.sync();

      // Now configure the instrument for this experiment. The following channels
      // and indices work on all device configurations. The values below may be
      // changed if the instrument has multiple input/output channels and/or either
      // the Multifrequency or Multidemodulator options installed.
      int in_channel = 0;
      double frequency = 1e6;
      double amp = 1.0;

      daq.setDouble(String.Format("/{0}/sigouts/0/amplitudes/*", dev), 0.0);
      daq.sync();

      daq.setInt(String.Format("/{0}/sigins/0/imp50", dev), 1);
      daq.setInt(String.Format("/{0}/sigins/0/ac", dev), 0);
      daq.setInt(String.Format("/{0}/sigins/0/diff", dev), 0);
      daq.setInt(String.Format("/{0}/sigins/0/range", dev), 1);
      daq.setDouble(String.Format("/{0}/oscs/0/freq", dev), frequency);
      daq.setInt(String.Format("/{0}/sigouts/0/on", dev), 1);
      daq.setInt(String.Format("/{0}/sigouts/0/range", dev), 1);
      daq.setInt(String.Format("/{0}/sigouts/0/enables/3", dev), 1);
      daq.setDouble(String.Format("/{0}/awgs/0/outputs/0/amplitude", dev), amp);
      daq.setInt(String.Format("/{0}/awgs/0/outputs/0/mode", dev), 0);
      daq.setInt(String.Format("/{0}/awgs/0/time", dev), 0);
      daq.setInt(String.Format("/{0}/awgs/0/userregs/0", dev), 0);

      daq.sync();

      // Number of points in AWG waveform
      int AWG_N = 2000;

      // Define an AWG program as a string stored in the variable awg_program, equivalent to what would
      // be entered in the Sequence Editor window in the graphical UI.
      // This example demonstrates four methods of definig waveforms via the API
      // - (wave w0) loaded directly from programmatically generated CSV file wave0.csv.
      //             Waveform shape: Blackman window with negative amplitude.
      // - (wave w1) using the waveform generation functionalities available in the AWG Sequencer language.
      //             Waveform shape: Gaussian function with positive amplitude.
      // - (wave w2) using the vect() function and programmatic string replacement.
      //             Waveform shape: Single period of a sine wave.
      string awg_program =
        "const AWG_N = _c1_;\n" +
        "wave w0 = \"wave0\";\n" +
        "wave w1 = gauss(AWG_N, AWG_N/2, AWG_N/20);\n" +
        "wave w2 = vect(_w2_);\n" +
        "wave w3 = zeros(AWG_N);\n" +
        "setTrigger(1);\n" +
        "setTrigger(0);\n" +
        "playWave(w0);\n" +
        "playWave(w1);\n" +
        "playWave(w2);\n" +
        "playWave(w3);\n";

      // Reference waves

      // Define an array of values that are used to write values for wave w0 to a CSV file in the
      // module's data directory (Blackman windows)
      var waveform_0 = Enumerable.Range(0, AWG_N).Select(
        v => -1.0 * (0.42 - 0.5 * Math.Cos(2.0 * Math.PI * v / (AWG_N - 1)) + 0.08 * Math.Cos(4 * Math.PI * v / (AWG_N - 1))));
      double width = AWG_N / 20;
      var linspace = Enumerable.Range(0, AWG_N).Select(
        v => (v * AWG_N / ((double)AWG_N - 1.0d)) - AWG_N / 2);
      var waveform_1 = linspace.Select(
        v => Math.Exp(-v * v / (2 * width * width)));
      linspace = Enumerable.Range(0, AWG_N).Select(
        v => (v * 2 * Math.PI / ((double)AWG_N - 1.0d)));
      var waveform_2 = linspace.Select(
        v => Math.Sin(v));
      linspace = Enumerable.Range(0, AWG_N).Select(
        v => (v * 12 * Math.PI / ((double)AWG_N - 1.0d)) - 6 * Math.PI);
      var waveform_3 = linspace.Select(
        v => Sinc(v));

      // concatenated reference wave
      double f_s = 1.8e9; // sampling rate of scope and AWG
      double full_scale = 0.75;
      var y_expected = waveform_0.Concat(waveform_1).Concat(waveform_2).Concat(waveform_3).Select(
        v => v * full_scale * amp).ToArray();
      var x_expected = Enumerable.Range(0, 4 * AWG_N).Select(v => v / f_s).ToArray();

      // Replace placeholders in program
      awg_program = awg_program.Replace("_w2_", string.Join(",", waveform_2));
      awg_program = awg_program.Replace("_c1_", AWG_N.ToString());

      // Create an instance of the AWG Module
      ziModule awgModule = daq.awgModule();
      awgModule.setByte("device", dev);
      awgModule.execute();


      // Get the modules data directory
      string data_dir = awgModule.getString("directory");
      // All CSV files within the waves directory are automatically recognized by the AWG module
      data_dir = data_dir + "\\awg\\waves";
      if (!Directory.Exists(data_dir))
      {
        // The data directory is created by the AWG module and should always exist. If this exception is raised,
        // something might be wrong with the file system.
        Fail($"AWG module wave directory {data_dir} does not exist or is not a directory");
      }
      // Save waveform data to CSV
      string csv_file = data_dir + "\\wave0.csv";
      // The following line always formats a double as "3.14" and not "3,14".
      var waveform_0_formatted = waveform_0.Select(v => v.ToString(CultureInfo.InvariantCulture));
      File.WriteAllText(@csv_file, string.Join(",", waveform_0_formatted));

      // Transfer the AWG sequence program. Compilation starts automatically.
      // Note: when using an AWG program from a source file (and only then), the
      //       compiler needs to be started explicitly with
      //       awgModule.set("compiler/start", 1)
      awgModule.setByte("compiler/sourcestring", awg_program);
      while (awgModule.getInt("compiler/status") == -1)
      {
        System.Threading.Thread.Sleep(100);
      }

      // check compiler result
      long status = awgModule.getInt("compiler/status");
      if (status == 1)
      {
        // compilation failed
        String message = awgModule.getString("compiler/statusstring");
        System.Diagnostics.Trace.WriteLine("AWG Program:");
        System.Diagnostics.Trace.WriteLine(awg_program);
        System.Diagnostics.Trace.WriteLine("---");
        System.Diagnostics.Trace.WriteLine(message, "Compiler message:");
        Fail("Compilation failed");
      }
      if (status == 0)
      {
        System.Diagnostics.Trace.WriteLine("Compilation successful with no warnings" +
          ", will upload the program to the instrument.");
      }
      if (status == 2)
      {
        System.Diagnostics.Trace.WriteLine("Compilation successful with warnings" +
          ", will upload the program to the instrument.");
        String message = awgModule.getString("compiler/statusstring");
        System.Diagnostics.Trace.WriteLine("Compiler warning:");
        System.Diagnostics.Trace.WriteLine(message);
      }

      // wait for waveform upload to finish
      while (awgModule.getDouble("progress") < 1.0)
      {
        System.Diagnostics.Trace.WriteLine(
          awgModule.getDouble("progress"), "Progress");
        System.Threading.Thread.Sleep(100);
      }

      // Replace w3 with waveform_3 using vector write.
      // Let N be the total number of waveforms and M>0 be the number of waveforms defined from CSV file. Then the index
      // of the waveform to be replaced is defined as following:
      // - 0,...,M-1 for all waveforms defined from CSV file alphabetically ordered by filename,
      // - M,...,N-1 in the order that the waveforms are defined in the sequencer program.
      // For the case of M=0, the index is defined as:
      // - 0,...,N-1 in the order that the waveforms are defined in the sequencer program.
      // Of course, for the trivial case of 1 waveform, use index=0 to replace it.
      // Here we replace waveform w3, the 4th waveform defined in the sequencer program. Using 0-based indexing the
      // index of the waveform we want to replace (w3, a vector of zeros) is 3:
      // Write the waveform to the memory. For the transferred array, only 16-bit unsigned integer
      // data (0...65536) is accepted.
      // For dual-channel waves, interleaving is required.

      // The following function corresponds to ziPython utility function 'convert_awg_waveform'.
      Func<double, ushort> convert_awg_waveform = v => (ushort)((32767.0) * v);
      daq.setVector(String.Format("/{0}/awgs/0/waveform/waves/3", dev), waveform_3.Select(convert_awg_waveform).ToArray());

      // Configure the Scope for measurement
      daq.setInt(
        String.Format("/{0}/scopes/0/channels/0/inputselect", dev), in_channel);
      daq.setInt(String.Format("/{0}/scopes/0/time", dev), 0);
      daq.setInt(String.Format("/{0}/scopes/0/enable", dev), 0);
      daq.setInt(String.Format("/{0}/scopes/0/length", dev), 16836);

      // Now configure the scope's trigger to get aligned data.
      daq.setInt(String.Format("/{0}/scopes/0/trigenable", dev), 1);
      // Here we trigger on UHF signal input 1. If the instrument has the DIG Option installed we could
      // trigger the scope using an AWG Trigger instead (see the `setTrigger(1);` line in `awg_program` above).
      // 0:   Signal Input 1
      // 192: AWG Trigger 1
      long trigchannel = 0;
      daq.setInt(String.Format("/{0}/scopes/0/trigchannel", dev), trigchannel);
      if (trigchannel == 0)
      {
        // Trigger on the falling edge of the negative blackman waveform `w0` from our AWG program.
        daq.setInt(String.Format("/{0}/scopes/0/trigslope", dev), 2);
        daq.setDouble(String.Format("/{0}/scopes/0/triglevel", dev), -0.600);

        // Set hysteresis triggering threshold to avoid triggering on noise
        // 'trighysteresis/mode' :
        //  0 - absolute, use an absolute value ('scopes/0/trighysteresis/absolute')
        //  1 - relative, use a relative value ('scopes/0trighysteresis/relative') of the trigchannel's input range
        //      (0.1=10%).
        daq.setDouble(String.Format("/{0}/scopes/0/trighysteresis/mode", dev), 0);
        daq.setDouble(String.Format("/{0}/scopes/0/trighysteresis/relative", dev), 0.025);

        // Set a negative trigdelay to capture the beginning of the waveform.
        daq.setDouble(String.Format("/{0}/scopes/0/trigdelay", dev), -1.0e-6);
      }
      else
      {
        // Assume we're using an AWG Trigger, then the scope configuration is simple: Trigger on rising edge.
        daq.setInt(String.Format("/{0}/scopes/0/trigslope", dev), 1);

        // Set trigdelay to 0.0: Start recording from when the trigger is activated.
        daq.setDouble(String.Format("/{0}/scopes/0/trigdelay", dev), 0.0);
      }

      // the trigger reference position relative within the wave, a value of 0.5 corresponds to the center of the wave
      daq.setDouble(String.Format("/{0}/scopes/0/trigreference", dev), 0.0);

      // Set the hold off time in-between triggers.
      daq.setDouble(String.Format("/{0}/scopes/0/trigholdoff", dev), 0.025);

      // Set up the Scope Module.
      ziModule scopeModule = daq.scopeModule();
      scopeModule.setInt("mode", 1);
      scopeModule.subscribe(String.Format("/{0}/scopes/0/wave", dev));
      daq.setInt(String.Format("/{0}/scopes/0/single", dev), 1);
      scopeModule.execute();
      daq.setInt(String.Format("/{0}/scopes/0/enable", dev), 1);
      daq.sync();
      System.Threading.Thread.Sleep(100);

      // Start the AWG in single-shot mode
      daq.setInt(String.Format("/{0}/awgs/0/single", dev), 1);
      daq.setInt(String.Format("/{0}/awgs/0/enable", dev), 1);

      // Read the scope data (manual timeout of 1 second)
      double local_timeout = 1.0;
      while (scopeModule.progress() < 1.0 && local_timeout > 0.0)
      {
        System.Diagnostics.Trace.WriteLine(
          scopeModule.progress() * 100.0, "Scope Progress");
        System.Threading.Thread.Sleep(20);
        local_timeout -= 0.02;
      }
      string path = String.Format("/{0}/scopes/0/wave", dev);
      Lookup lookup = scopeModule.read();
      ZIScopeWave[] scopeWaves1 = lookup[path][0].scopeWaves;
      float[,] y_measured_in = SimpleValue.getFloatVec2D(scopeWaves1[0].wave);
      float[] y_measured = new float[y_measured_in.Length];
      for (int i = 0; i < y_measured_in.Length; ++i)
      {
        y_measured[i] = y_measured_in[0, i];
      }

      var x_measured = Enumerable.Range(0, y_measured.Length).Select(
        v => -(long)v * scopeWaves1[0].header.dt +
          (scopeWaves1[0].header.timeStamp -
          scopeWaves1[0].header.triggerTimeStamp) / f_s
          ).ToArray();

      // write signals to files
      String fileName = Environment.CurrentDirectory + "/awg_measured.txt";
      System.IO.StreamWriter file = new System.IO.StreamWriter(fileName);
      file.WriteLine("t [ns], measured signal [V]");
      for (int i = 0; i < y_measured.Length; ++i)
      {
        file.WriteLine("{0} {1}", x_measured[i] * 1e9, y_measured[i]);
      }
      file.Close();

      fileName = Environment.CurrentDirectory + "/awg_expected.txt";
      file = new System.IO.StreamWriter(fileName);
      file.WriteLine("t [ns], expected signal [V]");
      for (int i = 0; i < y_expected.Length; ++i)
      {
        file.WriteLine("{0} {1}", x_expected[i] * 1e9, y_expected[i]);
      }
      file.Close();

      // checks
      AssertNotEqual(0, x_measured.Length);
      AssertNotEqual(0, y_measured.Length);

      // find minimal difference
      double dMinMax = 1e10;
      for (int i = 0; i < x_measured.Length - x_expected.Length; i++)
      {
        double dMax = 0;
        for (int k = 0; k < x_expected.Length; k++)
        {
          double d = Math.Abs(y_expected[k] - y_measured[k + i]);
          if (d > dMax)
          {
            dMax = d;
          }
        }

        if (dMax < dMinMax)
        {
          dMinMax = dMax;
        }
      }
      Debug.Assert(dMinMax < 0.1);

      scopeModule.clear();  // Release module resources. Especially important if modules are created
                            // inside a loop to prevent excessive resource consumption.
      awgModule.clear();
      daq.disconnect();
    }

    // ExampleAutorangingImpedance shows how to perform a manually triggered autoranging for impedance while working in manual range mode.
    public static void ExampleAutorangingImpedance(string dev = DEFAULT_DEVICE) // Timeout(25000)
    {
      ziDotNET daq = connect(dev);
      // check device type, option
      SkipRequiresOption(daq, dev, "IA");

      resetDeviceToDefault(daq, dev);
      // Create instrument configuration: disable all outputs, demods and scopes.
      daq.setInt(String.Format("/{0}/demods/*/enable", dev), 0);
      daq.setInt(String.Format("/{0}/demods/*/trigger", dev), 0);
      daq.setInt(String.Format("/{0}/sigouts/*/enables/*", dev), 0);
      daq.setInt(String.Format("/{0}/scopes/*/enable", dev), 0);
      daq.setInt(String.Format("/{0}/imps/*/enable", dev), 0);
      daq.sync();

      int imp = 0;
      long curr = daq.getInt(String.Format("/{0}/imps/{1}/current/inputselect", dev, imp));
      long volt = daq.getInt(String.Format("/{0}/imps/{1}/voltage/inputselect", dev, imp));
      double manCurrRange = 10e-3;
      double manVoltRange = 10e-3;

      // Now configure the instrument for this experiment. The following channels and indices work on all devices with IA option.
      // The values below may be changed if the instrument has multiple IA modules.
      daq.setInt(String.Format("/{0}/imps/{1}/enable", dev, imp), 1);
      daq.setInt(String.Format("/{0}/imps/{1}/mode", dev, imp), 0);
      daq.setInt(String.Format("/{0}/imps/{1}/auto/output", dev, imp), 1);
      daq.setInt(String.Format("/{0}/imps/{1}/auto/bw", dev, imp), 1);
      daq.setDouble(String.Format("/{0}/imps/{1}/freq", dev, imp), 500);
      daq.setInt(String.Format("/{0}/imps/{1}/auto/inputrange", dev, imp), 0);
      daq.setDouble(String.Format("/{0}/currins/{1}/range", dev, curr), manCurrRange);
      daq.setDouble(String.Format("/{0}/sigins/{1}/range", dev, volt), manVoltRange);
      daq.sync();

      // After setting the device in manual ranging mode we want to trigger manually a one time auto ranging to find a suitable range.
      // Therefore, we trigger the  auto ranging for the current input as well as for the voltage input.
      daq.setInt(String.Format("/{0}/currins/{1}/autorange", dev, curr), 1);
      daq.setInt(String.Format("/{0}/sigins/{1}/autorange", dev, volt), 1);

      // The auto ranging takes some time. We do not want to continue before the best range is found.
      // Therefore, we implement a loop to check if the auto ranging is finished.
      int count = 0;
      System.Threading.Thread.Sleep(100);
      bool finished = false;
      var watch = System.Diagnostics.Stopwatch.StartNew();
      while (!finished)
      {
        ++count;
        System.Threading.Thread.Sleep(500);
        finished = (daq.getInt(String.Format("/{0}/currins/{1}/autorange", dev, curr)) == 0 &&
                    daq.getInt(String.Format("/{0}/sigins/{1}/autorange", dev, volt)) == 0);
      }
      watch.Stop();
      System.Diagnostics.Trace.WriteLine(
        String.Format("Auto ranging finished after {0} s.", watch.ElapsedMilliseconds / 1e3));

      double autoCurrRange = daq.getDouble(String.Format("/{0}/currins/{1}/range", dev, curr));
      double autoVoltRange = daq.getDouble(String.Format("/{0}/sigins/{1}/range", dev, volt));
      System.Diagnostics.Trace.WriteLine(
        String.Format("Current range changed from {0} A to {1} A.", manCurrRange, autoCurrRange));
      System.Diagnostics.Trace.WriteLine(
        String.Format("Voltage range changed from {0} A to {1} A.", manVoltRange, autoVoltRange));
      Debug.Assert(count > 1);
    }

    // ExampleDataAcquisition uses the new data acquisition module to record data
    // and writes the result in to a file.
    public static void ExampleDataAcquisition(string dev = DEFAULT_DEVICE) // Timeout(20000)
    {
      ziDotNET daq = connect(dev);

      SkipForDeviceFamilyAndOption(daq, dev, "MF", "MD");
      SkipForDeviceFamilyAndOption(daq, dev, "HF2", "MD");
      SkipForDeviceFamily(daq, dev, "HDAWG");

      resetDeviceToDefault(daq, dev);
      daq.setInt(String.Format("/{0}/demods/0/oscselect", dev), 0);
      daq.setInt(String.Format("/{0}/demods/1/oscselect", dev), 1);
      daq.setDouble(String.Format("/{0}/oscs/0/freq", dev), 2e6);
      daq.setDouble(String.Format("/{0}/oscs/1/freq", dev), 2.0001e6);
      daq.setInt(String.Format("/{0}/sigouts/0/enables/*", dev), 0);
      daq.setInt(String.Format("/{0}/sigouts/0/enables/0", dev), 1);
      daq.setInt(String.Format("/{0}/sigouts/0/enables/1", dev), 1);
      daq.setInt(String.Format("/{0}/sigouts/0/on", dev), 1);
      daq.setDouble(String.Format("/{0}/sigouts/0/amplitudes/0", dev), 0.2);
      daq.setDouble(String.Format("/{0}/sigouts/0/amplitudes/1", dev), 0.2);
      ziModule trigger = daq.dataAcquisitionModule();
      trigger.setInt("grid/mode", 4);
      double demodRate = daq.getDouble(String.Format("/{0}/demods/0/rate", dev));
      double duration = trigger.getDouble("duration");
      Int64 sampleCount = System.Convert.ToInt64(demodRate * duration);
      trigger.setInt("grid/cols", sampleCount);
      trigger.setByte("device", dev);
      trigger.setInt("type", 1);
      trigger.setDouble("level", 0.1);
      trigger.setDouble("hysteresis", 0.01);
      trigger.setDouble("bandwidth", 0.0);
      String path = String.Format("/{0}/demods/0/sample.r", dev);
      trigger.subscribe(path);
      String triggerPath = String.Format("/{0}/demods/0/sample.R", dev);
      trigger.setByte("triggernode", triggerPath);
      trigger.execute();
      while (!trigger.finished())
      {
        System.Threading.Thread.Sleep(100);
        double progress = trigger.progress() * 100;
        System.Diagnostics.Trace.WriteLine(progress, "Progress");
      }
      Lookup lookup = trigger.read();
      ZIDoubleData[] demodSample = lookup[path][0].doubleData;
      String fileName = Environment.CurrentDirectory + "/dataacquisition.txt";
      System.IO.StreamWriter file = new System.IO.StreamWriter(fileName);
      ZIChunkHeader header = lookup[path][0].header;
      // Raw system time is the number of microseconds since linux epoch
      file.WriteLine("Raw System Time: {0}", header.systemTime);
      // Use the utility function ziSystemTimeToDateTime to convert to DateTime of .NET
      file.WriteLine("Converted System Time: {0}", ziUtility.ziSystemTimeToDateTime(lookup[path][0].header.systemTime));
      file.WriteLine("Created Timestamp: {0}", header.createdTimeStamp);
      file.WriteLine("Changed Timestamp: {0}", header.changedTimeStamp);
      file.WriteLine("Flags: {0}", header.flags);
      file.WriteLine("Name: {0}", header.name);
      file.WriteLine("Status: {0}", header.status);
      file.WriteLine("Group Index: {0}", header.groupIndex);
      file.WriteLine("Color: {0}", header.color);
      file.WriteLine("Active Row: {0}", header.activeRow);
      file.WriteLine("Trigger Number: {0}", header.triggerNumber);
      file.WriteLine("Grid Rows: {0}", header.gridRows);
      file.WriteLine("Grid Cols: {0}", header.gridCols);
      file.WriteLine("Grid Mode: {0}", header.gridMode);
      file.WriteLine("Grid Operation: {0}", header.gridOperation);
      file.WriteLine("Grid Direction: {0}", header.gridDirection);
      file.WriteLine("Grid Repetitions: {0}", header.gridRepetitions);
      file.WriteLine("Grid Col Delta: {0}", header.gridColDelta);
      file.WriteLine("Grid Col Offset: {0}", header.gridColOffset);
      file.WriteLine("Bandwidth: {0}", header.bandwidth);
      file.WriteLine("Center: {0}", header.center);
      file.WriteLine("NENBW: {0}", header.nenbw);
      for (int i = 0; i < demodSample.Length; ++i)
      {
        file.WriteLine("{0}", demodSample[i].value);
      }
      file.Close();

      AssertEqual(1, trigger.progress());
      AssertNotEqual(0, demodSample.Length);

      trigger.clear();  // Release module resources. Especially important if modules are created
                        // inside a loop to prevent excessive resource consumption.
      daq.disconnect();
    }

    // ExampleMultiDeviceDataAcquisition
    //
    // Run the example: Capture demodulator data from two devices using the Data Acquisition module.
    // The devices are first synchronized using the MultiDeviceSync Module.
    //
    // Hardware configuration:
    // The cabling of the instruments must follow the MDS cabling depicted in
    // the MDS tab of LabOne.
    // Additionally, Signal Out 1 of the master device is split into Signal In 1 of the master and slave.
    //
    // ATTENTION: test ignored because it requires special device setup
    public void SKIP_MULTIDEVICE_ExampleMultiDeviceDataAcquisition() // Timeout(25000)
    {
      String[] device_ids = { "dev3133", "dev3144" };

      ziDotNET daq = new ziDotNET();
      daq.init("localhost", 8004, zhinst.ZIAPIVersion_enum.ZI_API_VERSION_6);
      apiServerVersionCheck(daq);
      daq.connectDevice(device_ids[0], "1gbe", "");
      daq.connectDevice(device_ids[1], "1gbe", "");

      // Create instrument configuration: disable all outputs, demods and scopes.
      foreach (String dev in device_ids)
      {
        daq.setInt(String.Format("/{0}/demods/*/enable", dev), 0);
        daq.setInt(String.Format("/{0}/demods/*/trigger", dev), 0);
        daq.setInt(String.Format("/{0}/sigouts/*/enables/*", dev), 0);
        daq.setInt(String.Format("/{0}/scopes/*/enable", dev), 0);
        daq.setInt(String.Format("/{0}/imps/*/enable", dev), 0);
        daq.sync();
      }

      System.Diagnostics.Trace.WriteLine("Synchronizing devices " + String.Join(",", device_ids) + "...\n");

      ziModule mds = daq.multiDeviceSyncModule();
      mds.setInt("start", 0);
      mds.setInt("group", 0);
      mds.execute();
      mds.setString("devices", String.Join(",", device_ids));
      mds.setInt("start", 1);

      // Wait for MDS to complete
      double local_timeout = 20.0;
      long status = 0;
      while (status != 2 && local_timeout > 0.0)
      {
        status = mds.getInt("status");
        System.Threading.Thread.Sleep(100);
        local_timeout -= 0.1;
      }

      if (status != 2)
      {
        System.Diagnostics.Trace.WriteLine("Error during synchronization.\n");
        Fail();
      }
      System.Diagnostics.Trace.WriteLine("Devices successfully synchronized.");

      // Device settings
      int demod_c = 0; // demod channel, for paths on the device
      int out_c = 0;  // signal output channel
      int out_mixer_c = 0;
      int in_c = 0;  // signal input channel
      int osc_c = 0;  // oscillator

      double time_constant = 1.0e-3;  // [s]
      double demod_rate = 10e3;  // [Sa/s]
      int filter_order = 8;
      double osc_freq = 1e3;  // [Hz]
      double out_amp = 0.600;   // [V]

      // Device settings
      foreach (String dev in device_ids)
      {
        daq.setDouble(String.Format("/{0}/demods/{1}/phaseshift", dev, demod_c), 0);
        daq.setInt(String.Format("/{0}/demods/{1}/order", dev, demod_c), filter_order);
        daq.setDouble(String.Format("/{0}/demods/{1}/rate", dev, demod_c), demod_rate);
        daq.setInt(String.Format("/{0}/demods/{1}/harmonic", dev, demod_c), 1);
        daq.setInt(String.Format("/{0}/demods/{1}/enable", dev, demod_c), 1);
        daq.setInt(String.Format("/{0}/demods/{1}/oscselect", dev, demod_c), osc_c);
        daq.setInt(String.Format("/{0}/demods/{1}/adcselect", dev, demod_c), in_c);
        daq.setDouble(String.Format("/{0}/demods/{1}/timeconstant", dev, demod_c), time_constant);
        daq.setDouble(String.Format("/{0}/oscs/{1}/freq", dev, osc_c), osc_freq);
        daq.setInt(String.Format("/{0}/sigins/{1}/imp50", dev, in_c), 1);
        daq.setInt(String.Format("/{0}/sigins/{1}/ac", dev, in_c), 0);
        daq.setDouble(String.Format("/{0}/sigins/{1}/range", dev, in_c), out_amp / 2);

      }
      // settings on master
      daq.setInt(String.Format("/{0}/sigouts/{1}/on", device_ids[0], out_c), 1);
      daq.setDouble(String.Format("/{0}/sigouts/{1}/range", device_ids[0], out_c), 1);
      daq.setDouble(String.Format("/{0}/sigouts/{1}/amplitudes/{2}", device_ids[0], out_c, out_mixer_c), out_amp);
      daq.setDouble(String.Format("/{0}/sigouts/{1}/enables/{2}", device_ids[0], out_c, out_mixer_c), 0);

      // Synchronization
      daq.sync();

      // measuring the transient state of demodulator filters using DAQ module

      // DAQ module
      // Create a Data Acquisition Module instance, the return argument is a handle to the module
      ziModule daqMod = daq.dataAcquisitionModule();
      // Configure the Data Acquisition Module
      // Device on which trigger will be performed
      daqMod.setString("device", device_ids[0]);
      // The number of triggers to capture (if not running in endless mode).
      daqMod.setInt("count", 1);
      daqMod.setInt("endless", 0);
      // 'grid/mode' - Specify the interpolation method of
      //   the returned data samples.
      //
      // 1 = Nearest. If the interval between samples on the grid does not match
      //     the interval between samples sent from the device exactly, the nearest
      //     sample (in time) is taken.
      //
      // 2 = Linear interpolation. If the interval between samples on the grid does
      //     not match the interval between samples sent from the device exactly,
      //     linear interpolation is performed between the two neighbouring
      //     samples.
      //
      // 4 = Exact. The subscribed signal with the highest sampling rate (as sent
      //     from the device) defines the interval between samples on the DAQ
      //     Module's grid. If multiple signals are subscribed, these are
      //     interpolated onto the grid (defined by the signal with the highest
      //     rate, "highest_rate"). In this mode, duration is
      //     read-only and is defined as num_cols/highest_rate.
      int grid_mode = 2;
      daqMod.setInt("grid/mode", grid_mode);
      //   type:
      //     NO_TRIGGER = 0
      //     EDGE_TRIGGER = 1
      //     DIGITAL_TRIGGER = 2
      //     PULSE_TRIGGER = 3
      //     TRACKING_TRIGGER = 4
      //     HW_TRIGGER = 6
      //     TRACKING_PULSE_TRIGGER = 7
      //     EVENT_COUNT_TRIGGER = 8
      daqMod.setInt("type", 1);
      //   triggernode, specify the triggernode to trigger on.
      //     SAMPLE.X = Demodulator X value
      //     SAMPLE.Y = Demodulator Y value
      //     SAMPLE.R = Demodulator Magnitude
      //     SAMPLE.THETA = Demodulator Phase
      //     SAMPLE.AUXIN0 = Auxilliary input 1 value
      //     SAMPLE.AUXIN1 = Auxilliary input 2 value
      //     SAMPLE.DIO = Digital I/O value
      string triggernode = String.Format("/{0}/demods/{1}/sample.r", device_ids[0], demod_c);
      daqMod.setString("triggernode", triggernode);
      //   edge:
      //     POS_EDGE = 1
      //     NEG_EDGE = 2
      //     BOTH_EDGE = 3
      daqMod.setInt("edge", 1);
      demod_rate = daq.getDouble(String.Format("/{0}/demods/{1}/rate", device_ids[0], demod_c));
      // Exact mode: To preserve our desired trigger duration, we have to set
      // the number of grid columns to exactly match.
      double trigger_duration = time_constant * 30;
      int sample_count = Convert.ToInt32(demod_rate * trigger_duration);
      daqMod.setInt("grid/cols", sample_count);
      // The length of each trigger to record (in seconds).
      daqMod.setDouble("duration", trigger_duration);
      daqMod.setDouble("delay", -trigger_duration / 4);
      // Do not return overlapped trigger events.
      daqMod.setDouble("holdoff/time", 0);
      daqMod.setDouble("holdoff/count", 0);
      daqMod.setDouble("level", out_amp / 6);
      // The hysterisis is effectively a second criteria (if non-zero) for triggering
      // and makes triggering more robust in noisy signals. When the trigger `level`
      // is violated, then the signal must return beneath (for positive trigger edge)
      // the hysteresis value in order to trigger.
      daqMod.setDouble("hysteresis", 0.01);
      // synchronizing the settings
      daq.sync();

      // Recording

      // Subscribe to the demodulators
      daqMod.unsubscribe("*");
      foreach (String dev in device_ids)
      {
        string node = String.Format("/{0}/demods/{1}/sample.r", dev, demod_c);
        daqMod.subscribe(node);
      }

      // Execute the module
      daqMod.execute();
      // Send a trigger
      daq.setDouble(String.Format("/{0}/sigouts/{1}/enables/{2}", device_ids[0], out_c, out_mixer_c), 1);
      while (!daqMod.finished())
      {
        System.Threading.Thread.Sleep(1000);
        System.Diagnostics.Trace.WriteLine(String.Format("Progress {0}", daqMod.progress()));
      }

      // Read the result
      Lookup result = daqMod.read();

      // Turn off the trigger
      daq.setDouble(String.Format("/{0}/sigouts/{1}/enables/{2}", device_ids[0], out_c, out_mixer_c), 0);
      // Finish the DAQ module
      daqMod.finish();

      daqMod.clear();  // Release module resources. Especially important if modules are created
                       // inside a loop to prevent excessive resource consumption.

      // Stop the MDS module, release memory and resources
      mds.clear();

      // Extracting and saving the data
      double mClockbase = daq.getDouble(String.Format("/{0}/clockbase", device_ids[0]));

      List<ZIDoubleData[]> data = new List<ZIDoubleData[]>();
      foreach (String dev in device_ids)
      {
        string node = string.Format("/{0}/demods/{1}/sample.r", dev, demod_c);
        data.Add(result[node][0].doubleData);
      }

      String fileName = Environment.CurrentDirectory + "/mds_dataacquisition.txt";
      System.IO.StreamWriter file = new System.IO.StreamWriter(fileName);

      for (int i = 0; i < data[0].Length; ++i)
      {
        file.WriteLine("{0},{1},{2}", (data[0][i].timeStamp - data[0][0].timeStamp) / mClockbase,
          data[0][i].value, data[1][i].value);
      }
      file.Close();

      daq.disconnect();
    }
  }

}